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Abstract—In this note we consider the basic problem to identify
linear relations in noise. We follow the viewpoint of factor
analysis (FA) where the data is to be explained by a small
number of independent factors and independent noise. Thereby
an approximation of the sample covariance is sought which can
be factored accordingly. An algorithm is proposed which weighs
in an ℓ1-regularization term that induces sparsity of the linear
model (factor) against a likelihood term that quantifies distance
of the model to the sample covariance. The algorithm compares
favorably against standard techniques of factor analysis. Their
performance is compared first by simulation, where ground truth
is available, and then on stock-market data where the proposed
algorithm gives reasonable and sparser models.

I. INTRODUCTION

We are interested in a most basic problem where linear
models are sought from noisy data [10]. The salient feature
of the problem, however, is that it involves typically a large
number of variables. This of great importance in many areas
in science, engineering, but most notably in econometrics and
economic forecasting [4].

Consider the (column) vector

𝑥 = [𝑥1, . . . , 𝑥𝑛]
′ ∈ ℝ𝑛

of real random variables 𝑥1, . . . , 𝑥𝑛, and a set of independent
realizations of 𝑥(1), . . . , 𝑥(𝑚) of the vector 𝑥 making up

𝑋 = [𝑥(1), . . . , 𝑥(𝑚)] ∈ ℝ𝑛×𝑚.

We assumed that these have zero mean and we set

Σsample =
1

𝑚
𝑋𝑋 ′

to be the sample covariance.
From this point, various modeling postulates can be con-

sidered. Each makes different assumption about the nature of
noise. Typically, one assumes that

𝑥 = �̂�+ �̃�

where �̂� represents a noise-free variable and �̃� represents
noise. Then, �̂� and �̃� are assumed uncorrelated zero-mean
(vectorial) random variables. The classical Frisch model pos-
tulates that

Σ̃ := 𝐸(�̃��̃�′)

is diagonal whereas principle component analysis (PCA) as-
sumes that Σ̃ has no structure whatsoever, but that the variance
trace(Σ̃) is small.

Regarding the structure of the noise-free variables, it is
assumed that these satisfy between them a number of linear
relations. Thus, the rank of the noise-free covariance

Σ̂ = 𝐸(�̂��̂�′)

must be less than 𝑛. This rank(Σ̂) is the number of “principle
components” or “factors” which are needed to explain the data.

In the PCA literature, the rank is conveniently chosen
according to a “break point” of the singular values of Σsample,
while in the context of the Frisch problem, it is natural to seek
Σ̂ of minimal rank [10]–a problem which to large degree is
still open. Factor analysis on the other hand focuses not not
only on the number of independent components, which need to
be small, but also on the structure of the postulated noise-free
covariance Σ̂. More specifically, it is assumed that

𝑋 = 𝐹𝑉 + �̃�

and that the noise-free data �̂� = 𝐹𝑉 is modeled by a constant
coefficient matrix 𝐹 , which is required to be sparse, and a
matrix

𝑉 = [𝑣(1), . . . , 𝑣(𝑚)],

where 𝑣(𝑡) = [𝑣1(𝑡), . . . , 𝑣𝑟(𝑡)]
′, 𝑡 = 1, . . . ,𝑚 represent

independent realizations of a set of random variables. The
variables 𝑣𝑗 are called the factors and 𝐹 is the factor loading
in factor analysis.

The underlying rationale for sparse factor loadings is so that
each random variable �̂�𝑖 is accounted for by superimposing the
effect of a small number of factors 𝑣𝑗 . The assumption on �̃�
is again that the entries are independent and hence that the
covariance Σ̃ is diagonal. Further, without loss of generality,
the covariance of 𝑣 can be taken to be the identity. Thus the
basic problem in factor analysis is as follows.

Problem: Given an 𝑛×𝑛 sample covariance Σsample and
an integer 𝑟 < 𝑛, determine a diagonal covariance Σ̃ and a
sparse coefficient matrix 𝐹 ∈ ℝ𝑛×𝑟 such that

Σsample ≃ 𝐹𝐹 ′ + Σ̃. (1)

The purpose of this paper is to propose an algorithm for
obtaining such a decomposition. The solution is not optimal,
i.e., it is neither sparsest nor of least rank. Attaining either
of these specs is a formidable objective. Instead, we consider
a likelihood function together with a regularization term that
promotes sparsity. The algorithm aims to approximate extrema
of such a functional.
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II. ALGORITHM

Suppose that the data is drawn from a Gaussian distribution
with covariance Σ. In the absence of any constraints the
negative-log-likelihood

𝑚

2

(
logdet(Σ) + trace(ΣsampleΣ

−1) + 𝑛 log(2𝜋)
)

is miminal at Σ = Σsample, while in general, it can be taken
to quantify distance between Σ and Σsample.

Given the sample covariance Σsample, our interest is in
obtaining a nearby value for Σ which admits a factorization as
in (1) with a sparse factor 𝐹 . The sparsity of 𝐹 , often denoted
by ∥𝐹∥0, is the number of non-zero entries. It is known that
the sum of the absolute values of its entries, namely ∥𝐹∥1,
is a good surrogate for sparsity. The use of the ℓ1 norm for
penalty to promote sparsity has a history in statistics, but was
brought to prominence only recently, after a series of deep
studies by Candès, Tao, Romberg, Donoho, Elad, and others.
The area of these contributions is now commonly known as
compressive sensing.

Thus, for our purposes, we propose as a compromise
between fit and sparsity, a linear combination of the likelihood
function and a weighted ℓ1-norm of the corresponding factor.
This linear combination of likelihood and ℓ1-cost is thought
of as a function of the entries 𝐹 , Σ̃ in the decomposition

Σ = 𝐹𝐹 ′ + Σ̃

with Σ̃ ≥ 0 and diagonal. Thus, our problem can be expressed
as follows:

min
𝐹,Σ̃

{logdet(𝐹𝐹 ′ + Σ̃) + trace(Σsample(𝐹𝐹 ′ + Σ̃)−1)

+𝜆∥𝐹∥1 ∣ Σ̃ ≥ 0, Σ̃ is diagonal}. (2)

The weight 𝜆 affects sparsity of the factor 𝐹 .
Problem (2) is not convex. Since

(𝐹𝐹 ′ + Σ̃)−1 = 𝐸 −𝐺𝐺′

with

𝐸 = Σ̃−1, (3a)
𝐺 = Σ̃−1𝐹𝑀−1, (3b)
𝑀 = (𝐼 + 𝐹 ′Σ̃−1𝐹 )

1
2

= (𝐼 −𝐺′𝐸−1𝐺)−
1
2 , (3c)

then (2) becomes

min
𝐺,𝐸

{− logdet(𝐸 −𝐺𝐺′) + trace(Σsample(𝐸 −𝐺𝐺′))

+𝜆∥𝐸−1𝐺𝑀∥1 ∣ 𝐸 −𝐺𝐺′ ≥ 0, 𝐸 is diagonal}. (4)

For 𝐺 = 𝐺𝑘 + 𝛿𝐺, the first order approximation of 𝐺𝐺′ is

𝛿𝐺𝐺
′
𝑘 +𝐺𝑘𝛿

′
𝐺 +𝐺𝑘𝐺

′
𝑘 =: [𝐺𝐺′]𝑘,𝛿𝐺 . (5)

Likewise, let 𝐸 = 𝐸𝑘 + 𝛿𝐸 where 𝐺𝑘, 𝐸𝑘 for 𝑘 = 1, 2, . . .
represents iteratively obtained values for 𝐺 and 𝐸 (as in (6b-
6c) below), respectively. Also 𝑀 and 𝐹 will be approximated

iteratively. Since, from (3b) 𝐹 = 𝐸−1𝐺𝑀 we approximate 𝐹
with the first order perturbation

𝐸−1
𝑘 (𝐺𝑘 + 𝛿𝐺)𝑀𝑘,

where 𝑀𝑘 represents the value of 𝑀 from (3c) at 𝐸𝑘 and 𝐺𝑘.
In this expression, we neglect the linear perturbation terms
corresponding to 𝐸 and 𝑀 . Our reasoning is as follows:
first, 𝐸 is diagonal and neglecting corrections will not affect
the sparsity pattern of 𝐹 while on the other hand the linear
perturbation term involves 𝐸−2

𝑘 which causes the iteration to
be numerically sensitive. Then again, the linear perturbation
in 𝑀 is rather complicated (given in Appendix B) and the
neglected term is not affecting the convergence claimed in the
proposition below. Define

𝑔𝐺𝑘,𝐸𝑘
(𝛿𝐺, 𝛿𝐸) =− logdet(𝐸𝑘 + 𝛿𝐸 − [𝐺𝐺′]𝑘,𝛿𝐺)

+ trace(Σsample(𝐸 + 𝛿𝐸 − [𝐺𝐺′]𝑘,𝛿𝐺))

+ 𝜆∥𝐸−1
𝑘 (𝐺𝑘 + 𝛿𝐺)𝑀𝑘∥1

which is convex in 𝛿𝐺 and 𝛿𝐸 and approximates (4) at 𝐺𝑘 and
𝐸𝑘. Moreover, the constraint 𝐸 −𝐺𝐺′ ≥ 0 is equivalent to[

𝐸 𝐺
𝐺′ 𝐼

]
≥ 0.

Hence, we seek minima of (4) by solving

(𝛿𝐺, 𝛿𝐸) = argmin {𝑔𝐺𝑘,𝐸𝑘
(𝛿𝐺, 𝛿𝐸) :[

𝐸𝑘 + 𝛿𝐸 𝐺𝑘 + 𝛿𝐺
𝐺′

𝑘 + 𝛿′𝐺 𝐼

]
≥ 0,

and 𝛿𝐸 diagonal} . (6a)

We choose step size 𝛼 ∈ [0, 1] such that with

𝐺𝑘+1 = 𝐺𝑘 + 𝛼𝛿𝐺 (6b)
𝐸𝑘+1 = 𝐸𝑘 + 𝛼𝛿𝐸 (6c)

the following inequality holds

𝑔𝐺𝑘+1,𝐸𝑘+1
< 𝑔𝐺𝑘,𝐸𝑘

− 𝜎. (6d)

Here, the constant 𝜎 > 0 determines a stopping criterion. Also,
we have simplified the notation by setting

𝑔𝐺𝑘,𝐸𝑘
:= 𝑔𝐺𝑘,𝐸𝑘

(0, 0).

If (6d) holds, the step size 𝛼 is accepted, otherwise let 𝛼 =
1
2𝛼. If the step size is smaller than a preselected 𝜖 > 0, the
iterations can be terminated.

Proposition: If 𝜆 = 0, then at point 𝐺𝑘, 𝐸𝑘, (𝛿𝐺, 𝛿𝐸) is
descent direction for (4).

Proof: Since 𝛿𝐺 = 𝛿𝐸 = 0 satisfy the LMI in (6),

𝑔𝐺𝑘,𝐸𝑘
(𝛿𝐺, 𝛿𝐸) ≤ 𝑔𝐺𝑘,𝐸𝑘

.

Moreover, 𝑔𝐺𝑘,𝐸𝑘
(𝛿𝐺, 𝛿𝐸) is convex in 𝛿𝐺 and 𝛿𝐸 , so

𝑔𝐺𝑘,𝐸𝑘
(𝜖𝛿𝐺, 𝜖𝛿𝐸) ≤ 𝑔𝐺𝑘,𝐸𝑘

for all 𝜖 ∈ [0, 1]. If 𝜖 is small, the difference between the
above two is of order 𝜖 or higher. When 𝜆 = 0, because of
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(5), the difference between 𝑔𝐺𝑘,𝐸𝑘
(𝜖𝛿𝐺, 𝜖𝛿𝐸) and the objective

function in (4) is of order 𝜖2 or higher. So (𝛿𝐺, 𝛿𝐸) is descent
direction for (4) at 𝐸𝑘, 𝐺𝑘.

If 𝜆 > 0 and is small enough, the decreased amount of the
first two terms dominates the change of the last term. So the
pair (𝛿𝐺, 𝛿𝐸) is still a descent direction. Since the objective
function (4) is bounded below, then the algorithm will at least
converge to a local minimum.

The algorithm can be initialized using suitable starting
values for Σ̃0 and 𝐹0, and then setting

𝑀0 = (𝐼 + 𝐹0Σ̃
−1
0 𝐹0)

1
2

𝐸0 = Σ̃−1
0

𝐺0 = Σ̃−1
0 𝐹0𝑀

−1
0 .

A starting value for 𝐹0 can be chosen to contain the eigen-
vectors of Σsample corresponding to the largest 𝑟 eigenvalues,
scaled by the square root of corresponding eigenvalues, and
Σ̃0 may be set equal to the diagonal 1 of Σ0 − 𝐹0𝐹

′
0.

III. BACKGROUND AND THE VARIMAX CRITERION

The problem to identify linear relations in data has its roots
at least as far back as in the work of Gauss. “Least squares”
has been a workhorse in engineering ever since. Early in
the 20th century, following Ragnar Frisch, statisticians laid
down alternative assumptions on the noise model and sought
to understand the impact of such concepts on modeling.

There are several schools of thought. Most prominently,
principal component analysis (PCA) which is based on the
fact that singular value decomposition (SVD) allows for an
exact and computationally simple analysis of data and covari-
ance according to the hypothesis that noise has no structure
while the signal-to-noise ratio is significant. In parallel, in
disciplines such as psychometrics and econometrics where
data is often dominated by noise [11], [16], assuming a more
detailed noise-model is essential. Reasonable hypotheses often
allow for more accurate models, albeit at a cost of an often
computationally intractable problem. The main schools are that
of Factor Analysis (FA) and Errors in variables (EIV). FA is
based on the assumption of the independence of noise whereas
EIV allow for more sophisticated models and is a broader
research area [13], [14]. The assumption of independent noise
components is natural in several applications in signal analysis
and system identification, but most importantly in financial
data. In [2] the sparse factor model was assumed in the study
of gene expression genomics where a Bayesian work was
introduced. In [3] the same objective function, penalized max-
imum likelihood function, was considered for the sparse factor
analysis problem and a generalized expectation maximization
algorithm was proposed. A recent study in [17] to achieve
sparse PCA blares the distinction as it assumes a noise model

1This starting choice is the maximum likelihood solution with 𝐹0 given
[12]; Σ̃0 may need to be slightly modified so as to be positive definite by
adding small diagonal positive entries.

with a diagonal structure. Further, in [17] a similar weighing
of a likelihood function together with an ℓ1-penalty is being
proposed. See also [18] for an alternative view to sparse PCA.
Dynamic modeling can also be formulated in a variety of ways
[1], [4]. One way that this can be achieved is by seeking linear
relations between time-shifted copies of time-series data and
will not be discussed further. The problem to sparsify factor
loadings has been a central issue in FA. A standard approach is
to search for an 𝑟×𝑟 rotation matrix 𝑅, in conjunction with a
search for the 𝑛×𝑟 factor loading 𝐹 , so that the product 𝐹𝑅 is
sparse. Cumbersome as it may seem, this viewpoint forms the
basis of a technique presented in [9], [12]. The rotation matrix
𝑅 is sought to maximize the following Varimax criterion:

𝑟∑
𝑗=1

(
𝑛∑

𝑖=1

(𝐹𝑅)4𝑖𝑗 −
1

𝑛
(

𝑛∑
𝑖=1

(𝐹𝑅)2𝑖𝑗)
2

)
.

This expression is precisely the sum of variances of the squares
of the elements of 𝐹𝑅. The rationale for seeking extrema
of this expression rests on the observation that the Frobenius
norm of 𝐹𝑅 is not affected by 𝑅, which is a rotation matrix.
Then, if this is chosen so as to render the variance of the
squares of the entries large, 𝐹𝑅 will necessarily have most
entries small. This criterion is now standard and is included as
part of Matlab in the subroutine factoran which is widely
used for factor analysis.

IV. EXAMPLES

Example 1: First we compare the performance of the pro-
posed method against factoran (which uses the Varimax
criterion) using simulation. To this end, we generate a random
factor loading matrix 𝐹 ∈ ℝ100×10 with only two non-
zero entries per row, and a realization 𝑉 ∈ ℝ10×400 of
random factors from a multivariate normal distribution with
covariance equal to the identity. Figure 1 displays a color-
coded representation of the entries of 𝐹 , side by side with the
entries of the estimated factor loadings using our algorithm
(second column) and one produced by factoran (third
column). To highlight the difference we display in Figure 2
the same, as a binary plot, thresholding at a low amplitude.
This shows an almost perfect agreement of the result of our
algorithm with the “ground truth.” Finally, Figure 3 shows the
relative values of entries across one of the columns of the
factor loading matrix 𝐹 (5th column) and compares, likewise,
the “ground truth” with the result of the algorithm presented
in this paper and the output of factoran. It is seen that both
algorithms are consistent.

Example 2: We process time-series data corresponding to
30 different stocks taken from 4 different sectors. The stocks
and sectors are listed in the Appendix A. The data are taken
over a period of four weeks sampled at 2 minute intervals.
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Fig. 1. Factor loadings: i) “ground truth” (left), ii) estimated using proposed
method (middle), iii) estimated using factoran (right).
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Fig. 2. Binary values for factor loadings: i) “ground truth” (left), ii)
estimated using proposed method (middle), iii) estimated using factoran,
by thresholding at a small value.

The same database has been used in [15]. We compute the
correlation matrix which is shown in Figure 4 in color-
coded format. From the figure it is possible to discern strong
correlation between certain stocks. This in turn may suggest a
possible common underling factor. Otherwise noise may be the
dominant component. We compute factor loadings using the
method that was proposed earlier and compare with the factor
loadings obtained using standard factor analysis (factoran
routine in Matlab). These are displayed in Figure 5, again in
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Fig. 3. Bar plots of the 5th column of the true sparse matrix (left), the
estimated sparse matrix given by proposed method (middle), and the result
by factor analysis (right).

a color-coded format. It is evident that the method that we
propose gives sparser factor loadings in this example as well.

In general, we observe that both our algorithm and the
factoran are largely consistent. In this example there is no
“ground truth.” Inspection of the sample covariance and further
analysis can suggest whether values in the factor loadings seem
appropriate, although such a claim is difficult to substantiate.
Yet, it is apparent from Figure 5 that our algorithm relies
less on small values in the factor loading to explain the data.
Hence, the factor loading matrix 𝐹 is sparser.
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Fig. 4. Sample covariance of 30 stocks.
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Fig. 5. Factor loadings: i) using the proposed method (left), using factoran
(right); in both, small values below a threshold are set to zero.
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APPENDIX A
Name Sector Industry

D Utilities Electric Utilities
DTE Utilities Electric Utilities
DUK Utilities Electric Utilities
ED Utilities Electric Utilities
EIX Utilities Electric Utilities
ADI Technology Semiconductors

ALTR Technology Semiconductors
AMAT Technology Semiconductors
AMD Technology Semiconductors

BRCM Technology Semiconductors
CMA Financial Regional Banks
FHN Financial Regional Banks
FITB Financial Regional Banks

HBAN Financial Regional Banks
KEY Financial Regional Banks
MER Financial Investment Services
MS Financial Investment Services

NYX Financial Investment Services
SCHW Financial Investment Services
TROW Financial Investment Services
APA Energy Oil & Gas Operations
APC Energy Oil & Gas Operations
CHK Energy Oil & Gas Operations
DVN Energy Oil & Gas Operations
DYN Energy Oil & Gas Operations
ABK Financial Insurance (Prop.& Casualty)
ACE Financial Insurance (Prop.& Casualty)
AIG Financial Insurance (Prop.& Casualty)
ALL Financial Insurance (Prop.& Casualty)
CB Financial Insurance (Prop.& Casualty)

APPENDIX B
Given 𝐴 and Δ,

𝑒𝐴+Δ =𝑒𝐴 +

∫ 1

0

𝑒(1−𝜏)𝐴Δ𝑒𝜏𝐴𝑑𝜏 + 𝑜(∥Δ∥), (7a)

log (𝐴+Δ) = log𝐴+

∫ ∞

0

(𝐴+ 𝜏𝐼)−1Δ(𝐴+ 𝜏𝐼)−1𝑑𝜏

+ 𝑜(∥Δ∥), (7b)

see e.g. [7]. Denote Δ := 𝐺′
𝑘𝐸𝑘𝐺𝑘 −𝐺′𝐸𝐺 and write

𝑀 = (𝐼 −𝐺′𝐸𝐺)−
1
2 = (𝐼 −𝐺′

𝑘𝐸𝑘𝐺𝑘 +Δ)−
1
2

= 𝑒−
1
2 log(𝐼−𝐺′

𝑘𝐸𝑘𝐺𝑘+Δ).

Then from (7)

𝑀 = 𝑀𝑘 − 1

2

∫ 1

0

∫ ∞

0

𝑀1−𝜆
𝑘 (𝐼 −𝐺′

𝑘𝐸𝑘𝐺𝑘 + 𝜏𝐼)−1Δ×
(𝐼 −𝐺′

𝑘𝐸𝑘𝐺𝑘 + 𝜏𝐼)−1𝑀𝜆
𝑘 𝑑𝜏𝑑𝜆+ 𝑜(∥Δ∥).
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