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Abstract— Almost sure asymptotic stabilization problem of
continuous-time switched linear stochastic dynamical systems
is considered. The mode signal, which manages the transition
between subsystems, is modeled as a Markov chain. Mode
information is assumed to be only available at certain time
instances. We propose a control law that depends on the
sampled information of the mode signal, which is constructed
from the available mode samples. Based on our stability analysis
for switched linear stochastic systems, we obtain sufficient
conditions under which the proposed control law guarantees
stability of the zero solution. Finally, we present an illustrative
numerical example to demonstrate the efficacy of our results.

I. INTRODUCTION

Stochastic hybrid system models can accurately describe

various real life processes from finance, physics and en-

gineering fields that are subject to noise and random en-

vironmental variations. There has been increasing amount

of studies concerning the stability of stochastic hybrid

systems. Particularly, researchers have extensively explored

stability of Markov jump systems, which are composed of

deterministic subsystems and a probabilistic mode signal

(e.g., [1]–[3] and the references therein). Some researchers

have combined probabilistic mode signals with stochastic

subsystem dynamics to obtain more general stochastic hybrid

system models, which are often called “switching diffu-

sion processes”. Switching diffusion processes have found

applications in population studies [4]–[7] and finance [5],

[8]. Stochastic stability properties of switching diffusion

processes is explored in several works [9]–[16].

Stabilization of stochastic hybrid systems has also been a

topic of interest. Specifically, the stabilization of continuous-

time Markov jump linear systems is addressed in [17]; stabi-

lization of Markov jump systems with delays is explored in

[18] and [19]; furthermore, several almost sure stabilization

results are provided for switching diffusion processes in [10]

and [12].

In most of the studies that deal with stabilization of

switched stochastic systems, proposed control laws depend

on full information of the mode signal of the switched

system. As a result, these control laws may not be appropriate

when the mode information is sampled and only available at

sampling instances. In this paper, we explore the stabilization

problem under sampled mode information for continuous-

time switched linear stochastic dynamical systems. First,
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we provide stability analysis for switched linear stochastic

dynamical systems without control input. These systems are

composed of stochastic subsystems which include Brownian

motion in the dynamics. The mode signal, which manages

the transition between these subsystems, is modeled as a

finite-state Markov chain. Based on our stability analysis, we

propose a stabilizing control law that depends on the mode

signal. Next, we consider the case where the mode signal

information is sampled and hence available only at certain

time instances. The intervals between these time instances

are assumed to be independent and exponentially distributed.

By using “sample and hold” technique, we construct a good

representation of the mode signal from the available mode

samples. Furthermore, we propose a control law that depends

only on the sampled mode information. In this setting, the

problem at hand is similar to the one in [20], where the

authors investigate mean-square stabilizability of Markov

jump systems with additive noise under a control law that

depends on an estimate of the mode signal. Moreover, the

closed-loop system under the control law that we propose

resembles a fault tolerant control system with normal/faulty

modes and a “fault detection and isolation scheme” which is

explored in [21] and [22]. In this sense, the investigation of

the stability of this closed-loop system is also important due

to possible applications in the field of fault-tolerant control

systems as well. Based on our stability analysis for switched

linear stochastic dynamical systems, we obtain sufficient

conditions under which the proposed control law achieves

stabilization with probability one.

The paper is organized as follows. In Section II, the

notation used in the paper is explained; moreover, a review

of Markov chains, Poisson processes, and the definition of

almost sure asymptotic stability are given. In Section III,

we present the mathematical model for continuous-time

switched linear stochastic dynamical systems, and provide

sufficient conditions of stability. Furthermore we propose a

stabilizing control law that depends on the mode signal. We

investigate feedback stabilization of switched linear stochas-

tic systems under limited mode information in Section IV. A

numerical example is provided in Section V to demonstrate

the utility of our results. Finally, we conclude the paper in

Section VI.

II. MATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,

and some key results concerning stochastic dynamical sys-

tems that are necessary for developing the main results of

this paper. Specifically, R denotes the set of real numbers,
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Fig. 1. Transition diagram of a 3-state Markov chain

R
n denotes the set of n × 1 real column vectors, R

n×m

denotes the set of n×m real matrices, N and N0 respectively

denote positive and nonnegative integers, and ‖ · ‖ denotes

the Euclidean vector norm. Furthermore, we write (·)T for

transpose and tr(·) for trace of a matrix, In for the identity

matrix of dimension n, λmin(M) (resp., λmax(M)) for the

minimum (resp., maximum) eigenvalue of the Hermitian

matrix M , and J i
n ∈ R

n×n for the matrix with the (i, i)
entry being 1 and the rest of the entries being zero. Finally,

∇V denotes the vector of the first order spatial derivatives

of a twice continuously differentiable scalar V , that is,

∇V =
[

∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

]

and ∇(∇V ) denotes the matrix

of the second-order spatial derivatives of V , that is,

∇(∇V ) =









∂2V
∂x1∂x1

· · · ∂2V
∂x1∂xn

...
. . .

...
∂2V

∂xn∂x1

· · · ∂2V
∂xn∂xn









.

Let (Ω,F ,P) be a probability space. A filtration {Ft}t≥0

on this probability space is a family of σ-algebras such that

Fs ⊂ Ft ⊂ F , 0 ≤ s < t.

A stochastic process {x(t)}t≥0 is adapted to the filtration

{Ft}t≥0 if the random variable xt : Ω → R
n is Ft-

measurable, that is,

{ω ∈ Ω : xt(ω) ∈ B} ∈ Ft, t ≥ 0,

for all Borel sets B ⊂ R
n.

A. Markov Chains

A finite-state Markov chain is a piecewise-constant

stochastic process that takes values from a finite set I ,

{1, 2, . . . ,M}. Mathematically, it is defined to be the Ft-

adapted right-continuous stochastic process {r(t) ∈ I}t≥0,

with r(0) = r0 ∈ I . A Markov chain is characterized

by a generator matrix Q ∈ R
M×M , which determines the

transition rates between each pair of states i, j ∈ I such that

P[r(t+∆t) = j|r(t) = i] =

{

qi,j∆t+ o(∆t), i 6= j,

1 + qi,j∆t+ o(∆t), i = j,

where qi,j denotes the (i, j)th element of the matrix Q. Note

that qi,j ≥ 0, i 6= j and qi,i = −
∑

j 6=i qi,j , i ∈ I . A Markov

chain can be represented by a state transition diagram. For

instance, a 3-state Markov chain is represented by a graph of

3 nodes as shown in Fig. 1. The nodes in the figure represent

the states of the Markov chain, the arrowed edges represent a

possible transition between the states in the direction of the

arrows, and the labels on the edges indicate the transition

rates between the paired states. A finite-state Markov chain

is called “irreducible” if it is possible to reach from any

state to another state with one or more transitions. Thus,

a finite-state Markov chain is irreducible if there exists a

directed path from each node to another node in the state

transition diagram. For example, the Markov chain presented

in Fig. 1 is irreducible provided that qi,j , i, j ∈ {1, 2, 3},

are nonzero. For all finite-state, irreducible Markov chains

there exists a unique stationary probability distribution π ,

[π1, . . . , πM ]T ∈ R
M such that πTQ = 0, πi > 0, i ∈ I ,

and
∑

i∈I πi = 1 [23].

In this study, the mode signal, which manages the transi-

tion between subsystems (modes) of the switched system, is

modeled as a finite-state Markov chain.

B. Poisson Processes

A Poisson process is a continuous-time stochastic process

that counts the number of occurrences of some events.

Mathematically, it is defined to be the Ft-adapted stochastic

process {N(t) ∈ N0}t≥0 with N(0) = 0, where N(t)
denotes the number of events that occur in the time interval

(0, t]. Probability of the occurrence of an event in a short

time interval (t, t+∆t] is given by

P[N(t+∆t) = k + 1 |N(t) = k] = λ∆t+o(∆t), k ∈ N0,

where λ > 0 denotes the intensity of occurrences. Length of

intervals between consecutive events are distributed by the

exponential distribution with parameter λ. A Poisson process

has “stationary and independent increments”. “Independent

increments” property suggests that occurrences of events

in non-overlapping intervals are independent. Moreover, as

a result of “stationary increments” property, the number

of events in any time interval is distributed with Poisson

distribution depending only on the length of the interval. For

Poisson processes, the probability of occurrences of more

than one event at a time is zero. Additionally, only finite

number of events occur in finite time intervals, almost surely.

C. Almost Sure Asymptotic Stability

In our analysis we adopt almost sure asymptotic stability

notion. The zero solution x(t) ≡ 0 of a stochastic system is

asymptotically stable almost surely if

P[ω ∈ Ω : lim
t→∞

‖xt(ω)‖ = 0] = 1, (1)

for t ≥ 0 with a fixed initial condition x0(·). This notion is

also called “asymptotic stability with probability one” [5].

III. STABILITY AND STABILIZATION OF SWITCHED

LINEAR STOCHASTIC DYNAMICAL SYSTEMS

In this section, we first provide the mathematical model

for switched linear stochastic dynamical systems. We obtain

sufficient conditions of almost sure asymptotic stability.

Then, we consider switched linear stochastic dynamical sys-

tems with control input. Based on our stability analysis, we

propose a piecewise-continuous control strategy that achieves

stabilization of the zero solution of continuous-time switched

linear stochastic dynamical systems.
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A. Sufficient Conditions of Almost Sure Asymptotic Stability

Consider the continuous-time switched linear stochastic

dynamical system given by

dx(t) = Ar(t)x(t)dt+Dr(t)x(t)dW (t), t ≥ 0, (2)

with initial conditions x(0) = x0 and r(0) = r0,

where {x(t)}t≥0 is the R
n-valued Ft-adapted state vec-

tor, {W (t)}t≥0 is an R-valued Ft-adapted Wiener process,

Ai, Di ∈ R
n×n, i ∈ I , {1, 2, . . . ,M}, are subsystem

matrices. The dynamical system (2) is assumed to have

M ≥ 1 number of subsystems (modes). The transition

between the modes is characterized by the piecewise constant

Ft-adapted mode signal {r(t) ∈ I}t≥0, which is assumed to

be an irreducible Markov chain with generator matrix Q ∈
R

M×M with a stationary probability distribution π ∈ R
M .

We assume that the Wiener process {W (t) ∈ R}t≥0 and

the mode signal {r(t) ∈ I}t≥0 are mutually independent

stochastic processes.

The stability of the dynamical system given by (2) can be

analyzed using a quadratic Lyapunov-like function.

Theorem 3.1: Consider the switched linear stochastic sys-

tem given by (2). If there exist P > 0 and scalars ζi ∈ R, i ∈
I , such that

0 ≥AT
i P + PAi +DT

i PDi − ζiP, i ∈ I, (3)

∑

i∈I

πi(ζi −
λ2
min(D

T
i P + PDi)

2λ2
max(P )

) < 0, (4)

then the zero solution x(t) ≡ 0 of the system described by

(2) is asymptotically stable almost surely.

Proof: The proof is omitted due to space limitations.

We employ the stability result presented in Theorem 3.1

for investigating almost sure feedback stabilization problem

in the following sections.

B. Feedback Stabilization

In this section, we develop a stabilizing control law

for switched linear stochastic dynamical systems. Consider

the continuous-time switched linear stochastic system with

control input given by

dx(t) = Ar(t)x(t)dt+Br(t)u(t)dt+Dr(t)x(t)dW (t), (5)

for t ≥ 0, with initial conditions x(0) = x0 and r(0) = r0,

where u(t) ∈ R
m is the control input and Bi ∈ R

n×m, i ∈ I ,

are input matrices.

The stabilization problem here is to design a feedback

control law which guarantees the almost sure asymptotic

stability of the zero solution x(t) ≡ 0. By assuming that

information on the mode signal {r(t) ∈ I}t≥0 is available

to the controller for t ≥ 0, we propose a control law of the

form u(t) = Kr(t)x(t), where Ki ∈ R
m×n denotes the state

feedback gain for the ith mode. Note that the feedback matrix

is switched when there is a mode transition. As a result, the

control input may have discontinuities at mode switching

instances, which we denote by the sequence {t1, t2, . . .}.

Corollary 3.2: Consider the continuous-time switched lin-

ear stochastic dynamical system given by (5). If there exist

P > 0 and scalars ζi ∈ R, i ∈ I, such that

0 ≥ AT
i P+PAi+DT

i PDi−2PBiB
T
i P−ζiP, i ∈ I, (6)

and (4) are satisfied, then the feedback control law

u(t) = −BT
r(t)Px(t) (7)

guarantees that the zero solution x(t) ≡ 0 of the switched

stochastic system (5) is asymptotically stable almost surely.

Proof: The result is a direct consequence of Theo-

rem 3.1 with Ai replaced by Ai −BiB
T
i P, i ∈ I .

The proposed control law (7) is a function of the mode

signal {r(t) ∈ I}t≥0, and hence cannot be used for stabiliza-

tion when the mode information is available only at certain

time instances or when it is not available at all. For the case

where the mode signal information is not available, one can

seek a control law of the form

u(t) = Kx(t), (8)

which does not depend on the mode signal {r(t) ∈ I}t≥0.

On the other hand, when mode signal is sampled and only

available at certain time instances, sampled mode informa-

tion can also be employed in the control law.

IV. FEEDBACK STABILIZATION UNDER LIMITED MODE

INFORMATION

In this section we explore feedback stabilization problem

for the case where the mode signal information {r(t) ∈
I}t≥0 of the switched linear stochastic system (5) is available

only at certain time instances, which we denote by the

sequence {τ0 = 0, τ1, τ2, . . .}. We assume that the length

of time intervals between these instances are independent

random variables that are distributed by exponential distribu-

tion with parameter λ > 0. As a result, these time instances

correspond to occurrences of events of a Poisson process

{N(t) ∈ N0}t≥0 with the parameter λ > 0. We call λ the

mode sampling intensity parameter.

The elements of the sequence {τ0, τ1, τ2, . . .} are char-

acterized by

τk , inf{τ : N(t) ≥ k}, k ∈ N0. (9)

Note that when the mode sampling intensity λ is small, the

length of the time intervals (τk, τk+1], k ∈ N0, are likely to

be large; therefore, the mode signal information is expected

to be rarely available.

By employing the “sample and hold” technique we con-

struct the sampled mode signal {σ(t) ∈ I}t≥0 of the mode

signal {r(t) ∈ I}t≥0 by using only the available mode

samples {r(τ0), r(τ1), r(τ2), . . .} as

σ(t) , r(τN(t)), t ≥ 0. (10)

At time instances {τ0, τ1, τ2, . . .}, the sampled mode sig-

nal is equal to the actual mode signal of the plant, that is,

σ(τk) = r(τk), k ∈ N0. Furthermore, the sampled mode

signal may be discontinuous at the time instance τk, k ∈ N,
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Fig. 2. Actual mode signal r(t) and the sampled mode signal σ(t) versus
time

if a mode switch occurs in the time interval (τk−1, τk]. Fig. 2

shows a sample path of the actual mode signal r(t) and the

sampled mode signal σ(t) of a switched system (5) with

M = 3 modes. Note that when the mode sampling intensity

parameter λ is sufficiently large, mode signal information

samples will be frequently available; therefore, {σ(t) ∈
I}t≥0 is likely to be a good representation of the mode

signal.

Now, we show that under certain conditions, the zero

solution of the switched linear system (5) can be stabilized

by a controller that depends only on the sampled information

of the mode signal rather than the actual mode signal.

Specifically, we consider the control law of the form

u(t) = Kσ(t)x(t). (11)

The closed-loop system (5) under the control law (11) is

given by

dx(t) = (Ar(t) +Br(t)Kσ(t))x(t)dt+Dr(t)x(t)dW (t).
(12)

We now verify that the closed-loop system (12) can be

expressed as a switched linear stochastic dynamical system

described by (2). For finite values of the mode sampling

intensity parameter λ, the sampled mode signal is imperfect,

that is, the actual mode signal r(t) and the sampled mode

signal σ(t) may take different values when t 6= τk, k ∈ N0.

We define the bivariate stochastic process

{r̂(t)}t≥0 , {
(

r(t), σ(t)
)

}t≥0. (13)

Under the assumption that the Poisson process {N(t) ∈
N0}t≥0 and the mode signal {r(t) ∈ I}t≥0 are independent

stochastic processes, for any i, j, k, l ∈ I ,

P[r̂(t+∆t) = (j, l) | r̂(t) = (i, k)]

=































qi,j∆t+ o(∆t), i 6= j, k = l,

1 + qi,i∆t+ o(∆t), i = j = k = l,

λ∆t+ o(∆t), i = j, k 6= l, i 6= k,

1 + qi,i∆t− λ∆t+ o(∆t), i = j, k = l, i 6= k,

o(∆t), otherwise.

(14)

1 2 3

4 5 6

7 8 9

Layer 1

Layer 2
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q2,1 q1,2 q3,2 q2,3

q3,1 q1,3

q2,1 q1,2 q3,2 q2,3

q3,1 q1,3

q2,1 q1,2 q3,2 q2,3

q3,1 q1,3

λ

λ λ

λλ

λ

Fig. 3. Transition diagram of a Markov chain of 9 states with a special
structure for M = 3

It follows that the bivariate stochastic process

{r̂(t)}t≥0 is a Markov chain with M2 states

given by {(1, 1), (1, 2), . . . , (1,M), (2, 1), (2, 2), . . . ,
(2,M), . . . , (M, 1), (M, 2), . . . , (M,M)}. We enumerate

the states in this order as Î , {1, 2, . . . ,M2}. Furthermore,

the generator of the Markov chain {r̂(t) ∈ Î}t≥0 is given

by

Q̂ =











T 1 λJ2
M · · · λJM

M

λJ1
M T 2 · · · λJM

M
...

...
. . .

...

λJ1
M λJ2

M · · · TM











, (15)

where T i = Q− λIM + λJ i
M , i ∈ I .

The Markov chain {r̂(t) ∈ Î = {1, 2, . . . ,M2}}t≥0 can

be represented by a transition diagram with a special graph

structure of M2 nodes (Fig. 3). In this graph structure, the

nodes are placed in M layers. The nodes in the ith layer are

numbered as {(i−1)M+1, (i−1)M+2, . . . , (i−1)M+M}.

The graph structure of each separate layer resembles the

transition diagram of the Markov chain {r(t) ∈ I}t≥0. For

example, an arrowed edge directed from the ((i−1)M+j)th
node to the ((i − 1)M + k)th node represents a possible

transition from the state j to state k of the Markov chain

{r(t) ∈ I}t≥0. On the other hand, between two distinct

layers i and j in the graph structure of the Markov chain

{r̂(t) ∈ Î}t≥0, there exist two directed edges: one from the

((i−1)M+j)th node in the ith layer to the ((j−1)M+j)th
node in the jth layer, and another one from the ((j−1)M +
i)th node in the jth layer to the ((i − 1)M + j)th node in

the ith layer. The directed edge from the ith layer to the jth

layer represents a possible change in the state of the sampled

mode signal {σ(t) ∈ I}t≥0 from i to j.

Since the mode signal {r(t) ∈ I}t≥0 is irreducible, there

exists a directed path between each pair of nodes within

each layer of the transition diagram of the Markov chain

{r̂(t) ∈ Î}t≥0. Furthermore, there exists a directed edge

from each layer to another layer. It follows that there exists a

directed path from each node to another node in the transition

diagram of the Markov chain {r̂(t) ∈ Î}t≥0. We conclude

that the Markov chain {r̂(t) ∈ Î}t≥0 is also irreducible.

Consequently, there exists a unique stationary probability

distribution π̂ ∈ R
M2

such that π̂TQ̂ = 0, π̂i > 0, i ∈ Î ,
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and
∑

i∈Î π̂i =
∑

i∈I

∑

j∈I π̂(i−1)M+j = 1

The Markov chain {r̂(t) ∈ Î}t≥0 is irreducible; therefore,

we can express the closed-loop system (12) as a comparison

system which is a switched linear stochastic dynamical sys-

tem of M2 modes described by (2) with subsystem matrices

A(i−1)M+j replaced by Aj−BjKi, and D(i−1)M+j replaced

by Dj , for i, j ∈ I . The transition between the modes of this

comparison system is represented by the transition diagram

of the Markov chain {r̂(t) ∈ Î}t≥0 with M layers.

We now state our main result on the almost sure asymp-

totic stabilization of the switched stochastic dynamical sys-

tem (5) under sampled mode information. The result is based

on the stability analysis for the comparison system (2) stated

in Theorem 3.1.

Theorem 4.1: Consider the continuous-time switched lin-

ear stochastic dynamical system given by (5). If there exist

P > 0 and scalars ζi ∈ R, i ∈ I , such that (6) and

∑

i∈I

∑

j∈I

π̂(i−1)M+j

(

βi,j−
λ2
min(D

T
j P + PDj)

2λ2
max(P )

)

< 0, (16)

where

βi,j =















ζj , i = j,

ζj +
2λmax(PBjB

T

j P )

λmin(P )

−
λmin(P (BjB

T

i +BiB
T

j )P )

λmax(P ) , i 6= j,

(17)

and π̂ ∈ R
M2

is the unique stationary distribution of the

Markov chain {r̂(t) ∈ Î = {1, 2, . . . ,M2}}t≥0 charac-

terized by the generator matrix Q̂ given in (15), then the

feedback control law (11) with the feedback gain matrix

given by

Kσ(t) = −BT
σ(t)P, (18)

guarantees that the zero solution x(t) ≡ 0 of the closed-loop

system (5) and (11) is asymptotically stable almost surely.

Proof: The proof is omitted due to space limitations.

The transition rates qi,j , i, j ∈ I , as well as the mode

sampling intensity λ affect the stability conditions of the

closed-loop system under the control law (18). Note that

the stationary distribution π̂ ∈ R
M2

also depends on the

values of both qi,j , i, j ∈ I , and λ. Therefore, the condition

(16), which involves the stationary distribution π̂ ∈ R
M2

, is

satisfied only for certain values of qi,j , i, j ∈ I , and λ.

When the transition rates qi,j , i, j ∈ I , are large, the

switchings between the modes of the system (5) are likely

to be frequent. In this case, if the mode sampling intensity

λ is very small, then the stationary probability distributions

associated with the states {(i−1)M+j : i, j ∈ I, i 6= j} are

high. Furthermore, the sampled mode signal {σ(t) ∈ I}t≥0

is expected to differ from the mode signal {r(t) ∈ I}t≥0. On

the contrary, when the mode switchings are statistically rare

and the mode sampling intensity λ is sufficiently large, the

stationary probability distributions associated with the states

{(i− 1)M + i : i ∈ I} are high. Moreover, {σ(t) ∈ I}t≥0

is expected to be a good representation of the mode signal

{r(t) ∈ I}t≥0.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we present a numerical example to demon-

strate the efficacy of our approach. Specifically, we consider

the switched linear stochastic dynamical system (5) with

M = 3 modes described by the subsystem matrices given

by

A1 =

[

2 −2
3 1.5

]

, B1 =

[

1 0
0 1

]

,

A2 =

[

1.5 0
0 2

]

, B2 =

[

0 0
0 0

]

,

A3 =

[

2 1
−0.5 3

]

, B3 =

[

−1 0.3
0.2 1

]

,

and D1 = D2 = D3 = I2. The mode signal {r(t) ∈ I ,

{1, 2, 3}}t≥0 of the system is assumed to be a 3-state Markov

chain characterized by the generator matrix

Q =





−2 1 1
1 −2 1
1 1 −2



 . (19)

The mode signal {r(t) ∈ I}t≥0 is assumed to be available

only at certain time instances. Furthermore, intervals between

these time instances are assumed to be distributed indepen-

dently by exponential distribution with the parameter λ = 5.

The bivariate stochastic process {r̂(t) ∈ Î ,

{1, 2, . . . , 9}}t≥0 defined in (13) is a Markov chain with

the unique invariant distribution given by

π̂(i−1)M+j =

{

0.25, i, j ∈ I, i = j,
0.25
6 , i, j ∈ I, i 6= j.

Note that the positive-definite matrix P = 5I2 and the

scalars ζ1 = −4.3, ζ2 = 5, ζ3 = −3.3 satisfy the conditions

(6) and (16). Therefore, it follows from Theorem 4.1 that the

control law (11) guarantees almost sure asymptotic stability

of the zero solution x(t) ≡ 0 of the system given by (5).

With initial conditions x(0) = [1, 1]
T

and r(0) = 1,

Figs. 4 and 5 show sample paths of x(t) and u(t), respec-

tively.

The piecewise-continuous control law (11) depends on the

sampled mode signal information σ(t). As a consequence,

control profile is subject to jumps when σ(t) changes its

value at mode sampling instances. Note that both the mode

sampling intensity and the frequency of mode switches

directly affect the quality of the representation of the actual

mode signal by the sampled mode signal. In this example,

the sampling intensity λ = 5 is relatively high compared to

the frequency of mode switches; consequently, the sampled

mode signal σ(t) closely matches the actual mode signal r(t)
(see Fig. 6).

VI. CONCLUSION

The stability of continuous-time switched linear stochastic

systems was investigated. A quadratic Lyapunov-like func-

tion has been employed for obtaining sufficient almost sure

asymptotic stability conditions. Moreover, feedback stabi-

lization of the zero solution under sampled mode information
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was explored. The intervals between mode sampling time

instances are assumed to be exponentially distributed random

variables. We proposed a piecewise-continuous control law

that guarantees almost sure asymptotic stability of the zero

solution. The proposed control law depends only on the

sampled mode signal which is constructed from the available

mode samples by using “sample and hold” technique. Future

work includes extension of the results for the case where the

random time intervals between mode sampling instances are

characterized by a general probability distribution.
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