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Abstract— Optical fade caused by atmospheric turbulence
impairs the performance of optical communication through
atmosphere. Adaptive techniques of signal detection, power
control, and channel coding can be employed to reduce the
degrading effect of this phenomenon. For implementation of
these techniques, the knowledge of channel state is required.
This paper develops a channel estimator to extract the strength
of optical fade from the observations of channel output. Further,
it is shown how to incorporate this estimation in an adaptive
threshold test for the purpose of optimal binary signal detection.

I. INTRODUCTION

Atmospheric turbulence caused by differential heating of

air results in random variations in the refractive index of this

optical medium. This, in turn, introduces random fluctuations

in the intensity and phase of an optical beam propagating

through atmosphere [1]–[3]. This phenomenon is a major

limitation in optical communication over atmospheric chan-

nels, since the turbulence induced optical fade can signifi-

cantly reduce the signal-to-noise ratio (SNR) at the receiver.

The performance degrading effect of optical fade can

be partially compensated using adaptive techniques of sig-

nal detection, power control, and channel coding. These

techniques mainly rely on the availability of channel state

information [4]–[6]. The channel state (strength of optical

fade) is estimated at the receiver and the resulting estimate

is either used locally for optimal signal detection or is sent to

the transmitter (via a feedback channel) for adaptive power

control or channel coding.

The major contribution of this paper is the development of

a low-complexity channel estimator for atmospheric optical

channels with on-off keying (OOK) modulation. In addition,

an optimal scheme to incorporate the channel estimation in

binary signal detection is established. Compared to our prior

results on this topic [7], the channel estimator developed in

this paper requires a much slower update rate which allows

for a more efficient implementation. This improvement is

achieved by using two different sampling rates for detection

and channel estimation.

II. MODEL AND PROBLEM STATEMENT

We consider an atmospheric optical channel which trans-

mits a sequence of binary messages by OOK modulation of

an optical beam. As the modulated optical beam propagates
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through atmosphere, the turbulence induced optical fade

randomly changes its intensity. The optical fade is described

by a slowly varying lognormal process [2], [3], [8]–[10].

At the receiving terminal, the optical beam strikes a pho-

todetector which converts optical power into an electrical

signal. This signal is regarded as the channel output and is

further processed to reconstruct the transmitted message and

to estimate the channel state. In this section, the channel

model is presented and its associated channel estimation and

signal detection problems are stated.

The channel estimator and signal detector in this paper

operate at different sampling periods Ts and Tb, respectively.

Here, Tb is the bit transmission time and is much smaller

than the sampling period Ts of the channel estimator. For

simplicity of analysis, it will be assumed that Ts/Tb = N is

an integer. A discrete-time signal with the sampling period Ts

will be shown by sk while s [n] stands for a signal with the

sampling period Tb.

A. Transmitter and Receiver

Let {m [n]}∞n=1 be a sequence of binary messages with

values in {0, 1} and construct the continuous-time signal

m (t) =

∞
∑

n=1

m [n] Π (t− nTb + Tb) , (1)

where Π(·) is a rectangular pulse defined as

Π(t) =

{

1, 0 6 t 6 Tb

0, otherwise.

To transmit this signal, an optical source with the maximum

power PM > 0 is employed at the transmitter and its instan-

taneous power PT (t) is modulated by the message m (t) as

PT (t) = PMm (t) .

The generated optical beam propagates through the tur-

bulent atmosphere and at a distance from the transmitter

strikes the optical receiver. Under the assumptions which

will be discussed later in this section, the power fluctuations

caused by atmospheric turbulence can be described by a

multiplicative nonnegative stochastic process {α (t)}. The

antenna gain and path attenuation can be also characterized

by a multiplicative constant G > 0. Thus, the instantaneous

optical power at the receiver is given by

PR (t) = Gα (t)PT (t) = GPMα (t)m (t) . (2)

The receiver is equipped with a direct-detection photode-

tector to convert the absorbed optical power to an electrical

signal. The output s (t) of this device is a stream of small
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electrical pulses each one representing the absorption of a

photon from the incident optical field. This signal can be

ideally modeled by a Poisson impulse process, defined as the

derivative of a counting Poisson process [3], [8], [11]–[13].

The rate of this process is the sum of two terms: a signal

term proportional to the instantaneous optical power and a

constant term representing dark current noise (caused by

thermal effects) and background radiations. Mathematically,

the rate of the Poisson process is given by

λ (t) = ηPR (t) + λb, (3)

where η > 0 is the sensor sensitivity and λb > 0 stands

for the dark current and background noise. In the present

model where the rate is a stochastic process rather than a

deterministic function, the Poisson process must be replaced

by a doubly stochastic (conditionally) Poisson process [14].

B. Statistical Characterization of Optical Fade

Atmospheric turbulence caused by differential heating of

air results in random variations in the refractive index of this

optical medium. The refractive index at every point r can be

modeled by na (r) = n̄a + δna (r), where the constant n̄a

is the mean refractive index and the stochastic field δna (r)
characterizes the fluctuations caused by turbulence. The sta-

tistical properties of δna (r) are predicted by Kolmogorov’s

turbulence theory [1], [8], [9].

Rytov’s method on approximate solution of Maxwell’s

equations is frequently used to study propagation of optical

fields in turbulent atmosphere [8], [9]. This method expresses

the complex amplitude of the optical field as

U (r) = T (r)U0 (r) , (4)

where U0 (r) denotes the complex amplitude in the absence

of turbulence and T (r) is a stochastic field representing

the fluctuation term δna (r). Using Rytov’s method, the

stochastic field χ (r) , ln |T (r)| is expressed as a weighted

integral of δna (r). Applying the central limit theorem [15] to

this linear form, χ (r) is approximated by a Gaussian random

variable which leads to a lognormal distribution [8], [9] for

the fade coefficient

exp (2χ (r)) =
|U (r)|2

|U0 (r)|2
.

The variance σ2
χ of χ (r) is obtained from Kolmogorov’s

turbulence theory and depends on the wavelength of light,

propagation distance, refractive index structure constant, and

the shape of optical field [9]. For a 1 km optical link, the

numerical value of σχ varies from 10−2 to 1, depending

on the strength of turbulence [16]. The fact that turbulence

does not absorb energy implies [9] that E [exp (2χ (r))] = 1
which requires that E [χ (r)] = −σ2

χ.

For an isotropic turbulence, the spatial autocorrelation

bχ (‖r‖) =
Cov (χ (r1 + r) , χ (r1))

σ2
χ

is obtained in [1], [9] as

bχ (‖r‖) = exp
(

−3.44 (‖r‖ /r0)
5/3
)

.

Here, r0 is the Fried parameter or turbulence coherence

length which can be calculated from the explicit expressions

provided in [1], [9]. This parameter plays an important role

in our analysis because when the diameter of the receiving

aperture is small enough compared to r0, the stochastic

field χ (r) is highly uniform over the aperture such that it

can be approximated by a random variable, not depending

on spatial coordinate. This condition is normally valid for

short range applications on the order of 1 km length and

under the weak to moderate turbulence regime [9]. Noting

that the total received optical power is the integral of |U (r)|2

over the aperture, and since |T (r)|2 does not depend on r
under this condition, the received optical power can be

simply obtained by integrating |U0 (r)|2 over the aperture

and then multiplying the result by a random variable. This

random variable is regarded as optical fade and is given by

exp (2χ (r̄)), where r̄ is the center of the receiving aperture.

Since optical fade is a time-dependent phenomenon, we

need to mathematically characterize its temporal variations in

order to complete our model. Although a full description for

the temporal evolution of optical fade has not been proposed

yet, at least the autocorrelation of its logarithm χ (r, t) can

be approximated using Taylor’s frozen-flow hypothesis [1].

According to this hypothesis, the refractive index of air as a

function of position r and time t can be represented as

na (r, t) = n̄a + δna (r − vt) ,

where v is the component of local wind perpendicular to

the light propagation direction. From this representation, it

is easy to determine the temporal autocorrelation ρ (τ) in

terms of the spatial autocorrelation bχ (·) as

ρ (τ) =
Cov (χ (r, t+ τ) , χ (r, t))

σ2
χ

= bχ (‖v‖ · |τ |) .

This function can be explicitly written as

ρ (τ) = exp
(

− (|τ | /τ0)
5/3
)

,

where τ0 = 0.477r0/ ‖v‖ is the fade coherence time.

In the rest of this subsection, we obtain a discrete-time

Markov process to represent the optical fade. Assume that

the sampling period Ts is much smaller than the fade

coherence time τ0 (e.g., 1 ms versus 10 ms) such that α (t)
is almost constant over [kTs − Ts, kTs). Thus, for every t
in this interval, α (t) can be approximated by a random

variable αk = α (kTs). To determine a Markov model for

the discrete-time process {αk}, let {xk} be a discrete-time

stochastic process satisfying two conditions: first, xk is a zero

mean unit variance Gaussian random variable, and second,

E [xk′+kxk′ ] = ρ (kTs) holds for every integers k and k′.
Noting that χ (r̄) can be expressed as χ (r̄) = σχxk − σ2

χ,

the lognormal fade αk = exp (2χ (r̄)) is represented by

αk = a (xk) , (5)

where the mapping a (·) : R → R
+ is defined as

a (x) = exp
(

2σχx− 2σ2
χ

)

.
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The first condition on {xk} is easy to maintain if this stochas-

tic process is obtained from a linear dynamical system driven

by white Gaussian noise and with a Gaussian initial state.

With a finite-dimensional linear system, the second condition

can be only approximated. In this study, we follow [10] in

using a first order system to approximate {xk}.

Let {xk}
∞
k=1 be the solution of the state-space equation

xk+1 = xk cos ǫ+ wk sin ǫ, (6)

where {wk} is a zero mean unit variance white Gaussian

noise and ǫ is a constant. The initial state x1 is a zero

mean unit variance Gaussian random variable independent

of {wk}. Then, {xk} is a sequence of zero mean unit

variance Gaussian random variables with the autocorrelation

function E [xk′+kxk′ ] = (cos ǫ)
k

and the transition probabil-

ity density function

qx (ξ|ζ) = pxk+1
(ξ|xk = ζ) = Φ

(

ξ; ζ cos ǫ, sin2 ǫ
)

.

Here, Φ
(

x; x̄, σ2
x

)

denotes a Gaussian density function with

mean x̄ and variance σ2
x. We solve a least squares problem

to obtain the value of ǫ which minimizes the distance

between the autocorrelation function (cos ǫ)k
and ρ (kTs).

The solution to this optimization problem is given by

cos ǫ = exp (−1.07Ts/τ0) .

Fig. 1 compares the exact autocorrelation function ρ (kTs)
with its approximation (cos ǫ)k

.
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kTs/τ0

exp
(

− (kTs/τ0)
5/3
)

exp (−1.07kTs/τ0)

Fig. 1. Comparison between the exact (solid line) and the approximate
(dashed line) autocorrelation functions.

C. Sampling the Channel Output

The channel estimator is a discrete-time system with the

input signal {sk} defined for k = 1, 2, 3, . . . as

sk =

∫ kTs

kTs−Ts

s (t) dt.

Since {s (t)} is a doubly stochastic Poisson process, its

integral over any arbitrary interval is a conditionally Poisson

random variable. Thus, sk is distributed according to

Pr {sk = ℓ|λk} =
e−λkλℓ

k

ℓ!
, ℓ = 0, 1, 2, . . . ,

where the Poisson rate λk is defined as

λk =

∫ kTs

kTs−Ts

λ (t) dt.

Substituting (1), (2), and (3) into this integral and approx-

imating α (t) with αk over the integration interval, λk can

be approximated as

λk = ηGPMTbαk

(

N
∑

n=1

m [(k − 1)N + n]

)

+ λbNTb.

Replacing αk with (5) in this expression, it can be written

in terms of the state variable xk as

λk = µa (xk)mk +Nb,

where µ = ηGPMTb, b = λbTb, and {mk} is a discrete-time

signal defined as

mk =

N
∑

n=1

m [(k − 1)N + n] .

In a similar manner, s [n] and λ [n] are defined as the

integrals of s (t) and λ (t) over the interval [nTb − Tb, nTb).
Then, conditioned on λ [n], the random variable s [n] is

Poisson distributed according to

Pr {s [n] = ℓ|λ [n]} =
e−λ[n]λℓ [n]

ℓ!
, ℓ = 0, 1, 2, . . . .

Here, the rate λ [n] can be explicitly written as

λ [n] = µa (xν+1)m [n] + b,

where ν = ⌊(n− 1) /N⌋ and ⌊·⌋ denotes the floor function.

D. Problem Statement

Suppose the sequence of binary messages {m [n]} are in-

dependent† random variables with the probability distribution

Pr{m [n] = 1} = 1 − Pr {m [n] = 0} = p,

where 0 < p < 1 is a known constant. Assume that the

discrete-time signal {si} is observed during 1 6 i 6 k and

define the observation set Ik = (s1, s2, · · · , sk) for k > 1
and I0 = ∅. In this framework, the following problems are

considered:

P-1) Given the observation set Ik, for any arbitrary k > 0
determine the posterior density

πk (ξ) = pxk+1
(ξ|Ik)

and then compute the minimum mean squared error

estimation α̂k = E [αk+1|Ik] from the integral‡

α̂k =

∫ +∞

−∞

πk (ξ) a (ξ) dξ. (7)

P-2) Given s [n] and the observation set Iν , for any integer n
determine the detection rule

m̂ [n] = Dν (s [n] , Iν) ∈ {0, 1}

which minimizes the probability of error

Pe = Pr {m̂ [n] 6= m [n]} . (8)

†The case that the binary messages are statistically dependent due to
channel coding can be treated with some more efforts.

‡The notation α̂k+1|k might better describe E [αk+1|Ik]; however, for
the sake of simplicity, we use α̂k here.
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III. OPTIMAL ESTIMATION AND DETECTION

Theorems 1 and 2 below present the solutions to the

channel estimation (P-1) and signal detection (P-2) problems.

Theorem 1: Define the mapping θ (·) : R × Z
+ → R

+ as

θ (x, s) =

N
∑

ℓ=0

B (ℓ;N, p) e−ℓµa(x) (1 + (ℓ/N)βa (x))
s
,

where β = µ/b and B (ℓ;N, p) is the binomial distribution

B (ℓ;N, p) =
N !

ℓ! (N − ℓ)!
pℓ (1 − p)

N−ℓ
.

Consider the model of Section II and assume that for every

k > 1, the observation set Ik is provided to estimate xk+1.

Then, the posterior density πk (ξ) = pxk+1
(ξ|Ik) is deter-

mined from the recursive equation

πk (ξ) =

∫ +∞

−∞

qx (ξ|ζ) θ (ζ, sk)πk−1 (ζ) dζ

∫ +∞

−∞

θ (ζ, sk)πk−1 (ζ) dζ

(9)

with the initial density π0 (ξ) = Φ (ξ; 0, 1).
Proof: Assuming that pxk

(ξ|Ik) is known, pxk+1
(ξ|Ik)

is obtained from

pxk+1
(ξ|Ik) =

∫ +∞

−∞

pxk+1
(ξ|xk = ζ, Ik) pxk

(ζ|Ik) dζ.

Noting that

pxk+1
(ξ|xk = ζ, Ik) = pxk+1

(ξ|xk = ζ) = qx (ξ|ζ) ,

this equation can be rewritten as the state update equation

pxk+1
(ξ|Ik) =

∫ +∞

−∞

qx (ξ|ζ) pxk
(ζ|Ik) dζ. (10)

To obtain the measurement update equation, i.e., the equa-

tion which determines pxk
(ξ|Ik) in terms of pxk

(ξ|Ik−1)
and sk, Bayes’ rule is employed to write

pxk
(ξ|Ik) = pxk

(ξ|sk, Ik−1)

=
Pr {sk|xk = ξ, Ik−1} pxk

(ξ|Ik−1)

Pr {sk|Ik−1}

=
Pr {sk|xk = ξ, Ik−1} pxk

(ξ|Ik−1)
∫ +∞

−∞

Pr {sk|xk = ζ, Ik−1} pxk
(ζ|Ik−1) dζ

.

(11)

The conditional probability distribution in the last equality

can be expressed as

Pr {sk|xk = ξ, Ik−1} = Pr {sk|xk = ξ}

=

N
∑

ℓ=0

Pr {sk|mk = ℓ, xk = ξ}Pr {mk = ℓ|xk = ξ}

=
e−Nb (Nb)sk

sk!
θ (ξ, sk) .

This result is concluded from the fact that mk is independent

of xk and has a binomial distribution B (ℓ;N, p), and from

the fact that conditioned on mk = ℓ and xk = ξ, sk is a

Poisson random variable with the rate µa (ξ) ℓ+Nb. Substi-

tuting this result and πk−1 (ξ) = pxk
(ξ|Ik−1) into (11), the

measurement update equation is obtained as

pxk
(ξ|Ik) =

θ (ξ, sk) πk−1 (ξ)
∫ +∞

−∞

θ (ζ, sk)πk−1 (ζ) dζ

.

Replacing pxk
(ξ|Ik) from this equation into the state update

equation (10) results in the recursive equation (9).

Theorem 2: Consider the model of Section II and assume

that s [n] and the observation set Iν are provided for detection

of m [n]. Then, the detection rule which minimizes the

probability of error (8) is the threshold test

m̂ [n] =

{

1, L [n] > γ

0, L [n] < γ
(12)

with the threshold γ = (1 − p) /p and the likelihood function

L [n] =

∫ +∞

−∞

πν (ξ) e−µa(ξ) (1 + βa (ξ))
s[n]

dξ, (13)

where β = µ/b.

Proof: It is shown in [17] that the detection rule which

minimizes the probability of error (8) is the threshold test

m̂ [n] =

{

1, Λ [n] > 1

0, Λ [n] < 1,
(14)

where

Λ [n] =
Pr {m [n] = 1|s [n] , Iν}

Pr {m [n] = 0|s [n] , Iν}
. (15)

Application of Bayes’ rule leads to

Pr {m [n] |s [n] , Iν} =
Pr {s [n] |Iν ,m [n]}Pr {m [n] |Iν}

Pr{s [n] |Iν}
.

Substituting this result into (15), Λ [n] can be expressed as

Λ [n] = L [n] ·
Pr {m [n] = 1|Iν}

Pr {m [n] = 0|Iν}
,

where the likelihood function L [n] is given by

L [n] =
Pr{s [n] |Iν ,m [n] = 1}

Pr{s [n] |Iν ,m [n] = 0}
.

Noting that m [n] is independent of Iν , one can write

Pr {m [n] = 1|Iν} = Pr {m [n] = 1} = p.

Thus, the detection rule (14) can be written as (12).

The likelihood function L [n] can be determined in terms

of s [n] and the posterior density πν (·). For m [n] = 0, the

channel output does not depend on xν+1 which leads to

Pr {s [n] = ℓ|Iν ,m [n] = 0} =
e−bbℓ

ℓ!
. (16)
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For m [n] = 1, one can write

Pr {s [n] = ℓ|Iν ,m [n] = 1}

=

∫ +∞

−∞

pxν+1
(ξ|Iν ,m [n] = 1)

× Pr {s [n] = ℓ|Iν ,m [n] = 1, xν+1 = ξ} dξ

=

∫ +∞

−∞

πν (ξ)
e−(µa(ξ)+b) (µa (ξ) + b)

ℓ

ℓ!
dξ, (17)

where the second equality is concluded from

Pr{s [n] |Iν ,m [n] , xν+1} = Pr {s [n] |m [n] , xν+1}

and

pxν+1
(ξ|Iν ,m [n]) = pxν+1

(ξ|Iν) = πν (ξ) .

Finally, the likelihood function (13) can be obtained by

dividing (17) by (16).

Remark 1: Representation (13) of the likelihood function

explains the structure of optimal detector as a combination of

a channel estimator and a single bit detector. The information

provided by the past bits for detection of the present bit is

accumulated in the posterior density πν (·). If the perfect

knowledge of the channel state is available, the likelihood

function will be given by

L [n] = e−µαν+1 (1 + βαν+1)
s[n]

.

In the absence of this knowledge, the likelihood function

must be averaged over the posterior density of optical fade.

IV. FILTERING PROBLEM

Determining the posterior density of the log-amplitude

fade from the recursive equation (9) requires an excessive

computational load. To reduce this computational complex-

ity, the posterior density can be approximated by means of

a finite-dimensional nonlinear filter. Our proposed procedure

for developing a nonlinear filter of this type is as follows. At

k = 0, the posterior density is Gaussian with mean x̂0 = 0
and variance v0 = 1. Substitute π0 (ξ) = Φ (ξ; 0, 1) into the

recursive equation (9) to compute π1 (ξ), which is not nec-

essarily Gaussian. Computing π2 (ξ) from this non-Gaussian

function is difficult. Alternatively, approximate π1 (ξ) with

a Gaussian function with mean x̂1 and variance v1 and then

compute π2 (ξ) from this Gaussian approximation. Repeat

these steps for every k to obtain recursive equations for

evolution of the mean x̂k and the variance vk . Nonlinear

filtering based on successive Gaussian approximations has

been studied by several researchers [18]–[21].

The Gaussian approximation step in this filtering algorithm

can be formulated in terms of determining a Gaussian density

function Φ (ξ; x̂k+1, vk+1) with the minimum distance from

the probability density function

π̃k+1 (ξ) ,

∫ +∞

−∞

qx (ξ|ζ) θ (ζ, sk+1)Φ (ζ; x̂k, vk) dζ

∫ +∞

−∞

θ (ζ, sk+1)Φ (ζ; x̂k, vk) dζ

.

(18)

Adopting relative entropy [22] as the measure of distance be-

tween π̃k+1 (ξ) and its Gaussian approximation, this distance

is minimized when the mean x̂k+1 and the variance vk+1 of

the Gaussian approximation are chosen as

x̂k+1 =

∫ +∞

−∞

π̃k+1 (ξ) ξdξ

vk+1 =

∫ +∞

−∞

π̃k+1 (ξ) (ξ − x̂k+1)
2
dξ.

(19)

Lemma 1: Define the mappings φi (·) : R×R
+×Z

+ → R

for i = 0, 1, 2 as

φi (x, v, s) =

∫ +∞

−∞

(ζ − x)
i
θ (ζ, s)Φ (ζ;x, v) dζ, (20)

and based on that, define

ψ1 (x, v, s) =
φ1 (x, v, s)

φ0 (x, v, s)

and

ψ2 (x, v, s) =
φ2 (x, v, s)

φ0 (x, v, s)
−
φ2

1 (x, v, s)

φ2
0 (x, v, s)

− v.

Then, for π̃k+1 (·) given by (18), the integrals in (19) can be

expressed in terms of x̂k, vk, and sk+1 as

x̂k+1 = x̂k cos ǫ+ ψ1 (x̂k, vk, sk+1) cos ǫ

vk+1 = vk cos2 ǫ+ sin2 ǫ+ ψ2 (x̂k, vk, sk+1) cos2 ǫ.
(21)

Proof: The proof follows by substituting (18) into the

integrals in (19), reversing the order of double integration,

and noting that
∫ +∞

−∞

qx (ξ|ζ) ξdξ = ζ cos ǫ

∫ +∞

−∞

qx (ξ|ζ) (ξ − x̂k+1)
2
dξ = (ζ cos ǫ− x̂k+1)

2
+ sin2 ǫ.

The recursive equations (21) with the initial state x̂0 = 0
and v0 = 1 represent a nonlinear filter which approximates

the mean and variance of the posterior density (9). Based on

these approximate values, an approximation of the posterior

density is given by πk (ξ) ≃ Φ (ξ; x̂k, vk). This approxima-

tion can be replaced into (7) to obtain the channel estimate

α̂k = exp
(

2σχx̂k + 2σ2
χ (vk − 1)

)

. (22)

In a similar manner, πν (ξ) in (13) can be approximated

by the Gaussian density function Φ (ξ; x̂ν , vν) to obtain the

likelihood function L [n]. When the variance vν is small, this

integral can be further approximated as

L [n] = e−µα̂ν (1 + βα̂ν)s[n] .

This expression for the likelihood function simplifies the

detection rule (12) into the threshold test

m̂ [n] =

{

1, s [n] > u [n]

0, s [n] < u [n] ,

with the adaptive threshold

u [n] =
ln γ + µα̂ν

ln (1 + βα̂ν)
.
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V. SIMULATION RESULTS

We examined the performance of the proposed nonlin-

ear filtering scheme via simulations. For this purpose, the

stochastic process {xk} (log-amplitude fade) is generated

from (6) and the estimators {x̂k} and {vk} (mean and

variance) are determined recursively from (21) with the

initial state x̂1 = 0 and v1 = 0. The fade estimation {αk} is

obtained from (22). The parameters used in the simulations

are ǫ = 0.046, σχ = 0.2, µ = 50, b = 5, N = 1000,

and p = 0.5. The results of this study are illustrated in Fig. 2.

Parts (a) and (b) of this figure indicate that the estimators x̂k
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Fig. 2. Simulation results: (a) log-amplitude fade xk (gray line) and its
estimate x̂k (black line); (b) optical fade αk (gray line) and its estimate α̂k

(black line); (c) estimation error αk − α̂k; (d) estimation variance vk .

and α̂k closely track their targets xk and αk. The estimation

error αk − α̂k in part (c) is bounded between −0.1 and 0.1
(except for a short initial period), which shows an error of

less than 10% in estimation of αk.

VI. CONCLUSION

The problem of channel estimation for atmospheric optical

channels with on-off keying modulation has been considered.

The performance of these channels is degraded by the optical

fade caused by atmospheric turbulence. The knowledge of

optical fade can improve the channel performance when

incorporated in adaptive techniques of signal detection,

power control, and channel coding. A channel estimator

has been developed to estimate the strength of optical fade

from the observations of channel output. The approximate

implementation of this estimator using a finite-dimensional

nonlinear filter has been studied. The low update rate of

this filter is its chief advantage over the prior results on

this problem. An optimal scheme to incorporate the channel

estimate in binary signal detection has been presented.
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