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Abstract—This paper presents design and performance analy-
sis of a modified reference model MRAC (M-MRAC) architecture
for a class of multi-input multi-output uncertain nonlinear
systems in the presence of bounded disturbances. M-MRAC
incorporates an error feedback in the reference model defini-
tion, which allows for fast adaptation without generating high
frequency oscillations in the control signal, which closely follows
the certainty equivalent control signal. The benefits of the method
are demonstrated via a simulation example of an aircraft’s wing
rock motion.

I. INTRODUCTION

Controlling uncertain nonlinear systems is a challenging

task, and remains one of the active research topics in the

systems theory. There are several directions in this field, one

of which is the adaptive control. The asymptotic behavior of

adaptive systems has been a well researched topic during the

last couple of decades. However, the transient behavior of the

input and output signals is still a challenging problem. Since

the transient of the adaptive signals can be very oscillatory

with big excursions [18], there has been a great deal of effort

to modify the control architecture and the adaptive laws from

the perspective of improving it. The majority of these efforts

led to nonadaptive high gain feedback [3], [4], [16], switching

control law [9], [10] or to a parameter dependent persistent

excitation condition [1], and addressed only the behavior of

output signal.

First contribution to transient analysis of the the adaptive

control signal can be found in [6], where it is shown that

the bound on the control signal is proportional to the square

root of the adaptation rate. This result is conservative, but

it reflects the general observations about the control signal

behavior of the MRAC system. In [2], an adaptive control

architecture, called L1 adaptive control, has been introduced,

which can achieve arbitrarily close tracking of a given refer-

ence command both in transient and steady state by increasing

the adaptation gain.

In [15] we have introduced the concept of a M-MRAC

architecture for linear systems that can achieve desired level of

accuracy in tracking both input and output signals of a given

reference model by a proper selection of design parameters.

In this paper we apply the M-MRAC approach to a class of
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multi-input multi-output uncertain nonlinear systems subject

to bounded disturbances. The proposed algorithm guarantees

tracking performance both in input and output signals similar

to L1 adaptive control, but has a simpler structure and is easier

to implement. Moreover, it requires the selection of only two

control parameters, for which a design guideline is provided.

This guideline is based on the results obtained for second order

linear time variant systems, which is a contribution by itself.

The rest of the paper is organized as follows. In Section II

we state the problem, and in Section III present the control

design. The error signals are defined in Section IV. In Section

V the controller’s performance is analyzed and the design

specifics are discussed. A simulation example is presented in

Section VI and some concluding remarks are given in Section

VII.

II. PROBLEM FORMULATION

Consider a multi-input multi-output controllable uncertain

system

ẋ(t) = Ax(t) +B[u(t) +Wf(x(t)) + d(t)] (1)

with x(0) = x0, where x ∈ R
n and u ∈ R

q are the state

and input of the system, f : Rn → R
q is a known vector

of regressor functions, assumed to satisfy the existence and

uniqueness conditions, W ∈ R
p×q is a matrix of unknown

constant parameters, and d : R → R
p is a bounded but

otherwise unknown external disturbance, and A ∈ R
n×n and

B ∈ R
n×p are unknown constant matrices satisfying the

following matching conditions.

Assumption 2.1: Given a Hurwitz matrix Am ∈ R
n×n and

a matrix Bm ∈ R
n×p of full column rank, there exists a matrix

K1 ∈ R
p×n and a sign definite matrix Λ ∈ R

p×p such that

the following equations hold

B = BmΛ (2)

A = Am +BK1 .

Remark 2.1: The sign definiteness of Λ corresponds to the

conventional condition on the high frequency gain matrix

of MIMO systems (see for example [11]). Without loss of

generality we assume that Λ is positive definite. The rest of

the conditions for the existence of an adaptive controller are

given by the equations (2).

We notice that systems in the form of (1) frequently arise in

aerospace applications (see for example [8], [17] for diagonal

Λ) and in robotics. Obviously, any fully actuated mechanical

system can be described by equation (1).
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The objective is to design a control signal u(t) such that

the state of the system tracks the state x0(t) of a reference

model

ẋ0(t) = Amx0(t) +Bmr(t), x0(0) = x0 , (3)

where Am, Bm are chosen according to performance speci-

fications and satisfy Assumption 2.1, and r(t) is a bounded

and piecewise continuous external command. To achieve this

objective we use the M-MRAC architecture introduced in [15],

where the system (3) is called an ideal reference model. It is

not a part of the control design and is only used for the analysis

purposes.

Taking into account Assumption 2.1 we write

ẋ(t) = Amx(t) +Bmr(t) +BmΛ[u(t) + θφ(t) + d(t)] (4)

where for the convenience we denote K2 = −Λ−1, φ(t) =
[f⊤(x(t)) x⊤(t) r⊤(t)]⊤, and θ = [W K1 K2].

III. CONTROL DESIGN

According to M-MRAC architecture, the design of the

adaptive control is based on the modified reference model

ẋm(t) = Amxm(t) +Bmr(t) + λe(t), xm(0) = x0 , (5)

where e(t) = x(t) − xm(t) is the error between the system

and the modified reference model, λ > 0 is a feedback gain

to be specified in the analysis. The adaptive control is given

by the equation

u(t) = −θ̂(t)φ(t)− d̂(t) ,

where θ̂(t) is the estimate of the unknown matrix θ, and d̂(t)
is the estimate of a constant vector d̄, which is the constant

part (or an average value) of d(t). The ideal version of this

control signal that exactly cancels the uncertainties is

u0(t) = −θφ(t)− d(t) . (6)

Obviously, the ideal control u0(t) reduces the system (4) into

the ideal reference model (3), which always can be specified

from the performance perspective. However, the ideal control

signal (6) cannot be implemented and is only used for the

analysis purposes.

The adaptive laws for the estimates θ̂(t) and d̂(t) are defined

using the projection based adaptive law

˙̂
θ(t) = γ Pr

(

θ̂(t), B⊤

mPe(t)φ⊤(t)
)

˙̂
d(t) = γ Pr

(

d̂(t), B⊤

mPe(t)
)

, (7)

where γ > 0 is the adaptation rate, P = P⊤ > 0 is the

solution of the Lyapunov equation

A⊤

mP + PAm = −Q (8)

for some Q = Q⊤ > 0, and Pr (·, ·) denotes the projection

operator [12] defined as Pr(θ̂,y) = [I−G(θ̂)]y, where

G(θ̂) =















0, if ϕ(θ̂) < 0

0, if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y ≤ 0
∇ϕ(θ̂)∇ϕ⊤(θ̂)

‖∇ϕ(θ̂)‖2 ϕ(θ̂), if ϕ(θ̂) ≥ 0, ∇ϕ⊤(θ̂)y > 0

with the notation ∇ϕ(θ̂) = ∂ϕ(θ̂)

∂θ̂
, and the smooth convex

functions ϕ(θ̂) is given by

ϕ(θ̂) =
tr(θ̂⊤θ̂)− θ2max

ǫθθ2max

, (9)

with θmax denoting the norm bound imposed on the parameter

matrix θ̂ and ǫθ denoting the convergence tolerance. The

projection operator has the following properties

Lemma 3.1: [12] Let θ0 ∈ Ω0 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 0},

and let the parameter θ̂(t) evolve according to the following

dynamics

˙̂
θ(t) = Pr(θ̂(t), y), θ̂(t0) ∈ Ω . (10)

Then 1) θ̂(t) ∈ Ω1 = {θ̂ ∈ R
n | ϕ(θ̂) ≤ 1} or ‖θ̂(t)‖ ≤

θ∗ for all t ≥ t0, where θ∗ =
√
1 + ǫθ θmax, 2) [θ̂(t) −

θ0]
⊤[Pr(θ̂(t), y)− y] ≤ 0 for all t ≥ t0.

IV. ERROR DYNAMICS

Introducing the parameter estimation error as θ̃(t) = θ̂(t)−
θ, the dynamics of the tracking error e(t) can be written in

the form

ė(t) = (Am − λIn)e(t) +BmΛ[−θ̃(t)φ(t) + d(t)− d̂(t)] ,

where In denotes n-dimensional identity matrix. The error

signal e(t) is used in stability analysis, but for the performance

analysis we also need the actual tracking error e0(t) =
x(t)− x0(t), which satisfies the equation

ė0(t) = Ame0(t) +BmΛ[−θ̃(t)φ(t) + d(t)− d̂(t)] .

These two error signals are related via the linear equation

d

dt
[e(t)− e0(t)] = Am[e(t)− e0(t)]− λe(t) . (11)

Since Am is Hurwitz, the L1 norm of the the state transition

matrix Φ(t) = eAmt is bounded. That is, there exists a positive

constants km such that ‖Φ(t)‖L1
≤ km. Therefore, it follows

from the equation (11) that

‖e0τ (t)‖L∞
≤ (1 + λkm)‖eτ (t)‖L∞

, (12)

where the subscript τ indicate the extended L∞ norm on the

interval 0 ≤ t ≤ τ (see [7], p. 200 for details). Moreover, if

e(t) ∈ L∞, then

‖e0(t)‖L∞
≤ (1 + λkm)‖e(t)‖L∞

, (13)

In the following analysis we will also need the control error

signal that is defined as ũ(t) = u(t)−u0(t). From M-MRAC

architecture it follows that

ũ(t) = d(t)− d̂(t)− θ̃(t)φ(t) . (14)

Therefore, the error dynamics (11) can be also represented as

ė(t) = (Am − λIn)e(t) +BmΛũ(t) , (15)

Since the ideal control signal is the best achievable signal, we

are interested in minimizing the control error ũ(t), as well as

the tracking error signals e(t) and e0(t) by selecting proper

values for the adaptation rate γ and feedback parameter λ.
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V. ANALYSIS OF THE M-MRAC PERFORMANCE

A. Boundedness

Theorem 5.1: Let the system (1) be controlled by the M-

MRAC scheme given by (5), (6), and (7). Then all closed-loop

signals are ultimately bounded.

Proof: Consider the following candidate Lyapunov func-

tion

V (t) = e⊤(t)Pe(t) +
1

γ
tr
(

[θ̃(t)θ̃⊤(t) + d̃(t)d̃
⊤

(t)]Λ
)

, (16)

where d̃(t) = d̂(t) − d̄. Computing its derivative along

the trajectories of the systems (11) and (7), and using the

properties of the projection operator, it is straightforward to

obtain the inequality

V̇ (t) ≤ −e⊤(t)(Q + 2λP )e(t) + 2e⊤(t)PB[d(t)− d̄]

≤ −‖e(t)‖ [a‖e(t)‖ − 2d∗] , (17)

where we denote a = λmin(Q) + 2λmin(P )λ and d∗ =
‖PBmΛ(d(t) − d̄)‖L∞

with λmin(S) being the minimum

eigenvalue of the matrix S. It follows that V̇ (t) is negative

semi-definite whenever a‖e‖ ≥ 2d∗, which along with the

properties of the projection operator imply that the closed-loop

error signals e(t), θ̃(t), h̃(t) are uniformly ultimately bounded.

The boundedness of e0(t) follows from the inequality (13).

Since Am is Hurwitz, the bounded signals r(t) and e(t)
produce a bounded signal xm(t). Therefore, x(t) is bounded.

It follows that u(t) and ũ(t) are bounded as well.

B. Transient behavior of the tracking error

The projection operator in the adaptive laws (7) guarantees

the inequalities

‖θ̂(t)‖ ≤ θ∗, ‖d̂(t)‖ ≤ d∗ , (18)

therefore

tr
(

[θ̃(t)θ̃⊤(t) + d̃(t)d̃
⊤

(t)]Λ
)

≤ β ,

where β = 4θ∗2 + 4h∗2. From Theorem 5.1 it follows that

V̇ (t) ≤ 0 whenever

V (t) > V∗ = λmax(P )
4d2∗
a2

+
β

γ
. (19)

Therefore, it follows that the trajectories stay inside the

Lyapunov level set

L =
{

(e, θ̃, d̃) : V (e, θ̃, d̃) = V∗

}

. (20)

From the definition of V (t) we have

λmin(P )‖e(t)‖2 ≤ e⊤(t)Pe(t) ≤ V (t) ≤ V∗ . (21)

Hence, the following conservative bound can be derived

‖e(t)‖L∞
≤ c =

√

λmax(P )

λmin(P )

4d2∗
a2

+
β

γλmin(P )
. (22)

Since the inequality (22) holds uniformly in t, the bound

‖e(t)‖L∞
≤ c follows. We notice that the second term in

the square root can be arbitrarily decreased by increasing the

adaptation rate γ. The first term is independent of γ, but can be

arbitrarily decreased by increasing λ. This is not the case for

the conventional MRAC design. Indeed, when λ = 0, the only

design parameter that affects that term is λmin(Q). However,

increasing λmin(Q) scales also P , hence increases d∗.

The bound on ‖e0(t)‖L∞
follows from the inequality (13)

and has the form

‖e0(t)‖L∞
≤ c (1 + λkm) (23)

We notice that the derived bound on ‖e0(t)‖L∞
cannot be

arbitrarily decreased by increasing the design parameters λ and

γ. If we set λ = c0
√
γ, where the proportionality coefficient

c0 will be defined in Theorem 5.2, the following asymptotic

bound can be written

lim
γ→∞

‖e0(t)‖L∞
≤ km

√

λmax(P )

λ3
min(P )

d2∗ +
c20β

λmin(P )
, (24)

which can be decreased by increasing λmin(P ).

C. Transient behavior of the control signal

To investigate the behavior of the control signal with respect

to design parameters we recall that u(t) does not explicitly

depend on design parameters λ and γ. Instead, u̇(t) depends

on γ through the adaptive laws, and ü(t) depends on λ through

the tracking error dynamics. Therefore, for the purpose of this

subsection we assume that r(t) has bounded time derivatives.

This assumption is only needed for the analysis purposes and

is conditioned on the way the bound on the control signal is

derived. Alternatively one could use the integral representa-

tion of the parameter estimates and the error signal e(t) to

derive an integral equation for the u(t) without assuming the

differentiability of r(t). However, for more transparency we

use the differential form of the equations.

Differentiating u(t) and substituting the adaptive laws we

obtain

u̇(t) = −γ[ρ(t)Iq −H(t)]B⊤

mPe(t)− ra(t) , (25)

where we denote ρ(t) = φ⊤(t)φ(t) + 1, ra(t) = θ̂⊤(t)φ̇(t),
and H(t) = G(θ̂)φ⊤(t)φ(t) + G(d̂). We notice that the

terms ρ(t), ra(t) and H(t) do not explicitly depend on the

design parameters λ and γ. Moreover, from the results of

the previous subsection it follows that all signals involved

in the equation (25) are bounded. In particular, there exist

positive constants α1, α2, α3 such that ‖ρ(t)‖L∞
≤ α1,

‖ρ̇(t)‖L∞
≤ α2 and ‖ra(t)‖L∞

≤ α3. We also notice that the

matrix F (t) = ρ(t)Ip −H(t) is symmetric and positive semi-

definite, since ‖G(θ)‖ ≤ 1, which follows from the properties

of the projection operator.

Differentiating the equation (25) with respect to time and

using the equation (15) we obtain the following second order

differential equation

ü(t) + λu̇(t) + γF (t)Lu(t) = −γF (t)B⊤
mPAme(t)

−γḞ (t)B⊤
mPe(t) + γF (t)Lu0(t)− λra(t)− ṙa(t) ,(26)
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where L = B⊤
mPBmΛ. It follows from the definition of the

projection operator and Theorem 5.1 that Ḟ (t) is piecewise

continuous and bounded. Since all the terms in equation (26)

are bounded, it can be considered as a second order linear

equation with time varying coefficients in u(t). Although the

equation (26) is non-autonomous, it can be still inferred that

the adaptation rate γ determines the frequency of the control

signal u(t). Therefore, increasing γ increases the oscillations

in u(t) as it is the case for the conventional MRAC design.

On the other hand λ determines the damping ratio. Therefore

increasing λ suppresses the oscillations in the control signal

u(t). That is, by selecting a proper value for λ the desired

performance can be achieved. This is the main difference from

the MRAC design, which results when λ = 0.

We select a proper value of λ from the perspective of

minimizing the norm bound on the control signal u(t) in

transient. To this end we notice that selection of the initial

parameter estimates inside the convex sets defined by the

projection operator results in H(t) = 0 on some initial

interval [0 t1] by continuity. Therefore, F (t) = ρ(t)Ip on

[0 t1]. To simplify computations we notice that the matrix

L is symmetric and positive definite, therefore there exists an

orthogonal matrix T such that D = TLT⊤ is diagonal with

positive entries dii, i = 1, . . . , p. That is, introducing a new

variable v = Tu (v0 = Tu0), we can write the equation (26)

in the following form

v̈(t) + λv̇(t) + γDρ(t)v(t) =

γρ(t)Dv0(t) + γz1(t)− λz2(t)− ż2(t) . (27)

where z1(t) = T [−ρ(t)B⊤
mPAm − ρ̇(t)B⊤

mP ]e(t) and

z2(t) = Tra(t). Let ρ0 = 1+α1

2 . Then for each component of

vector v(t) we can write the following equation

v̈i(t) + λv̇i(t) + γdiiρ0vi(t) = γρ(t)diiv
0
i (t)

+γz1i(t)− λz2i(t)− ż2(t) + γ[d0ρ0 − diiρ(t)]vi(t) .(28)

Since ρ(t) ≥ 1, this equation is in the form of equation (38)

from Appendix with k(t) = diiρ(t), 2a = λ, ω2
i = γdiiρ0 and

three external inputs
[

0
1

]

γρ(t)diiv
0
i (t),

[

0
1

]

γz1i(t),

[

1
λ

]

z2i(t) .

Applying the inequality (49) we obtain

|vi(t)| ≤ c3

√

v2i (0) + v̇2i (0)e
−νt + α1‖v0i (t)‖L∞

(29)

+
1

dii
‖z1i(t)‖L∞

+
(c1 + 2)

√
ρ0√

diiγ
‖z2i(t)‖L∞

for each i = 1, . . . , p, if λ ≥ 2
√
ωi =

√
γdiiρ0. Therefore

selecting

λ =
√

2γd0(α1 + 1) , (30)

where d0 = max{dii, i = 1, . . . , p} results in the inequality

|vi(t)| ≤ c3

√

v2i (0) + v̇2i (0)e
−νt + α1‖v0i (t)‖L∞

(31)

+
1

d0
‖z1i(t)‖L∞

+
(c1 + 2)

√
ρ0√

d0γ
‖z2i(t)‖L∞

for all components simultaneously, where d0 = min{dii, i =
1, . . . , p}, and ν is proportional to

√
γ. A similar inequality

holds (as it is derived in the appendix) for the vector v(t)

‖v(t)‖ ≤ c4e
−νt + α1‖v0(t)‖L∞

(32)

+
1

d0
‖z1(t)‖L∞

+
(c1 + 2)

√
ρ0√

d0γ
‖z2(t)‖L∞

Since T is orthogonal with ‖T ‖2 = 1, we have ‖u(t)‖ =
‖v(t)‖, ‖z2(t)‖ = ‖ra(t)‖ and

‖z1(t)‖L∞
≤

[

α1‖B⊤

mPAm‖+ α2‖B⊤

mP‖
]

‖e(t)‖L∞
.

Combining the above relationships we obtain

‖u(t)‖ ≤ c4e
−νt + α1‖u0(t)‖L∞

+ c5‖e(t)‖L∞

+
(c1 + 2)

√
ρ0√

d0γ
‖ra(t)‖L∞

, (33)

where c5 = 1
d0

[

α1‖B⊤
mPAm‖+ α2‖B⊤

mP‖
]

.

It is easy to see that the bound on ‖u(t)‖ has the form

‖u(t)‖L∞
≤ c4e

−νt + α1‖u0(t)‖L∞
+

c6√
γ
, (34)

where

c6 = c5

√

λmax(P )

λ3
min(P )

d2∗ +
β

λmin(P )
.

and the constants α1, c4, c6 do not depend on the adaptation

rate γ. We notice that the first term on the right hand side of

(34) represents the exponentially decaying effect of the initial

conditions u(0) and u̇(0), and the last term can be decreased

by increasing γ. Therefore we can conclude that for large γ,

the adaptive control u(t) behaves similar to the ideal control

u0(t). That is unlike the conventional MRAC design, the fast

adaptation in the M-MRAC design does not generate high gain

effect.

The transient behavior of the error signals is summarized

as follows.

Theorem 5.2: Let the system (1) be controlled by the M-

MRAC scheme given by (5), (6) and (7), and the design

parameters are chosen according to equation λ = c0
√
γ with

c0 =
√

2d0(α1 + 1). Then, the inequalities (22), (23) and (34)

are true.

VI. SIMULATION RESULTS

For the simulation we consider a wing rock motion of

a slender delta wing considered in [14], and given by the

equation

φ̈(t) = f(φ, φ̇) + bu(t) + d(t) .

where φ(t) is the roll angle,

f(φ, φ̇) = a1φ+ a2φ̇+ a3|φ2|φ̇+ a4|φ̇|φ̇+ a3φ
3 . (35)

with a1 = −0.0186, a2 = 0.0152, a3 = −0.0625, a4 =
0.0095, a5 = 0.0215, b = 1. The disturbance d(t) rep-

resents unknown atmospheric effects and is a square wave

of amplitude 0.15 and of frequency 0.5 rad/sec. Only the

sign of the control effectiveness b is assumed to be known
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(positive). The parameters of the reference model are chosen

as follows Am = [0 1;−1 − 1.6], bm = [0; 1]. The external

input to follow is a step command of magnitude −15 degrees

at t = 15. We run two simulations respectively from the

small initial conditions (6deg., 3deg/sec) and large initial

conditions (30deg., 10deg/sec). The adaptation rate is set

to γ = 10000 with λ defined according to equation (30).

The simulation results are displayed on Figures 1 and 2

respectively. It can be seen that a good tracking is achieved

for both output and control signals, and the later does not

exhibit any high frequency oscillations even for the selected

high adaptation rate. The disturbance effect is completely

attenuated.
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Fig. 1. Tracking a step command from the small initial conditions.
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Fig. 2. Tracking a step command from the large initial conditions.

VII. CONCLUSIONS

We have presented design and performance analysis of M-

MRAC architecture for a class of uncertain systems subject

to bounded disturbances. It is shown that the systems’ input

and output tracking errors can be decreased as desired by

increasing the adaptation rate, when the error feedback gain

is selected according to derived rule. This design method

prevents high frequency oscillations in the control signal,

which are unavoidable in conventional MRAC systems. The

performance of M-MRAC is demonstrated on a benchmark

problem of controlling wing rock motion of slender delta

wings in a turbulent atmosphere.

APPENDIX A

AN UPPER BOUND FOR A SECOND ORDER LTV SYSTEM

Consider a second order time variant linear system

ẍ(t) + 2aẋ(t) + γk(t)x(t) = b1ḟ(t) + b2f(t) (36)

with x(0) = x0, ẋ(0) = ẋ0, where γ > 0 is a constant

parameter, k(t) is continuous with k∗ ≥ k(t) ≥ k∗ > 0 and

has a bounded derivative. The function f(t) is assumed to be

piecewise continuous and bounded. The equation (36) can be

written in the matrix form as

ż(t) = Az(t) +Bf(t) (37)

where

z(t) =

[

x(t)
ẋ(t)

]

, A =

[

0 1
−γk(t) − 2a

]

, B =

[

b1
b2

]

,

We are interested in minimizing the upper bound on x(t)
by the choice of the parameter a. To this end we introduce

notations ω2 = γk0, k0 = k∗+k∗

2 , a = ζω and represent the

system (37) in the following equivalent form

ż(t) = Dz(t) +Bf(t) +C[ω2 − γk(t)]x(t) (38)

where

D =

[

0 1
−ω2 −2ζω

]

, C =

[

0
1

]

.

For the convenience of derivations we decompose z(t) into

initial response zi(t) of the homogeneous system

żi(t) = Azi(t) (39)

with the initial condition z0 = [x0 ẋ0]
⊤, and force response

zf (t) of the system (38) with zero initial conditions, which

can be represented in the equivalent integral form

zf (t) =
∫ t

0 G(t− τ)Bf(τ)dτ +
∫ t

0
G(t− τ)C[ω2 − γk(t)]xf (τ)dτ . (40)

Here, G(t) = eDt is the state transition matrix, which can be

computed by direct integration (see for example [5]).

In order to minimize the bound on zf1 (t) = xf (t) we

compute the L1 norm of the elements in the first row of matrix

G(t). For g12(t) we obtain

‖g12(t)‖L1
=







1
ω2

e
ζωπ
δ +1

e
ζωπ
δ −1

, ζ < 1

1
ω2 , ζ ≥ 1

, (41)
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where δ = ω
√

|1− ζ2| and 0 < ϕ = tan−1( δ
ζω

) < π
2 .

Obviously, ‖g12(t)‖L1
reaches its minimum of 1

ω2 for all

ζ ≥ 1. On the other hand, the L1 norm of g11(t) is computed

to be

‖g11(t)‖L1
=







2
ω

(

ζ + e
ζωϕ
δ

e
ζωπ
δ −1

)

, ζ < 1

2ζ
ω
, ζ ≥ 1

, (42)

It can be shown that the minimum of ‖g11(t)‖L1
is reached

at some ζ∗ < 1. Numerical computations result in ζ∗ = 0.66
with the minimum value of 2c

ω
, where c = 0.8026.

Since there is no common minimum point for the entries

of G(t), one can use a ”suboptimal” value ζ = 1, which is

good enough for our purposes. In this case ‖g11(t)‖L1
= 2

ω

and ‖g12(t)‖L1
= 1

ω2 . We notice that selecting a larger value

of ζ while leaving ‖g12(t)‖L1
intact, increases ‖g11(t)‖L1

proportional to 1
ω

. Therefore, we can select any ζ ≥ 1 with

‖g11(t)‖L1
= c1

ω
, where c1 ≥ 2 is determined by the selected

ζ and is independent of ω.

Next we compute L∞ bound on xf (t)

xf (t) =
∫ t

0 [b1g11(t− τ) + b2g12(t− τ)]f(τ)dτ

+
∫ t

0
g12(t− τ)[ω2 − γk(t)]xf (τ)dτ . (43)

Since ‖ω2−γk(t)‖L∞
= ω2−γk∗ = γ k∗

−k∗

2 , we obtain (see

[7], p. 199 for details)

‖xf (t)‖L∞
≤ ‖f(t)‖L∞

[|b1|‖g11(t)‖L1
+ |b2|‖g12(t)‖L1

]

+γ k∗
−k∗

2 ‖xf (t)‖L∞
‖g12(t)‖L1

. (44)

Substituting the L1 norm values and solving the resulting

inequality for ‖xf (t)‖L∞
we obtain

(

1− k∗ − k∗
2k0

)

‖xf (t)‖L∞
≤

[

c1|b1|
ω

+
|b2|
ω2

]

‖f(t)‖L∞
, (45)

which results in

‖xf (t)‖L∞
≤

[

c1|b1|
√
k0

k∗
√
γ

+
|b2|
k∗γ

]

‖f(t)‖L∞
. (46)

To obtain a bound for zi(t), we recall that according to

Theorem 8.7 [13] the origin of the system (39) is uniformly

exponentially stable, since ‖A(t)‖ is bounded, ‖Ȧ(t)‖ is

essentially bounded, and the point wise eigenvalues of matrix

A(t) have negative right hand sides. Therefore

‖zi(t)‖ ≤ c3‖z(0)‖e−νt (47)

for positive constants c3 and ν. According to [13] (p. 140), ν
is given by the formula

ν =
1

2
(−

√

γζk0 +
√

γ(ζk0 − k∗) . (48)

that is the rate of decay can be increased by increasing γ.

Since (50) is true for each component of zi(t), adding the

corresponding inequalities we arrive for all a ≥ √
γk0 at

|x(t)| ≤ c3‖z(0)‖e−νt +

[

c1|b1|
√
k0

k∗
√
γ

+
|b2|
k∗γ

]

‖f(t)‖L∞
. (49)

We notice that when x and f are q-dimensional vectors

in the equation (36), then z = [x1 ẋ1 . . . xq ẋq]
⊤ and the

matrices A, B, C, D and G have repeated block structures.

Therefore the equation (44) and the upper bound (46) hold

for each component xf
i (t) of vector xf (t) with f(t) replaced

with fi(t). On the other hand, the inequality (47) is true for

the 2q-vector z(t), hence it is true for the vectors xf (t) and

ẋf (t). That is

‖xi(t)‖ ≤ c3e
−νt

√

‖x0‖2 + ‖ẋ0‖2 ≡ c4e
−νt (50)

It follows that the inequality

‖x(t)‖ ≤ c4e
−νt +

[

c1|b1|
√
k0

k∗
√
γ

+
|b2|
k∗γ

]

‖f(t)‖L∞
(51)

holds in the vector case as well, when a ≥
√
γk0.
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