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Abstract—For noncooperative games the Nash Certainty
Equivalence (NCE), or Mean Field (MF) methodology [1], [2]
provides decentralized strategies which asymptotically yield Nash
equilibria. An extension of this theory to populations of altruistic
agents (defined with so-called social cost functions) and to
mixed populations was carried out in [3], and a theory treating
populations of egoistic agents and one or more so-called major
agents was developed in [4]. In this paper we study the equilibria
and the overall stability of dynamic LQG games, where (i)
there is a single major agent and a large population of mixed
minor agents, and (ii) the cost for each minor agent is a convex
combination of its own cost and the social cost of the minor
agents. We analyse the resulting equilibria, provide experimental
results, and present a mean field stochastic control algorithm,
which when applied by all agents in the system, gives rise to
system behaviour where (i) all agents systems are L2 stable, (ii)
the set of controls yields an ε-Nash equilibrium for all ε, and
(iii) if each minor agent in the system only considers the social
cost, then the difference between (i) the cost observed by each
minor agent and (ii) the social cost that would be observed if a
centralized controller minimizes the social cost tends to zero as
the population size grows to infinity.

I. INTRODUCTION

The optimization and control of large scale dynamic systems
is both analytically and computationally complex. Usually one
encounters the curse of dimensionality, therefore distributed
or decentralized control approaches are applied. Game theory
has been formulated to capture individual payoffs or costs, but
even individual best response algorithms lead to few practical
results, since the analytic complexity is usually very high.

The analysis of large scale dynamic systems where agents
are coupled via dynamics and cost functions was presented
in [1], [2], [5] where the theory of Nash Certainty Equiv-
alence (NCE) (Mean Field (MF)) control was introduced
and decentralized strategies which yield Nash equilibria were
provided. It is to be noted that the dynamic large scale cost
coupled structure of [2] is motivated by various scenarios,
for instance those analysed in [6]–[9]. Individual control laws
use local information and the average effect of all agents
taken together, henceforth referred to as the mass. Related
approaches have been independently developed in [10]–[12],
a nonlinear extension using McKean-Vlasov Markov process
models is presented in [13], and the analysis of an adaptive
framework is presented in [14]–[16].

Cooperative Behaviour in Mean Field LQG Control:
The notion of social global optima (i.e., minimum summed

individual costs) is a major issue in decentralized and dis-
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tributed control and optimization problems, and Pareto op-
timality is a widely accepted characterization. In contrast
to competitive behaviour studied in the NCE (MF) frame-
work, a different situation may arise when the agents in the
population seek socially optimal actions. Even though it is
often only studied by static models, Pareto optimality has
been extensively studied in optimization problems, either as a
problem on its own, or as a tool for comparison to competitive
behaviour (see e.g. [17]). In the mean field framework an LQG
model is adopted in [18] for the minimization of a social
cost function, and centralized and decentralized strategies are
considered; in this work social certainty equivalence (SCE)
methodology is introduced, where the mean field trajectory
is obtained by each agent without any observations on other
agents’ trajectories. This cooperative game problem is then
extended to a model [3] where the optimization problem of
individual agents involves a cost reflecting both individual and
social interests. To model this situation the weight that each
agent assigns to its individual cost function and the social cost
function changes continuously across the population.

LQG Games Involving a Major Agent:
A different dynamic game model is studied in [4], where

a single major and a large population of minor agents exist,
in contrast to [1], [2], where all agents are non-atomic. In
cooperative game theory, games including small and large
agents are denoted as mixed games [19]. Such games are useful
in modelling markets with a dominant big corporation and
several small entities.

Major Agent vs Minor Egoistic and Altruistic Agents:
The step in the development of MF stochastic dynamic game

theory taken in this paper is the analysis of the situation where
there is a population of mixed agents; namely a single major
agent together with a large population of minor agents whose
cost functions reflect both individual and social interest. The
major agent and the minor agents are coupled in a way to
be described in detail later. Under reasonable conditions on
the population dynamical parameter distribution, this paper
presents a mean field stochastic control algorithm which when
applied by all agents in the system, gives rise to system
behaviour where (i) all agents systems are L2 stable, (ii) the
set of controls yields an ε-Nash equilibrium for all ε, and (iii)
if each minor agent in the system only considers the social
cost, then the difference between the cost observed by each
minor agent and the social cost that would be observed if a
centralized controller minimizes the social cost tends to zero
as the population size grows to infinity.

The organization of the paper is as follows. The dynamic
game problem is formulated in Section II. The individual
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control is examined for the single major agent and minor
agents in Section III. In order to obtain decentralized solutions,
the NCE-SCE methodology is presented in Section IV. In
Section V, we study the stability of the action profile, when the
weight each mixed minor agent assigns to its individual cost
is defined as a decision parameter. In Section VI we present
the supporting simulation results and Section VII concludes
the paper.

II. STOCHASTIC DYNAMIC GAME MODEL
Following [4], we consider a large population of N stochas-

tic dynamic minor agents Ai, 1 ≤ i ≤ N , and a single major
agent A0, where the individual dynamics are defined by

dx0 = [A0x0 +B0u0]dt+D0dw0,

dxi = [A(θi)xi +B(θi)ui +Gx0]dt+Ddwi,
(1)

t ≥ 0, 1 ≤ i ≤ N . Here x0, xi ∈ Rn are the states,
u0, ui ∈ Rm are the control inputs, {wi, 0 ≤ i ≤ N}
denotes (N + 1) independent standard Wiener processes
in Rr on a sufficiently large underlying probability space
(Ω,F , P ) that w is progressively measurable with respect to
Fw , (Fwt ; t ≥ 0). Note that the major agent A0 affects
each minor agent through its dynamics. The initial states are
defined on (Ω,F , P ), and {xi(0), 0 ≤ i ≤ N} are mutually
independent and also independent of Fw∞; Eww> = Σ,
and E‖x(0)‖2 < ∞. We denote the state configuration by
x = (x0, · · · , xN )>, and the minor agent population average
state by xN = (1/N)

∑N
i=1 xi.

The individual discounted cost functions for the agents
Ai, 0 ≤ i ≤ N , are given by

JN0 (u0, u−0) = E
∫ ∞
0

e−ρt{‖x0 − Φ(xN )‖2Q0
+ ‖u0‖2R0

}dt,

JNi (ui, u−i) = E
∫ ∞
0

e−ρt{‖xi −Ψ(xN )‖2Q + ‖ui‖2R}dt,
(2)

where we assume the cost-coupling to be of the form
Φ(t) , H0x

N (t) + η0, η0 ∈ Rn, and Ψ(t) , Hx0(t) +
ĤxN (t) + η, η ∈ Rn, and we use the notation ‖a − b‖2Q ,
(a − b)>Q(a − b), Q ≥ 0, for arbitrary a, b and Q. The
coefficients [A(θi), B(θi)] ∈ Rn(n+m), will be called the
dynamical parameters. The variability of the parameter θi is
used to model the population of minor agents. We assume
that θi takes values from the finite set Θ = {1, ...,K} so
that there are K types of minor agents. The disturbance
weight matrices D0, D, the major agent weight matrix G,
and the control action penalizing matrices R0, R are constant
matrices and constitute known information for all agents in the
system. The functions u0(·) and ui(·) are the control inputs
of the agents A0 and Ai, 1 ≤ i ≤ N , respectively and u−i
denotes the control inputs of the complementary set of agents
A−i = {Aj , j 6= i, 0 ≤ j ≤ N}.

The social cost of the minor agents for a minor population
size N is defined as

JNsoc(u) =

N∑
i=1

JNi (ui, u−i). (3)

To model the egoism degree of a minor individual agent and
its contribution in optimizing the social cost, for agent i, 1 ≤
i ≤ N , we define

JNi (ui, u−i | λi) = λ(θi)J
N
i (ui, u−i) + (1− λ(θi))J

N
soc(u),

(4)
where the egoism degree of each agent λ(θi) ∈ [0, 1]. In
the noncooperative game problem studied in [1], [2] each
agent optimizes with respect to JNi (·) alone. The agent type
dependent parameter λ(θi) is a measure of the egoism degree
of agent Ai, and 1− λ(θi) measures the weight it contributes
to the social interest. When λ(θi) increases, the agent is more
self oriented: if λ(θi) = 1, the optimization behaviour of agent
Ai is purely egoistic, and if λ(θi) = 0, it is a purely altruistic
behaviour.

For a given N , define Ik = {i : θi = k, 1 ≤ i ≤ N},
Nk = |Ik|. Let πNk = Nk/N . The empirical distribution
of (θ1, ..., θN ) is given by the probability vector πN =
(πN1 , ..., π

N
K ).

For the basic MF control problem, the following assump-
tions are adopted:

A1: All agents have mutually independently distributed
initial conditions: {wi, 0 ≤ i ≤ N} are mutually independent
and independent of the initial conditions, and supi≥0[TrΣi +
E‖xi(0)‖2] <∞.

A2: Θ is a set such that for each k ∈ Θ, [Ak− (ρ/2)I,Bk]
is controllable and [Q1/2, Ak − (ρ/2)I] is observable.

A3: The cost-coupling is of the form: Φ(·) , H0x
N +

η0, η0 ∈ Rn and Ψ(·) , Hx0 + ĤxN + η, η ∈ Rn.

A4: There exists a probability vector π such that
limN→∞ πN = π, where π = (π1, ..., π

N
K ) is a probability

vector which gives the empirical distribution of (θ1, ..., θN ).

For the rest of the paper we assume that min1≤k≤K Nk ≥ 1.

III. CONTROL ACTIONS OF INDIVIDUAL AGENTS

For the optimality analysis, we first introduce three admis-
sible control sets. The set of control inputs Ug , based upon the
global observation control set, consists of all feedback controls
adapted to {Aj , Bj , 0 ≤ j ≤ N ; π; FNt ; t ≥ 0} and the
set of control inputs Ul,i, based upon the local information
set of minor agent Ai, consists of the feedback controls
adapted to the set {Ai, A0, Bi, B0; π; Fi,t, F0,t; t ≥ 0}. The
σ-field Fi,t is the increasing family of σ-fields generated by
(xi(τ); 0 ≤ τ ≤ t), and FNt is the increasing family of
the σ-field generated by the set {xj(τ); 0 ≤ τ ≤ t, 0 ≤
j ≤ N}. The last set of admissible control inputs, Ul,0
for the major agent A0 is the set of all feedback controls
adapted to {A0, B0; π; F0,t; t ≥ 0}. We classify the states
xi, 1 ≤ i ≤ N , into K groups. Define zk = 1

Nk

∑
i∈Ik xi,

1 ≤ k ≤ K, which is the average state of the same type of
agents. It is shown in [4] that for an infinite population of
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minor agents, the equation system that captures the dynamics
can be written in the form

dz̄k =

K∑
j=1

Āk,jzjdt+ Ḡkx0dt+ m̄kdt, 1 ≤ k ≤ K,

where the noise term disappears since limN→∞Nk/N =
πk > 0. Notice that the notation z̄ reflects the dynamics in the
limit of an infinite population, and m̄k(t) denotes the offset
term that appears due to η0 and η defined in A3.

A. Control Action of the Major Agent

We first formalize the auxiliary game between the
major agent and the mass via the approximation
of the mean state xN . Notice the relation xN =
(1/N)

∑K
k=1Nkzk =

∑K
k=1 π

N
k zk. One can also write

xN = (1/N)
∑K
k=1

∑
i∈Ik xi =

∑K
k=1 π

N
k (1/Nk)

∑
i∈Ik xi.

For large N , we may approximate xN by
∑K
k=1 πkz̄k where

z̄k ∈ Rn is used to approximate (1/Nk)
∑
i∈Ik xi for an

infinite population. We denote z̄ = [z̄>1 , ..., z̄
>
k ]>, which is

to be called the limiting mass state. This limiting process is
described by the equation [4]

dz̄(t) = Āz̄(t)dt+ Ḡx0(t)dt+ m̄(t)dt, (5)

where z̄(0) = 0nK×1, Ā ∈ RnK×nK , and Ḡ ∈ RnK×n are
constant matrices, and m̄(t) is a continuous function on [0,∞).

The existence of a major agent in the system alters the
analysis significantly. In [2] the best response actions are cal-
culated offline using the NCE stochastic control law. Statistical
information of the dynamical parameters of the system is
known by each agent, and each calculates the mass tracking
trajectory offline. Therefore, the equilibrium of the system
is achieved for a completely decentralized set of statistically
independent agents. The rationale is that the tracking signal
can be calculated offline as a deterministic process due to
the fact that each agent’s contribution diminishes to zero as
the population size tends to infinity. Following [4], in the
framework in this paper, the major agent and the mass of
the minor agents are in a bilateral relation such that the mass
behaviour evolves as a function of the major agent’s state. As
the major agent’s state is a random process, the mass behaviour
and major agent’s state affect each other continuously.

The dynamics of the major agent A0 may be written in the
form[

dx0
dz̄

]
=

[
A0 0nK×n
Ḡ Ā

] [
x0
z̄

]
dt

+

[
B0

0nK×m

]
u0dt+

[
0n×1
m̄

]
dt+

[
D0dw0

0nK×1

]
, (6)

where z̄(0) = 0nK×1. Note that the limiting mass state is
augmented to the state of the major agent. Let ⊗ denote the
Kronecker product of two matrices, and set Hπ

0 = π ⊗ H0.

Then we define the following:

A0 =

[
A0 0nK×n
Ḡ Ā

]
,B0 =

[
B0

0nK×m

]
,

M0 =

[
0n×1
m̄

]
, Qπ0 =

[
Q0 −Q0H

π
0

−Hπ
0
>Q0 Hπ

0
>Q0H

π
0

]
,

and η̄0 = [In×n,−Hπ
0 ]>Q0η0, and we introduce the algebraic

Riccati Equation

ρΠ0 = Π0A0 + A>0 Π0 −Π0B0R
−1
0 B>0 Π0 +Qπ0 ,

and the ODE

ρs0 =
ds0
dt

+ (A0 − B0R
−1
0 B>0 Π0)>s0 + Π0M0 − η̄0,

Under A1 and A2, in the admissible control set Ul,0, the
optimal control law for A0 is given as [4]

u0 = −R−10 B>0
[
Π0(x>0 , z̄

>)> + s0
]
. (7)

B. Control Action of the Mixed Minor Agents
Non-atomic agents are continuously effected by the major

agent A0’s trajectory, and as a result of this, {xi, 1 ≤ i ≤ N}
is correlated with the state process x0 of A0. As described
in Sec. III, the admissible control set for an agent Ai is Ul,i;
therefore, the state trajectory of the major agent is observed at
each time iteration. Again for a large population approximation
we use the limiting mass state z̄ and obtain [4] the infinite
population equations: dxi
dx0
dz̄

 =

[
Ak [G 0n×nK ]

0(nK+n)×n A0 − B0R
−1
0 B>0 Π0

] xi
x0
z̄

 dt
+

[
Bk

0(nK+n)×m

]
uidt+

[
0n×1

M0 − B0R
−1
0 B>0 s0

]
dt

+

 Ddwi
D0dw0

0nK×1

 .
Define

Ak =

[
Ak [G 0n×nK ]

0(nK+n)×n A0 − B0R
−1
0 B>0 Π0

]
,

Bk =

[
Bk

0(nK+n)×m

]
,

M =

[
0n×1

M0 − B0R
−1
0 B>0 s0

]
,

and η̄λk
= [In×n − (1 − λk)Ĥ,−H,−Ĥπ]>Qη. Note that

the egoism degree λk enters the dynamics through the η̄λk

function. We define the cost function for a mixed minor
agent as Qπλk

= Qπind + (1 − λk)Qπsoc, where Qπind =

[I,−H,−Ĥπ]>Q[I,−H,−Ĥπ], and

Qπsoc =

 0

H>QĤ

−Iπ>QĤ + [Ĥπ]′QĤ


Ĥ>QH
H>QH

−Iπ>QH + [Ĥπ]′QH


−Ĥ>QIπ + Ĥ>QĤπ

−H>QIπ +H>QĤπ

−2Iπ>QĤπ + [Ĥπ]′QĤπ

 .
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Here Qπind is the individual cost paid by the mixed minor agent
Ai, whereas Qπsoc denotes its cost contribution to the social
cost (3).

We introduce the algebraic Riccati Equation

ρΠk = ΠkAk + A>k Πk −ΠkBkR−1B>k Πk +Qπλk
,

and the ODE

ρsk =
dsk
dt

+ (Ak − BkR−1Bk>Πk)>sk + ΠkM− η̄λk
.

Subject to A1 and A2, in the admissible control set Ul,i, the
optimal control law for the mixed minor agent Ai is given by
[4]

u0i = −R−1B>0
[
Πk(x>i , x

>
0 , z̄

>)> + sk
]
. (8)

IV. NCE-SCE EQUATIONS
All agents in the system are assumed to be rational, i.e.,

each agent minimizes its own cost function (more or less
cooperative depending on the egoism degree). The linking term
parameters Āk, Ḡk, m̄k can be obtained by each agent under
this assumption. Note that due to the major agent’s presence,
the mass trajectory cannot be obtained offline as the mass
evolves by reacting to the actions of the major agent which
is continuously subject to disturbances. It is this stochasticity
of the major agent which removes the possibility of an offline
computation of a deterministic mass behaviour.

We partition the matrix Πk, 1 ≤ k ≤ K, and obtain

Πk =

 Πk,11 Πk,12 Πk,13

Πk,21 Πk,22 Πk,23

Πk,31 Πk,32 Πk,33

 .
For the overall population, we may now specify the Nash
certainty equivalence - social certainty equivalence (NCE-
SCE) equation system:

Definition 4.1: NCE-SCE Equation System:

ρΠ0 = Π0A0 + A>0 Π0 −Π0B0R
−1
0 B>0 Π0 +Qπ0 ,

ρΠk = ΠkAk + A>k Πk −ΠkBkR−1B>k Πk +Qπλk
, ∀k,

Āk = [Ak −BkR−1B>k Πk,11]ek −BkR−1B>k Πk,13, ∀k,
Ḡk = −BkR−1B>k Πk,12, ∀k,

ρs0 =
ds0
dt

+ (A0 − B0R
−1
0 B>0 Π0)>s0 + Π0M0 − η̄0,

ρsk =
dsk
dt

+ (Ak − BkR−1B>k Πk)>sk + ΠkM− η̄λk
, ∀k,

m̄k = −BkR−1B>k sk, ∀k,
(9)

where ek = [0n×n, ..., 0n×n, In×n, 0n×n, ..., 0n×n] (kth en-
try), and where the identity matrix In×n is at the kth block.
Note that λ(θi) = 1, 1 ≤ i ≤ N , ,yields the NCE equation
system described in [2] and λ(θi) = 0, 1 ≤ i ≤ N , gives
rise to the SCE equation system defined in [18] for an entire
population of minor cooperative agents. Due to the mixed
nature of the agents in the system described in this paper, we
call (9) the NCE-SCE equation system. In order to ensure the
existence of a solution to (9), stabilizing consistency conditions
described in [4] have to be satisfied.

A. The NCE-SCE Stochastic Control Law

Each agent solves the NCE-SCE equations offline, from
which it obtains Ā, Ḡ matrices and m̄ vector that describe
the behaviour of the mixed minor population’s mass trajectory
in (5). Then, at each time instant the major agent’s optimal
control action is given by (7), and for each minor agent, the
optimal control action is given by (8).

Recall that Ug is defined in Sec. III as a set of centralized
information based controls.

Theorem 4.1: Major and All Altruistic Agents: Asymptotic
Performance: Let A1-A4 hold and assume that the assump-
tions and stabilizing consistency requirements given in [4] are
satisfied. Also let λ(θi) = 0, for all 1 ≤ i ≤ N . Then the
set of NCE-SCE based control laws given in (7) and (8) have
asymptotic social optimality, i.e., for u0 = (u01, ..., u

0
N ),

|(1/N)JNsoc(u
0)− inf

u∈Ug
(1/N)JNsoc(u)| = O(1/

√
N + ε̄N ),

where limN→∞ ε̄N = 0.
The proof is similar to the proof of Theorem 2 in [3] and given
in [20]. This theorem shows that as the population size tends to
infinity, applying the NCE-SCE control law, the minor agents
in a large population are able to increase their performance
to the value that would be obtained only by a centralized
controller with all the information of the system. Note that
the minor agents only observe the major agent in the system,
and not each other.

Theorem 4.2: Major and Mixed Agents: NCE-SCE Equi-
librium: Let A1-A4 hold and assume that the assumptions
and stabilizing consistency requirements given in [4] are
satisfied. The NCE-SCE stochastic control law generates a set
of controls UNnce−sce , {u0i ; 0 ≤ i ≤ N}, 1 ≤ N < ∞, with
u00 given in (7) and u0i , 1 ≤ i ≤ N , given in (8) such that

(i) All agent systems S(Ai), 0 ≤ i ≤ N, are second order
stable.

(ii) {UNnce−sce; 1 ≤ N < ∞} yields an ε-Nash equilibrium
for all ε, i.e. for all ε > 0, there exists N(ε) such that
for all N ≥ N(ε)

JNi (u0i , u
0
−i | λi)− ε ≤ inf

ui∈Ug
JNi (ui, u

0
−i, | λi)

≤ JNi (u0i , u
0
−i | λi).

The proof follows that of Theorem 10 in [4] and is given in
[20]. Note that the major agent has only statistical information
about the mixed minor agents and does not observe their
trajectories in the game. Also, even though mixed minor agents
are allowed to observe the major agent, they do not observe
each other. Therefore, the stability is obtained for a controlled
system with a high degree of decentralization.

V. INSTABILITY OF NON-EGOIST SOLUTIONS

We have shown that (8) gives the best reply of a minor agent
and presented in Theorem 4.2 states that all agents are second
order stable. Each minor agent’s cost function is defined by (4)
which is agent dependent via λ(θi). In this section we consider
a different scenario: the case where the egoism degree λi of
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an agent Ai, 1 ≤ i ≤ N , is not type dependent, but can be
decided by each agent itself.

We define the average cost paid in the system for a finite
population as JNave(u) = 1

N J
N
soc(u), and the limiting average

cost as, Jave(u) = limN→∞
1
N J

N
soc(u), where JNsoc(u) is

defined in (3). We obtain the following proposition.
Proposition 5.1: Let A1-A4 hold. Then,

(i) Each minor agent’s cost function JNi (ui, u−i;λi) is a
decreasing function of λi ∈ [0, 1].

(ii) Given that all agents uniformly select the same egoism
degree, i.e., λi = λ ∈ [0, 1], 1 ≤ i ≤ N , the limiting
average cost paid in the system Jave(u) is an increasing
function of λ ∈ [0, 1].

Proof: Proof of (i): The cost for each agent is written as

JN (ui, u−i | λi) = λiJ
N
i (.) + (1− λi)JNsoc(.)

= λiJ
N
i (.)

+ (1− λi)

JNi (.) +
∑
j 6=i

JNj (.)


= JNi (ui, u−i) + (1− λi)

∑
j 6=i

JNj (uj , u−j).

(10)

For N ≥ 1, JNi (ui, u−i) ≥ 0, and
∑
j 6=i J

N
j (uj , u−j) ≥ 0.

Also, minor agents do not observe other minor agents’ actions
and trajectories; therefore, u−i is independent of λi. As
JNi (ui, u−i) ≥ 0, (10) is minimized when λi = 1, and
increasing as λi tends to 0.

The proof of (ii) is given in [20].

These results emphasize the difference between the Nash
certainty equivalence (NCE) and social certainty equivalence
(SCE) frameworks. The mixed game model is equivalent to
an NCE framework when all minor agents are egoistic (i.e.,
λi = 1 for all 1 ≤ i ≤ N ) and, conversely, equivalent to an
SCE framework when all agents are altruistic (i.e., λi = 0 for
all 1 ≤ i ≤ N ). Proposition 5.1 shows that even though a
game where all agents in the system play altruistically gives
the minimum cost per head, this action profile is not stable
in the sense that it is always more profitable for an agent
to set its egoism degree to 1. Therefore, one could imagine
that whenever agents are allowed to successively choose their
egoism degrees, all agents would eventually act selfishly,
hence the NCE equilibrium would be the resulting asymptotic
equilibrium of actions in the game.

VI. SIMULATIONS

Consider a system of 100 minor agents and a single major
agent. The system matrices {Ak, Bk, 1 ≤ k ≤ 100} for the
minor agents are uniformly defined as

A ,

[
−0.05 −2

1 0

]
, B ,

[
1
0

]
,
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tx
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Fig. 1. State trajectories

and for the major agent we have

A0 ,

[
1 1
1 1

]
, B0 ,

[
1
0

]
.

The parameters used in the simulation are: tfinal = 30s, ∆t =
0.025s, σ = 0.002, ρ = 0.01, η = [0.25, 0.25]>, η0 =
[0.25, 0.25]>, Q = I2×2, Q0 = I2×2, R = 1, R0 = 1, H =
0.6 × I2×2, H0 = 0.6 × I2×2, Ĥ = 0.6 × I2×2, G = 02×2,
and the NCE-SCE equation system is iterated 100 times. The
state trajectories of a single realization can be seen for a
population of all altruistic agents (λ = 0) in Fig. 1. Only 10
minor agents are displayed for clarity. In Fig. 2, we present
the instantaneous loss of each agent. The same parameters as
previously are used, except that we set σ = 0 for clarity. We
run the experiment twice, one for λ = 1 and one for λ = 0.
Here the thick graph line with squares shows the instantaneous
loss paid by the major agent when the minor agents are all
acting egoistically (λ = 1), and the thick graph line without
squares shows the instantaneous loss when all minor agents are
altruistic (λ = 0). Likewise, the thin graph line with squares
shows the loss paid by a minor agent in an egoistic minor agent
population and the one without squares shows the altruistic
case. The effect of altruistic behaviour on performance can
easily be observed. In Fig. 3, we plot the loss function of a
minor agent Ai as a function of time. Here all the rest of the
minor agents in the system apply λ−i = 0, therefore they are
all altruistic. This plot shows the performance with respect to
altering λi of agent Ai from 1 to 0, when all other agents
are altruistic. As shown in Proposition 5.1, the cost for agent
Ai is maximum for λi = 0, and minimum when λi is 1. In
Fig. 4, we plot the cost paid by a minor agent with respect
to the egoism degree coefficient λ. Note that this plot shows
the case where all minor agents in the system uniformly apply
the same λ parameter. As shown in Proposition 5.1, the cost
increases with an increasing to λ.

VII. CONCLUSION

This paper considers decentralized control for large popu-
lation LQG dynamic games involving a major agent and a
large number of minor agents where each agent optimizes
with respect to a convex combination of its own cost and a
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social cost for the partial optimization of a social objective. A
mean field approximation is used such that the game problem
can be analysed in the population limit, where the aggregate
effect of all minor agents is characterized by linear stochastic
differential equations driven by the state of the major agent.
The NCE-SCE analysis yields decentralized strategies for all
agents. Decentralized control synthesis for the general case
where the weight assigned to the individual cost changes
continuously across the population is developed and an asymp-
totic Nash equilibrium theorem is proved. Then, making the
egoism degree a decision action for each agent, we analyse
the resulting equilibria and performance of the mass and any

individual agent. We establish the result which at first sight
may be thought to be paradoxical: even though a game where
all agents in the system play altruistically gives the minimum
cost per head, this action profile is not stable in the sense that
it is always more profitable for an agent to play egoistically.

REFERENCES

[1] M. Huang, P. E. Caines, and R. P. Malhamé, “Individual and mass be-
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