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Abstract— This article focuses on the problem of computing
a control law for a particular class of tail-sitter aircraft able
to switch their flight configuration from hover to level flight
and vice-versa. We address the problem of steering a ducted-
fan UAV along a given path (path following problem) so as to
meet spatial constraints. One possible scenario is the situation
where a vehicle is required to execute collision-free maneuvers
under strict spatial limitations and arrive at his final destination
while pointing with a camera to a moving target. Path following
control in 3D builds on a nonlinear control strategy that is first
derived at the kinematic level using the Special Orthogonal
Group (SO(3)) theory.

I. INTRODUCTION

Recent advances of aerial robotics have seen the em-

ployment of unmanned aerial systems in complex oper-

ations, such as, in particular, in environments potentially

cluttered with obstacles or humans [1], [2], [3]. In all these

scenarios, one of the main challenge that the design of

control systems has to face, is given by the presence of

hard spatial constraints that the system trajectories have to

satisfy to avoid, from one side, undesired contacts with

the surrounding infrastructures and, on the other, to reach

precisely the desired targets. The interest for this kind of

control scenarios is also testified by the European project

AIRobots [4] in which the potential of unmanned aerial

systems in accomplishing operations such as inspections of

large infrastructure is investigated.

In this work, motivated by the scenarios described above,

we consider the problem of designing a control strategy to

allow a prototype of Vertical-Take-Off and Landing (VTOL)

aerial vehicle to navigate in a certain environment by fol-

lowing a given geometric path. The considered prototype

consists of a small ducted-fan aerial vehicle (see among

others [5]) specifically designed to accomplish operations in

potentially cluttered environments. The ducted-fan configu-

ration, in particular, is a special class of tail-sitter vehicle

[6] characterized by the presence of an annular fuselage,

the duct, protecting the propeller. In this way, this kind of

aircraft is potentially capable of coming into contact with the
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surrounding environment in a non destructive way, and then it

can be employed in scenarios in which physical interactions

between the vehicle and the environments is possible.

In order to address the path following problem, drawing

inspiration from [7] and [8], we consider first a nonlinear

control strategy, derived using the Special Orthogonal Group

(SO(3)) theory, that allows a virtual vehicle to approach

exponentially the desired geometric path at a certain desired

velocity. The main advantage of the virtual vehicle approach

is that the path following control problem is solved at

the kinematic level, indeed reducing the complexity in the

control design. The trajectory of the virtual vehicle is then

employed as a time reference signal for a nonlinear control

law specifically designed for the ducted-fan prototype. Inter-

estingly enough, it is shown how the path following approach

- see among others [9], [10] - allows to choose the time law,

namely the speed of the virtual vehicle, in order to robustly

maintain the ducted-fan arbitrarily close to the desired ge-

ometric path even in the presence of possible uncertainties

characterizing the dynamic model of the system.

The remainder of the paper is organized as follows.

Section II presents the path following control law for

the virtual vehicle. In Section III the dynamical model

of the ducted-fan prototype and a nonlinear control law

for trajectory tracking is presented. Section IV shows the

main properties obtained by employing the path following

approach for the ducted-fan prototype. Simulations using a

detailed nonlinear model of the vehicle are also given in

Section V, revealing how the proposed control strategy can

be successfully adopted to meet the spatial constraints of

certain scenarios. Finally in Section VI some final remarks

are postponed.

II. PATH-FOLLOWING CONTROL OF THE Virtual Vehicle

The path-following problem for the ducted-fan is first

solved considering a virtual vehicle in order to generate

the references for the on-board ducted-fan autopilot. More

precisely, in this Section we formulate a control law for the

virtual vehicle to converge to a virtual target, denoted in the

following as rabbit, that is moving along a desired geometric

path. To characterize the path-following kinematic-error dy-

namics, we introduce a frame attached to the virtual vehicle

and a frame attached to the rabbit. Next, we define a gen-

eralized error vector between these two moving coordinate

systems. With this setup, the path following problem consists
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of driving this generalized error vector to zero for any given

speed profile v(t).
Let I denote an inertial frame and let Q be the virtual

vehicle center of mass. Further, let pc(ℓ) ∈ R
3, with ℓ ∈

L ⊂ R, be the path to be followed, parameterized by its

path length ℓ, and P be the center of mass of the rabbit.

Let F be a parallel transport frame attached to the point P
on the path, and let T (ℓ), N1(ℓ) and N2(ℓ) be orthonormal

vectors satisfying the frame equations [11], [12]






dN1(ℓ)
dℓ

dN2(ℓ)
dℓ

dT (ℓ)
dℓ






=





0 0 −k1(ℓ)
0 0 −k2(ℓ)

k1(ℓ) k2(ℓ) 0









N1(ℓ)
N2(ℓ)
T (ℓ)



 ,

(1)

where the parameters k1(ℓ) and k2(ℓ) are related to the

curvature κ(ℓ) and torsion τ(ℓ) of the path (see [11] for

details). The vector N1(ℓ), N2(ℓ) and T (ℓ) define an or-

thonormal basis for F . The unit vector T (ℓ) is aligned with

the rabbit’s velocity vector at the point determined by ℓ,
while N1(ℓ) and N2(ℓ) define the normal plane perpendicular

to T (ℓ). They can be used to construct the rotation matrix

RIF (ℓ) = [N1(ℓ), N2(ℓ), T (ℓ)] from F to I.

Denote by ωFFI the angular velocity of F with respect to

I, resolved in F , which is given by

ωFFI(t) =
[

−k2(ℓ)ℓ̇(t), k1(ℓ)ℓ̇(t) 0
]T

.

Also, let

pI(t) =
[

xI(t), yI(t), zI(t)
]T

be the position of the virtual vehicle center of mass Q
resolved in I, and let

pF (t) =
[

xF (t), yF (t), zF (t)
]T

be the difference between pI and pc resolved in F . Let W
denote a velocity frame with its origin at Q and its z-axis

aligned with the velocity vector of the virtual vehicle. Next,

let RFI and RWI denote the rotation matrices from I to F
and from I to W , respectively. In what follows, v(t) is the

magnitude of the virtual vehicle velocity vector, p(t), q(t)
and r(t) are the x-, y- and z-axis components, respectively,

of the virtual vehicle’s rotational velocity resolved in W
frame.

With the above notation, the virtual vehicle kinematic

equations can be written as
{

ṗI = RIW v e3
ṘIW = RIW (ωWWI)

∧ (2)

where ωWWI = [p q r]
T

and (·)∧ : R
3 → so(3) denotes

the hat map [13]. Next we define a desired attitude rotation

matrix RD which will be used to shape the “approach” angles

to the path

RD = [b1D b2D b3D] (3)

b3D =
−K3pFxy

+ de3

||K3pFxy
+ de3||

, (4)

pFxy
=
[

xF yF 0
]T
,

b2D =
K3yF e3 + de2

||K3yF e3 + de2||
in which d > 0 is a control parameter and b1D = b2D ×

b3D. Clearly, by construction RD ∈ SO(3) and RD → I as

pFxy
→ 0. Furthermore, when the virtual vehicle is far from

the desired path, the approach angles become close to π/2.

As the virtual vehicle comes closer to the path, the approach

angles tend to 0. Straightforward computations1 yield the

path-following kinematic-error dynamics

Ge :
{

ṗF = −ℓ̇e3 − (ωFFI)
∧ pF + R̂ve3

˙̃R = R̃(ω̃)∧
(5)

where R̃ = RTDR̂, R̂ = RFW = RFI R
I
W ,

ω̃ =





p
q
r



− R̂T





−k2(ℓ)ℓ̇
k1(ℓ)ℓ̇

0



− R̃Tωd (6)

and

(ωd)
∧ = RTDṘD.

The path following kinematic-error dynamics is then a

system with state

xpf(t) =
[

pTF ||eR̃||
]T

(7)

and inputs

u(t) =
[

p(t), q(t), r(t), ℓ̇(t)
]T

,

where

eR̃ =
1

2
(R̃− R̃T )∨

model the attitude error, with (·)∨ : R3 → so(3) denoting

the inverse of the hat map referred to as the vee map [13].

Using the formulation above and given a feasible spatially

defined path pd(ℓ), we next define the problem of path

following for a virtual vehicle:

Definition 1: Design feedback control laws for the virtual

vehicle’s angular rates p(t), q(t) and r(t), and rate of

progression of the rabbit along the path ℓ̇(t) such that the

kinematic path following generalized error vector xpf(t)
defined in (7) converges to a neighborhood of the origin,

independently of the temporal assignments of the mission.

�

Stated in simple terms, the problem above amounts to

designing feedback laws so that the virtual vehicle converges

to and remains inside a tube centered on the desired path

curve assigned to this virtual target, for an arbitrary speed

profile v(t) .

In order for the following results to hold we consider the

following assumption:

Assumption 1: There exist vmin > 0 and vmax > vmin
such that

0 < vmin ≤ v(t) ≤ vmax , ∀ t ≥ 0 . (8)

�

1A detailed derivation of these dynamics can be found in [14, Sec. 8.2].
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Also, given arbitrary positive constants c, K1, K3 and d
let c1 and c2 be positive constants that satisfy the inequalities

√
cc1 < 1 (9)

K1

2c1

K3vmin

c2
√

d2 +K2
32cc2

>
vmax

2

c22(1− cc1)2
. (10)

Moreover, let K2 satisfy:

K2 ≥ K3vmin
√

d2 +K2
32cc2

. (11)

Let the rate of progression of the point P along the path

be governed by

ℓ̇(t) = K2zF + eT3 R̂ve3 (12)

Furthermore, suppose the control inputs p(t), q(t) and r(t)
are defined as follows:





p
q
r



 = K1e
T

R̃
+ R̂T





−k2(ℓ)ℓ̇
k1(ℓ)ℓ̇

0



+ R̃Tωd (13)

Then the control laws defined by equations (12) and (13)

stabilize the subsystem Ge for any K1 > 0 and K3 > 0.

A formal statement of this key result is given in the lemma

below.

Lemma 1: Let the progression of point P along the path

be governed by (12). Then, for any v(t) verifying (8), the

origin of the kinematic error equations in (5) with the control

inputs p(t), q(t) and r(t) defined in (13) is exponentially

stable with the domain of attraction

Ω = {xpf : Vpf(x) ≤ c} , (14)

with

Vpf(xpf) =
1

4c1
‖I − R̃‖2 + 1

2c2
pTF pF (15)

where c, c1 and c2 were introduced in (9) and (10)

Proof: For a proof of this result the reader is referred

to [14, Ch. 8, pp. 122–128].

Remark 1: The formulation and proof of this Lemma was

motivated by the work reported in [13].

III. DUCTED-FAN DYNAMICS AND LOW-LEVEL

CONTROL

According to [15], in order to derive a mathematical model

for the system, the Newton-Euler equations of a rigid body

can be used. In particular the dynamical model of the vehicle

with respect to the inertial frame I is described by

Mp̈ = Rf b

Jω̇ = −(ω)∧ Jω + wPGω + τ b
(16)

where f b and τ b represent respectively the vector of forces

and torques applied to the vehicle expressed in a body

fixed reference frame B, M the vehicle total mass, J =
diag(jx, jy, jz) the diagonal inertia matrix, p = col(x, y, z)

the position of the center of mass, ω the angular velocity ex-

pressed in the body frame, R the rotation matrix relating the

body frame and the inertial frame (parameterized by means

of roll, φ, pitch, θ, and yaw, ψ) and G = (col(0, 0, Irot))
∧

with Irot the inertia of the propeller with respect to the spin

axis. The term wPGω in (16) is introduced to model the

gyroscopic precession torque effect due to the angular speed

wp of the propeller.

The external wrench vector col(f b, τ b) applied to the rigid

body can be seen as a nonlinear function of four control

inputs u = col(T, a, b, c) with T the propeller thrust, a, b and

c angular deflections of the control vanes which, deviating

the air flow coming from the propeller, are used to govern the

attitude dynamics of the system and indeed to counteract the

motor torque and to project the propeller thrust in a desired

direction. Accordingly, as an approximation, the forces and

torques can be written as

f b = −Te3 +RTMge3 +RT frd(ṗ)
τ b = A(T )v +B(T )

(17)

with v = col(a, b, c) and with

A(T ) = T





0 −ka 0
ka 0 0
0 0 −kb



 , B(T ) =





0
0

N(T )





where N(T ) = (kN/kT )T , with kN , kT , ka and kb constant

parameters. The term frd(ṗI) models the so called ram-

drag aerodynamic disturbance (see for example [16] and

[17]) which, for relative low-speed flight, represents the

most relevant drag force contribution affecting the system

dynamics. The ram drag results from the application of

the momentum theory and corresponds to the force that is

required to turn the momentum vector of the air massflow

through the fan. In the inertial frame, neglecting the presence

of wind, it can be approximated as

frd(ṗ) = −λd
[

ẋ ẏ 0
]T

(18)

where λd collects all the aerodynamic coefficients.

A. Nonlinear Control Law

Goal of the control law proposed in [15] (to which the

reader is referred for a detailed description of the control

design) is to generate the four control inputs in order to

asymptotically track the four desired vertical, lateral, lon-

gitudinal and heading time references xr(t), yr(t), zr(t)
and ψr(t). The reference signals are supposed to be known

arbitrary time profiles with the only restrictions dictated

by the functional controllability of the system and by the

fulfillment of physical constraints on the control inputs. For

this purpose the overall control law has been divided into a

vertical controller and a cascade structure for attitude and lat-

eral/longitudinal control; in the latter, the attitude loop plays

the role of inner loop and the lateral/longitudinal loop of the

outer loop . In particular the nonlinear lateral/longitudinal

control law has been designed by means of nested saturations

(see [18]). The overall controller is a mixture of feedforward
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control terms (synthesized according to the references) and

high gain control terms able to obtain asymptotic tracking

of the four reference signals in case of perfect knowledge

of the aircraft parameters, otherwise practical tracking with

a pre-defined asymptotic bound.

1) Vertical Control Law: The vertical dynamics of the

system are given by (see (16) and (17))

Mz̈ = −TΨ(Θ) +Mg (19)

where Ψ(Θ) := CφCθ (having denoted with Θ = col(φ, θ)).
In order to decouple the vertical from the attitude dynamics,

we consider the following preliminary choice for the input

T

T =
−T ′ +M(g − z̈r)

Cφs
Cθs

(20)

in which Cφs
:= max{Cφ, Cφ̄} and Cθs := max{Cθ, Cθ̄},

with φ̄ and θ̄ chosen s.t.

φ̄ ∈
(

‖φr(t)‖∞,
π

2

)

, θ̄ ∈
(

‖θr(t)‖∞,
π

2

)

(21)

where T ′ is an auxiliary control input chosen as the PID

control law

T ′ = ξ − kp2(ėz + kp1ez)

ξ̇ = −kp2(ėz + kp1ez) +Mėz
(22)

in which ez := z − zr is the vertical tracking error.

2) Attitude and Lateral/Longitudinal Control Law: The

control of the attitude dynamics is achieved by means of a

law of the form v = A−1 (T ) (ṽ −B (T )) with

ṽ = −KP

(

KDω +

[

tanΘ−A(Θψ)Θout

ψ +Kψηψ

])

+

+ KPKDωr +KP

[

tanΘr

ψr

]

+

+ Jω̇r + (ωr)
∧Jωr − wPr

Gωr

in which KP , KD and Kψ are design parameters, Θr and ωr

are functions of the lateral, longitudinal, vertical and heading

references, (obtained using model inversion of system (16)-

(18))

A(Θψ) :=

[

−Cψ SψCθ/Cφ
Sψ/Cθ Cψ/Cφ

]

,

ηψ is an integrator variable governed by η̇ψ = ψ − ψr and

Θout is a residual control input which will be chosen as the

following nested-saturation control law

Θout = λ3σ

(

K̂3

λ3
ξ3

)

ξ3 :=
[

ėy ėx
]T

+ λ2σ

(

K̂2

λ2
ξ2

)

ξ2 :=
[

ey ex
]T

+ λ1σ

(

K̂1

λ1
ξ1

)

ξ1 :=
[

ηy ηx
]T

where ex := x − xr, ey := y − yr and ηy , ηx represent

integrator variables governed by η̇y = ey and η̇x = ex. In

the definition of the outer controller, (λi, K̂i), i = 1, 2, 3,

represent design parameters while σ(·) is a saturation func-

tion rigourously defined in [18].

3) Control Properties: Let us denote with the subscript

0 the nominal values of the parameters in the dynamical

model (16)-(18). For the tracking of the four reference

signals, according to [15, Propositions 1 and 3], the following

asymptotic bounds hold true:

• there exists r > 0 such that

lim
t 7→∞

sup ‖z(t)− zr(t)‖ ≤ r‖ ˙̺‖∞ (23)

having defined ̺(t) := (M −M0)(g − z̈r);
• there exists class-K functions γn(·), γd(·) and γ∆(·)

such that

lim
t→∞

sup ‖(x(t)− xr(t), y(t)− yr(t), ψ(t)− ψr(t))‖ ≤
max

{

lim
t→∞

sup γn(| ˙̺(t)|), lim
t→∞

sup γd(‖d(t)‖),

limt→∞ sup γ∆

(∥

∥

∥

∥

∆e(T )(t)

KP

∥

∥

∥

∥

)}

.

(24)

where

d(ẋr, ẏr) :=
(

Mλd0

M0

− λd

)

[

ẏr
ẋr

]

∆e(T ) := ∆(T ) + [L(T )J0 − J ]ω̇r+
+ L(T )(ωr)

∧J0ωr − (ωr)
∧Jωr+

− L(T )wPG0ωr + wPGωr .

Following the definition in [15], it holds that there exists

∆̄ ∈ R≥0 such that

∆e(T ) ≤ ∆̄ max
j∈1,2,3, h∈1,2

{x(j)r , y(j)r , ψ(h)
r }

in which, for some s ∈ R, s(i) := dis/dti. The value of

∆̄ in the above expression depends on the uncertainties on

the system parameters and, in particular, it is equal to zero

in the special case in which all the parameters are perfectly

known. In this latter case observe that also terms ̺(t) and

d(t) are identically zero, namely asymptotic tracking of the

reference signals is achieved.

IV. PATH-FOLLOWING CONTROL OF THE DUCTED-FAN

AERIAL VEHICLE

Let us assume that the references xr(t), yr(t) and zr(t) for

the low level ducted-fan control law are given by the position

pI(t) of the virtual vehicle in (2) and that the yaw reference

angle ψr(t) is a given reference signal selected by a high

level control law. In practice we consider the virtual vehicle

as a trajectory generator for the ducted-fan in order to steer

the position of the real vehicle over the desired geometric

path using the proposed path-following approach.

The overall closed loop system is such that the following

result holds.

Lemma 2: Let be pc(ℓ) the path to be followed, with ℓ ∈
L ⊂ R, and v(t) the desired virtual vehicle speed satisfying

Assumption 1. Assume that, for all ℓ ∈ L there exist m1 > 0
and m2 > 0 such that

max
j∈{0,1,2}

{∣

∣

∣

∣

∂j

∂ℓj
κ(ℓ)

∣

∣

∣

∣

}

≤ m1 , max
j∈{0,1}

{∣

∣

∣

∣

∂j

∂ℓj
τ(ℓ)

∣

∣

∣

∣

}

≤ m2
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and that, for all t ≥ 0, there exists m3 > 0 such that

max
j∈{0,1,2,3}

{∣

∣

∣

∣

dj

dtj
v(t)

∣

∣

∣

∣

}

< m3 .

Then the following results hold

• if the system parameters are perfectly known, then the

ducted-fan asymptotically follows the virtual vehicle,

i.e.

lim
t→∞

sup ‖p(t)− pI(t)‖ = 0 (25)

• in case of uncertainties on the system parameters, for

any µ > 0 there exists v̄(µ) > 0 such that if

max
j∈{0,1,2,3}

{
∣

∣

∣

∣

dj

dtj
v(t)

∣

∣

∣

∣

}

≤ v̄(µ)

and

max
h∈{1,2}

{ ∣

∣

∣

∣

dh

dth
ψr(t)

∣

∣

∣

∣

}

≤ v̄(µ)

then

lim
t→∞

sup ‖p(t)− pI(t)‖ ≤ µ (26)

Proof: Let us consider the references xr(t), yr(t),
zr(t) given by the position pI(t) of the virtual vehicle. As

a consequence of Lemma 1, asymptotically the reference

signals for the UAV are given by the position of the rabbit

over the path pc(ℓ), namely, by considering (2), it follows

that

ṗI := RIF ve3 .

By taking the derivative of ṗI , recalling (1), it holds that

max
j=1,2,3,4

{

|p(j)I |
}

≤ v̄(µ)K̄(m1,m2)

where K̄(m1,m2) is bounded due to the assumptions on the

path curvature and torsion. Then the result follows from the

asymptotic properties of the nonlinear control law given in

(23) and (24).

The previous result establish a link between the choice

of the velocity for the virtual vehicle and the path following

performances of the ducted-fan UAV. In particular it is shown

how, even in the presence of parametric uncertainties, the

position of the ducted-fan can be rendered arbitrary close to

the desired path by a proper choice of the virtual vehicle

speed v(t). Moreover, in the special case in which the

system parameters are known, the trajectory of the ducted-

fan asymptotically follows the desired path, regardless the

choice of the virtual vehicle velocity. The result relies only

upon some geometric constraints on the curvature and the

torsion of the given geometric path. These constraints are

required in order for the virtual vehicle approach to generate

sufficiently smooth time references to be tracked by the low-

level control loop.

−20 −15 −10 −5 0 5 10 15 20
−20
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0
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y
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m
]

Obstacles

Fig. 1: Path Following (x-y plane). pc (rabbit): blue line, pI
(virtual vehicle): green line, p (UAV): red line
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0

0.1

0.2

0.3

0.4

0.5

0.6

time [s]

v
 [

m
/s

]

Fig. 2: Velocity error between the virtual vehicle and the

rabbit (blue line) and between the UAV and the virtual

vehicle (green line)

V. SIMULATIONS

To check the performance of the overall control strategy,

a numerical simulation has been implemented. For sake of

simplicity in the simulation it has been assumed that the

desired yaw reference signal is fixed to zero.

Two different simulations are shown. In the first simulation

the UAV has to follow a certain geometric path designed in

the x− y inertial 2D plane in order to move the ducted-fan

in an environment cluttered with obstacles. The proposed

type of geometric path and the given spatial constraints may

represent an indoor maneuver or even a motion of the vehicle

in an urban canyon. The path and the trajectory obtained by

the virtual vehicle and the ducted-fan are shown in Figure

1. The velocity of the virtual vehicle and of the UAV are

depicted in Figure 2. Since in the simulation we assume to

have not perfect knowledge of the aerodynamic coefficients

in (18), the velocity is kept sufficiently small in order to

prevent the real system from impacting the obstacles depicted

in Figure 1. The tracking errors along respectively the x-, y-

and z-axis are shown respectively in Figure 3.

The second simulation, summarized in Figure 4, demon-

strates the capability of the proposed control algorithm to

converge to and follow a more aggressive trajectory which

evolves also along the vertical axis. The simulation is carried

out considering the same parametric uncertainties as in the

previous one and assuming the reference yaw angle equal to

zero. The rabbit starts from initial position pc(0) = [0, 0, 0]
and it ends in position pc = [5, 3, 0]. The UAV starts
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rabbit (blue line) and between the UAV and the virtual
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Fig. 4: 3D Path Following. pc (rabbit): blue line, pI (virtual

vehicle): green line, p (UAV): red line

following the rabbit with no initial error. The velocity v(t) is

kept at a constant value given by 0.4m/s. This fact allows to

obtain a small tracking error of the virtual vehicle trajectory.

The geometric path and the trajectory followed by the virtual

vehicle and the UAV are illustrated in Figure 4.

VI. CONCLUSIONS

In this paper we have considered the problem of steering

a ducted-fan aerial robot along a given geometric path in

order to meet spatial constraints. A nonlinear control strategy

is first derived using the Special Orthogonal Group (SO(3))
theory to allow a virtual vehicle, namely a simpler kinemati-

cal model, to approach asymptotically the desired geometric

path. The trajectory of the virtual vehicle is then employed as

a reference for a nonlinear control law specifically designed

for the ducted-fan prototype. Interestingly enough, it is

shown how the path following approach allows to choose

the time law, namely the speed of the rabbit, in order to

robustly, with respect to possible uncertainties in the system

parameters, maintain the ducted-fan arbitrarily close to the

desired path.
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