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Abstract— In model predictive control, a high quality of
control can only be achieved if the model of the system reflects
the real-world process as precisely as possible. Therefore, the
controller should be capable of both handling a nonlinear
system description and systematically incorporating uncertain-
ties affecting the system. Since stochastic nonlinear model
predictive control (SNMPC) problems in general cannot be
solved in closed form, either the system model or the occurring
densities have to be approximated. In this paper, we present
an SNMPC framework that approximates the densities and the
reward function by their wavelet expansions. Due to the few
requirements on the shape and family of the densities or reward
function, the presented technique can be applied to a large class
of SNMPC problems. For accelerating the optimization, we
additionally present an efficient technique, so-called dynamic
thresholding, which neglects insignificant coefficients, while at
the same time guaranteeing that the optimal control input is
still obtained. The capabilities of the proposed approach are
demonstrated by simulations and comparisons to a particle-
based SNMPC method are conducted.

I. INTRODUCTION

A. Motivation

In many control applications, it is mandatory to achieve
a high quality of control. For example, there are chemical
processes, where certain conditions have to be guaranteed in
order to avoid damages with serious consequences.

Model predictive control (MPC) is capable of making
high-quality decisions. The basic idea of this technique is to
predict the current system state over a planning horizon by
means of a model of the system. Then, the predicted system
states and the corresponding sequence of control inputs are
rated by a reward function describing the desired behavior
[1].

Certainly, it is important that the model of the system
reflects the real-world process as adequately as possible.
Therefore, the controller should be capable to deal with
nonlinear system models in order to characterize the system
more accurately.

But even with the power of nonlinear models, it is in
general impossible to model every detail of the real-world
process, because of uncertainties in state estimation, exoge-
nous influences, or modeling errors. For incorporation of
these unknown quantities, a probabilistic descriptions of both
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the system state as well as the state transitions are employed.
This leads to stochastic nonlinear model predictive con-
trol (SNMPC) with states described by probability density
functions and transitions covered by conditional probability
distributions.

B. Related Work

Most of the established control methods do not consider
the probabilistic nature of the system under control and
work with expected values instead of entire densities [2],
[3]. Although such techniques usually have a much lower
computational burden, the results can never be as accurate
as they could be with a systematic incorporation of the
uncertainties. However, SNMPC problems cannot be solved
in closed form for general systems and arbitrary densities.

There are two established approaches to cope with this
problem. On the one hand, the system model can be simpli-
fied, e.g., by linearization. In the case of Gaussian noise and
a quadratic reward function, the SNMPC equations can then
be solved analytically by an LQG controller [1]. However,
especially for strongly nonlinear systems, it is apparent that
the arising linearization error may lead to an insufficient
approximation of the predicted states and consequently, the
quality of control decreases.

On the other hand, the occurring probability densities can
be approximated by specific density representations, so that
the SNMPC equations can then be solved in closed form.
Particularly for the special case of Gaussian noise, it is suit-
able to employ a Gaussian mixture approximation [4], [5],
which is a weighted sum of Gaussian densities. In contrast to
the previously mentioned approaches, particle-based SNMPC
methods can deal with both strongly nonlinear system as well
as arbitrary noise distributions [6], [7]. These approaches
approximate the probability densities by a collection of
randomly chosen samples, the so-called particles. Instead
of propagating the whole probability distribution, only these
particles are propagated through the system model. A dis-
advantage of particle-based methods is that typical distance
measures cannot be applied for determining the similarity
between two discrete representation or between a continuous
and a discrete representation [8].

C. Contribution

In this paper, we present an SNMPC framework for
systems with continuous-valued state space and a finite set
of control inputs. This class of system is represented in many
technical systems. For example, the state space of a walking
robot introduced in [9] is its continuous position. In addition,

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7697



this kind of robot is only able to handle a finite set of discrete
control inputs, namely commands such as turn left/right or
move forwards.

The key idea of our approach is to approximate the
occurring densities by their wavelet expansions. The advan-
tages of wavelets lie in their good approximation qualities
for smooth signals and the ability to describe both the
locality and the influencing frequencies at the same time.
Therefore, state densities are good candidates for the wavelet
transformation, as they are usually localized on a small but
essential part in the state space. Furthermore, since wavelets
do not make great demands on the shape and family of the
densities or reward function, the presented technique can be
applied to a large class of SNMPC problems. In contrast
to other approximation techniques, e.g., based on Gaussian
mixtures, it is even possible to determine the impact of the
approximation error on the decision making.

D. Outline of the Paper

The paper is structured as follows: In the next section, a
precise definition of the considered problem class is given.
Sec. III presents an SNMPC framework solely working
with wavelet approximations. In order to achieve a fast
control, Sec. IV introduces a novel method for neglecting
insignificant coefficients, the so-called dynamic thresholding.
Finally, conclusions and future work close the paper.

E. General Notation

Throughout this paper, random variables x are written in
bold face letters, whereas deterministic quantities x are in
normal letters. In order to identify vector-valued quantities
x or x, we underline the corresponding identifier. The
notation xk ∼ fxk (xk) means that the random variable xk is
characterized by its probability distribution fxk (xk).

II. PROBLEM FORMULATION

We assume that the system under control is described by
a time-invariant discrete-time stochastic system model

a : RN × U × RP → RN ,

xk+1 = a(xk, uk,wk) , (1)

where a denotes the nonlinear system function and uk the
deterministic control input. We assume that the system state
xk is partially inaccessible, i.e., sensor information does not
uniquely identify the complete state, e.g., due to measure-
ments that are noisy or provide only information about parts
of the system state. In this case, the complete system state
xk has to be estimated by means of these measurements. The
random variable wk subsumes the system noise and can be
arbitrarily distributed. Throughout this paper, we assume that
the system state xk is restricted to a bounded region and the
control input uk only takes values from a finite set U .

For the rest of the paper, we work with the probabilistic
description of the system

fT (xk+1|xk, uk) ,

the so-called transition density, instead of the generative
model (1). The transition density can be derived from (1)
and the probability density function f(wk) of the system
noise wk.

The application-specific reward function

r : RN × U → R ,

r̂ = r(xk, uk) (2)

rates, how desirable a system state xk and a control input uk
are. Due to the assumed partial inaccessibility of the system
state, the reward function has not to rate a deterministic state
xk, but a state estimate xk ∼ fk(xk). A stochastic extension
of (2) can be realized by calculating the expected reward

r̂ = E{r(xk, ûk)} =
∫
r(xk, ûk)fk(xk)dxk (3)

for a given control input ûk [1].
If we want to rate a whole sequence of sequentially applied

control inputs

uk,0:N−1 :=
(
uk,0, uk,1, . . . , uk,N−1

)
and the corresponding predicted system estimates

xk,0:N :=
(
xk,0,xk,1, . . . ,xk,N

)
,

we further assume the overall reward function over a plan-
ning horizon of length N to be cumulative over time, so
that

r(xk,0:N , uk,0:N−1) =
N−1∑
n=0

r(xk,n, uk,n) + r(xk,N ) . (4)

Throughout this paper, we consider open-loop feedback
controllers, which assume no additional information to be-
come available in future steps within the planning horizon.
In this case, the objective of the model predictive controller
is to maximize the cumulative reward of (4) over all possible
sequences of control inputs. The sequence of control inputs

u∗k,0:N−1 = arg max
uk,0:N−1

E{
N−1∑
n=0

r(xk,n, uk,n) + r(xk,N )}

that maximizes the expected reward solves the optimization
problem of finding the best control input for the system.

Due to the finite set of control inputs, the calculation of
the optimal control input can be expressed by a decision tree
that is defined through the different choices that we have at
every time step. At any given depth of the tree, the controller
has to decide on the input that maximizes the reward in the
next step. Fig. 1 shows an example decision tree.

The nodes of the tree are the predicted densities fp,
which are dependent on specific control inputs. They can
be determined by extrapolating the current state estimate fek
over time by the Chapman-Kolmogorov equation

fpk (xk+1) =
∫
fT (xk+1|xk, uk)fek(xk)dxk (5)

with fek+1(xk+1) = fpk (xk+1).
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Fig. 1. Simple example of a decision tree for open-loop feedback SNMPC
with horizon of length 2. The current state estimate is denoted by fe

k and
only two possible control inputs u0 and u1 are considered. The resulting
predicted densities fp are rated by the application-specific reward function.

III. SNMPC USING WAVELET APPROXIMATIONS

In this section, the application of wavelets to SNMPC is
shown.

We make three simplifying assumptions to increase the
readability of the proofs and theorems. First, we assume
that the system state is one-dimensional. The extension to
the multi-dimensional case can be carried out due to the
properties of a separable basis. Second, the control input is
implicitly given by the transition density and, hence, will be
ignored. A different input at time step t can be simulated
by exchanging the system transition density at this time
step. Third, to simplify the wavelet expansion of transition
densities, we sometimes subsume both the scale and shift
parameter in one single index when not stated differently.
The set Ω is used to denote all valid combinations.

A. Compactly Supported Wavelets

A wavelet is a function ψ that has a good localization in
both time and space and builds a whole family of functions
that can be defined with

ψj,s(x) = 2−j/2ψ(2−jx− s) .

Here, the parameter j is shrinking the mother wavelet ψ with
powers of 2, whereas s is a shift. Please note that the shifts
are getting smaller when the scale is getting finer, i.e., with
decreasing j.

In order to understand the following, it is also necessary
to know that the wavelet function has M vanishing moments,
such that∫

xmψ(x)dx = 0 for m = 0, · · · ,M − 1 .

For a short overview of multiscale analysis and the ex-
tension to the multi-dimensional case, we refer the reader to
our previous work [10]. More detailed information can also
be found in [11], [12].

B. Probabilistic Prediction Using Compactly Supported
Wavelets

For the prediction step of a Bayesian estimator, the coun-
terpart in the wavelet domain was derived in [10], whose time
complexity is linear with respect to the non-zero coefficients.
In particular, the prediction step can be calculated in an exact

way and thus, in combination with the approximation quality,
a good performance is achieved.

Remark 1 In the case of time-invariant systems, the coef-
ficients of the transition density can be computed offline.
This precalculation reduces the online computation time
significantly.

C. Evaluation of Expected Reward

If both the predicted densities and the reward function are
given in their wavelet representations, the calculation of (3)
boils down to a sum of coefficients.

Theorem 1 Let c(p)i and c
(r)
i be the wavelet coefficients

of the predicted density fpk and the reward function r,
respectively. Then, the operation needed to evaluate eq. (3)
is given by

r̂ =
∑
i

c
(p)
i c

(r)
i . (6)

Proof: The proof is very similar to that of Theorem 1
in [10].

IV. THRESHOLDING METHOD FOR EFFICIENT
WAVELET-BASED SNMPC

In general, a considerable amount of wavelet coefficients
is zero or very small due to the vanishing moments and
the small support of the used wavelets. In particular, the
more the investigated function behaves like a polynomial,
the more coefficients are equal or close to zero. Hence,
the optimization problem can be considerably simplified
by leaving out summands that are not significant during
calculation as neglecting them implies only a small error. At
the same time, we should always guarantee that the optimal
control input is still obtained.

A. State-of-the-Art Thresholding Techniques

There are two established approaches for coefficient
thresholding: hard thresholding and soft thresholding [11].
Hard thresholding discards every coefficient that is smaller
than a given value completely independent of its shift or
scale. Soft thresholding works in the same way, but ad-
ditionally decreases every coefficient that is not neglected
by the same threshold towards zero. Both thresholding
techniques have the property that they decrease the number
of coefficients in such a way that the L2-error relative to
the original function remains small. However, in a model
predictive setting, this objective is certainly not the right
choice. Instead, we should minimize the error introduced by
the prediction operation. The following sections explain how
a set of coefficients can be found that can safely be ignored
while giving a guarantee on the error bound for the prediction
operation.
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B. Dynamic Thresholding

Here, we propose to set the threshold differently for each
scale in order to achieve better results and error guarantees.
This technique is what we call dynamic thresholding. The
idea behind dynamic thresholding is that we suspect higher
thresholding constants on finer scales than on coarser ones.
Seen in the context of the prediction operation, this means
that fine scales may be thresholded more rigorously than
coarser ones while inducing the same error.

The next theorem gives a precise answer why detail
coefficients fall to zero when increasing the granularity of
the approximation.

Theorem 2 If f ∈ L2(R) is uniformly Lipschitz α < n
over the interval [0, 1], where n is the amount of vanishing
moments of the wavelet used, then there exists A > 0 such
that

|dj,s| ≤ Ajα+ 1
2 with j ∈ {· · · ,−1, 0} .

Proof: A proof of the theorem can be found in [11].

We restrict ourselves to a more specific setup, where
the aim is the reduction of complexity for evaluating the
expected reward for a given state. We would like to select
certain coefficients in the representation of the utility func-
tion, neglect them, and guarantee that the error, made later by
the calculation of the expected reward, is lower than a given
error bound. Due to the finite set of control inputs and the
given error bound, we can always guarantee that the optimal
control input is selected, by propagating the error along the
prediction tree.

Let us assume that r̃ is the correct reward value of a given
state and r̂ is our modified result of the evaluation operation.
Furthermore, let c(p)i and c

(r)
i be the wavelet coefficients

of the state and the reward function, respectively, and Ω
represents the set of the neglected coefficients. Then, the
error regarding the reward is calculated by

|r̃ − r̂| = |
∑
i

c
(p)
i · c

(r)
i −

∑
i/∈Ω

c
(p)
i · c

(r)
i |

= |
∑
i∈Ω

c
(p)
i · c

(r)
i | .

Moreover, let us assume we know the largest coefficient
amplitude C(p)

j that exists on an arbitrarily chosen scale j,
i.e., C(p)

j = maxs |c(p)j,s |, and that Ωj is the shift index set of
neglected coefficients of this scale j. Then, we are able to
express the absolute error with

|r̃ − r̂| = |
∑
j

∑
s∈Ωj

c
(p)
j,s · c

(r)
j,s |

≤
∑
j

∑
s∈Ωj

|c(p)j,s · c
(r)
j,s |

≤
∑
j

C
(p)
j ·

∑
s∈Ωj

|c(r)j,s | .

The overall absolute error is the sum of all absolute errors
of the different scales.

Algorithm 1 Dynamic Thresholding
C ← {maxs c[j, s]|j ∈ N}
Dweighted ← {(C(p)[j] · c(r)[j, s], (j, s))|j ∈ N, k ∈ ZZ}
Dsorted ← sort Dweighted
k ← 0
(c′, (j, s))← pop Dsorted
while k + c′ < e do
k ← k + c′

c(r)[j, s]← 0
(c′, (j, s))← pop Dsorted

end while

An algorithm that selects the largest possible set of coeffi-
cients and sets them to zero is shown in algorithm 1. It sorts
all of the coefficients according to their weights C(p)

j · |c
(r)
j,s |

before neglecting the smallest elements until their sum has
reached the error bound given by the user.

Now the question is, how large the maximum scale am-
plitudes C(p)

j for the unknown future state densities are. The
answer could be given by experimental evaluation, as similar
state densities at the root of the prediction tree lead to similar
predicted state densities. By running a set of predictions, we
get a pretty good idea of how these constants look like. Note
that the constants do not depend on the shift but only on the
scale.

Interestingly, if the wrong maximum was chosen, the
controller can detect that there has been a false assumption by
checking the maxima during the calculation of the predicted
state density function. Thus, there is no silent error. In those
situations, a fallback to the ordinary calculation yields the
right result. The practicability of this approach was tested
by means of simulations in the next section.

Moreover, another observation can be made. For many
system classes, the state densities usually become more and
more washed-out during the prediction over the horizon, as
no concrete measurement are incorporated into the estimates.
This fact also decreases the influence of high frequencies
leading to smaller maximum amplitudes on finer scales. A
fast open-loop controller can make use of this by using
differently thresholded versions of the reward function. If
the system becomes more imprecise when getting close
to the end of the control horizon, a reward function with
fewer coefficients can be used without introducing a higher
calculation error. Human planning is very similar to this.
Fine details next to some obstacle or landmark far away will
unlikely affect the way we plan paths to or around it, unless
we are already very close to it.

Certainly, there are systems that may be constructed,
where the state estimation keeps the same precision and does
not wash out. Here, dynamic thresholding is not meaningful
in the progressive way it is introduced in the last paragraph.

Knowing the error of the reward enables a worst-case
search, too. In the case where expected rewards overlap
through their error intervals, the calculation can be repeated
by using the original reward instead.

7700



V. COMPARISON TO PARTICLE-BASED SNMPC
METHODS

Since the assumptions of a particle-based SNMPC ap-
proach and the proposed method are very similar, we would
like to theoretically compare the two methods, before we
present the simulation results in the next section.

As mentioned before, a disadvantage of particle-based
methods is that typical distance measures cannot be applied
for determining the similarity between two density represen-
tation. Consequently, it is generally not possible to determine
guaranteed error bounds as it is proposed in this paper.

Another drawback of the particle-based SNMPC is that
the complexity increases strongly with the complexity of
the reward function. In detail, if the evaluation of the value
function for a single particle is computationally complex,
the SNMPC problem becomes intractable. In contrast, if
the reward function is given in its wavelet expansion, the
calculation of the expected reward is a sum of products of
the coefficients (see Theorem 1). Additionally, particle-based
prediction methods can be arbitrarily bad due to their non-
determinism. The proposed method does not suffer from this
flaw.

However, a disadvantage of the wavelet-based SNMPC
method is that the transition density and the reward function
have to be also approximated by means of their wavelet
expansions. This transformation can be complex during run-
time. But if the considered system is time-invariant as
assumed in this paper, the determination of the wavelet
coefficients can be performed offline.

VI. SIMULATIONS

In order to demonstrate the capabilities of the proposed
approach, we conducted several simulation runs. In the
chosen simulation scenario, a mobile robot should move
along a wall at a safe distance without crashing into the
wall.

A. System and Measurement Model

The system state in the experiments is given by [xk, φk]T ,
where xk is the distance to the wall and φk the orientation
of the robot relative to the wall. We assume that the robot
can only execute forward and turning movements similar to
a car. Hence, its motion can be modeled according to the
following system equation

xk+1 = xk + sin(φk+1) +w(x)
k ,

φk+1 = φk + αk +w(φ)
k ,

where αk denotes the control input at time step k and
w

(x)
k ,w

(φ)
k subsume the noise. The noise is assumed to be

normally distributed with standard deviations σ
(x)
k = 0.5

and σ(φ)
k = 0.05 and is stochastically independent from the

system state. As the state space is bounded for the controller
presented in this work, only the region xk ∈ [−3, 7] and
φk ∈ [−π, π] is evaluated. For control inputs, only values
from the set U = {−0.2, 0, 0.2} are allowed for turning
the vehicle at every point in time. In order to improve the

time step 4 3 2 1
coefficient count 583 526 613 785

TABLE I
SIZE OF REWARD FUNCTION AFTER DYNAMIC THRESHOLDING

Ø number of Ø number of
wavelet coeff. particles

fpk 649.8 1800
fek 1727.2 1800

TABLE II
AVERAGE SIZE OF THE PREDICTED DENSITIES fp

k AND THE DENSITIES

fe
k AFTER THE FILTER STEP OVER THE 450 MONTE CARLO SIMULATION

RUNS.

state estimation, the robot additionally takes measurements
in every time step. The chosen measurement model is given
by

z
(x)
k = xk + v(x)

k ,

z
(φ)
k = φ

k
+ v(φ)

k ,

where the measurement noise is subsumed by the variables
v

(x)
k ,v

(φ)
k and is distributed in the same way as the system

noise.

B. Reward Function

As mentioned before, the reward function models the
desired behavior of the system. Thus, an adequate reward
function for our simulation setting gives a small reward if
the mobile robot is too close or too far away from the wall.
Since the robot should additionally move parallel to the wall,
we further punish those states, where the orientation of the
robot is pointing strongly towards the wall or away from it.
The reward function

r(xk, φk) =
3

2π · 0.5 · π2
·

exp

(
−1

2

((
xk − 1.5

0.5

)2

+
(
φk
π
2

)2
))

+ sign(xk)− 1

realizes such a behavior. Here, we model the wall to be along
xk = 0.

C. Results

We conducted 450 Monte Carlo simulation runs, where
each run consists of 50 steps. For approximating the oc-
curring densities, we use Daubechies wavelets with two
vanishing moments.

A run with 15 steps and a planning horizon of four steps
with an OLF controller was used to collect the density data to
create a representative candidate for dynamic thresholding. In
Fig. 2, the coefficient amplitude maximum for the different
scales is shown given the distance from the current point
in time. The scale axis should be read rather as a nominal
axis as we used a lexicographical order. The experiments
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Fig. 2. Amplitude maximum of different scales during the prediction of the
OLF controller. The scales axis should be read as a nominal axis as we used
a lexicographical order. Multi-dimensional scales are compared according
to their coarsest base function component and finer scales are more on the
right side than coarser ones. Different time steps within the planning phase
are depicted with different symbols.

emphasize the two theoretical result. First, the detail coeffi-
cients fall to zero when the granularity of the approximation
is increased. Second, the influence of fine scales decreases
with increasing level of planning time step.

Table I shows the size of the reward function on the
different levels during the prediction. Due to the noise, the
simulation suffers from outliers and, hence, the number of
coefficients does not fall all the time. The accepted error used
as input for the dynamic thresholding algorithm was set to
0.001.

To further emphasize the benefit of the proposed approach,
we compare it to a particle-based OLF controller [13]. Both
OLF controllers can deal with strongly nonlinear models
and arbitrary noise densities. In each test run, the same
noise realizations are used for both methods. To measure
the quality of a simulation run, we determine the reward of
the actual system states in each of the 50 time steps and
cumulate these values over time. The wavelet expansion of
the transition density was truncated with a hard threshold
of 0.01 to get comparable sizes of the density estimations.
Although this introduces an additional error that may grow
over time during the simulation, we were able to beat the
particle-based method.

The proposed method achieved an average cumulative
reward of 11.25, while the particle-based approach only
reached an average cumulative reward of 8.80. This empha-
sizes that the proposed method achieves high quality results.

The occuring complexity of the two applied methods can
be seen from Table II. While we use an instance of a particle
filter with a constant number of 1800 particles, the average
number of wavelet coefficients is smaller, namely 649.79 for
the predicted density and 1727.21 for the posterior density
after the filter step.

VII. CONCLUSIONS AND FUTURE WORK

We presented an SNMPC framework operating on wavelet
expansions with constant complexity over time. For acceler-

ating the optimization, a technique for neglecting coefficients
was presented, the so-called dynamic thresholding. It gives a
precise way to find coefficients that may be discarded without
loosing the guarantee of selecting the optimal control input.

The complexity of the proposed control technique does
not lie in the computational complexity, but usually in the
amount of data that has to be processed. Therefore, we think
that it is possible to successfully implement a parallelized
version of the shown algorithm. Even an implementation that
uses specialized hardware such as FPGAs or graphic chips
would be conceivable. Future work might also investigate
closed-loop feedback control. Here, the characteristics of
the measurement process and of the future disturbances are
incorporated in the control law [14]. This might lead to
considerably better results in search for an optimal control
sequence. Here, wavelets might be a good tool for approxi-
mating densities and finding representative measurements.
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