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Abstract— This article proposes a path following controller
for the two input kinematic model of a car-like robot. A smooth
dynamic feedback control law is designed to make the car’s
position follow a large class of curves with the desired speed
along the curve. The controller guarantees the property of path
invariance. The controller is designed by characterizing the
path following manifold when one input is fixed. Once the path
following manifold is found we apply dynamic extension to
increase its dimension. We refer to this process as tangential
dynamic extension. We then find a physically meaningful
differentially flat output for the extended system which allows
us to easily solve the path following problem.

I. INTRODUCTION

The problem of generating accurate motion along a given

path for a control system can be broadly classified as

either path following problem or reference tracking problem.

The authors in [1] highlighted the fundamental difference

between path following and reference tracking. In path

following the control objective is to make the output of

the system approach and traverse a given path without a

priori time parameterization associated to the motion along

the path. In the tracking problem, the task of the controller

is to make the output of the system approach and traverse

a given path with a given time parameterization associated

with the motion along the path. One of the main advantages

of adopting the path following approach is that the path can

be made an invariant set for the closed loop system. In the

context of mobile robotics, this means that once the mobile

robot is on the path, with appropriate orientation, it will never

leave the path. In this paper we design a path following

controller for the kinematic model of a car-like robot [2].

Tracking and stability of the car-like robot were analyzed

in [3]. Path following for the mobile robot was studied

in [4], [5], [6]. The approach in [4] is similar to the one

followed in this paper. The main difference is that we take a

set stabilization approach. In [7] it was shown that transverse

feedback linearization can be used to solve the path following

problem for the car-like robot. That solution ensures that the

desired path is invariant for the closed-loop system but the

translational velocity is fixed. The problem was reduced to

the design of a controller for a single input system – only

the steering control– but in doing so the robot motion along

the path cannot be altered. To achieve the objective of path
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following while allowing control over the motion along the

path we do not fix the translational velocity. We perform

dynamic extension of the original system to achieve the

desired goal. The resulting closed-loop system with dynamic

controller is linear and controllable. Hence we are implicitly

using the concept of differential flatness.

A large class of non-linear systems fall in the category

of differentially flat systems. Roughly speaking, a nonlinear

system is differentially flat if there exist a set of outputs

(equal to the number of the inputs) such that all states

and inputs can be uniquely determined from the desired

output. Differentially flat systems were first introduced in [8]

using differential algebra and later described using a Lie-

Bäcklund transformation [9]. In [10] differential flatness was

introduced under the setting of differential geometry. Finding

a flat output involves finding a function that satisfies the

conditions given in [11]. The search for a flat output can be

simplified by noting that they often have strong geometric

interpretations [12].

In this paper we choose a virtual output because it has very

strong geometric meaning for the path following problem and

show that it is a flat output. We use dynamic extension [13]

of the original system to achieve the desired relative degree

of the closed-loop system.

II. PATH FOLLOWING FOR THE CAR-LIKE ROBOT

Consider the kinematic model of a car-like robot, Figure 1,

ẋ =




cosx3 0

sinx3 0
1
ℓ
tanx4 0

0 1




[
v

ω

]
(1)

where x ∈ R
4 is the state, the input v ∈ R is the translational

speed and ω ∈ R is the angular velocity of the steering angle.

We take the car’s position in the plane as the output of (1)

y = h(x) =
[
x1 x2

]⊤
. (2)

Suppose we are given a path to follow in the output space

R
2 of (1). Informally, our control objective is to design a

control law that makes the output (2) of system (1) approach

and move along the given path in a desired way. Suppose that

the desired path is given as a regular parameterized curve

σ : D → R
2

λ 7→

[
σ1(λ)

σ2(λ)

]
,

(3)
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Fig. 1. The kinematic model of the car-like robot.

where σ ∈ Cr with r ≥ 3. Since σ is regular, without

loss of generality, we can assume that it has a unit speed

parameterization, i.e.,

(∀ λ ∈ D) ‖σ′(λ)‖ = 1.

Under this assumption, the curve σ is parameterized by its

arc length. For closed curves with finite length L, this means

that D = RmodL and σ is L-periodic, i.e., for any λ ∈ D,

σ(λ+L) = σ(L). When the curve is not closed D = R. We

impose geometric restrictions on the class of curves, σ(·),
considered [14].

Assumption 1: The path, σ(D), is an embedded subman-

ifold of R2 with dimension 1.

Assumption 2: There exists a smooth map s : R2 → R
1

such that 0 is a regular value of s and σ(D ) = s−1(0). Let

γ := s−1(0).
Since the output (2) satisfies rank (dhx) = 2 for all x ∈

R
4, the map h : R

4 → R
2 is transversal [15] to γ and

therefore, if Assumption 1 holds, the lift of γ to R
4

Γ := (s ◦ h)
−1

(0) =
{
x ∈ R

4 : s(h(x)) = 0
}

is a three dimensional submanifold. Define α(x) := s◦h(x).
Unlike previous work, we allow for dynamic control laws

in this paper. Given a curve σ(D) satisfying Assumptions 1

and 2, we seek a smooth control law of the form

ζ̇ = a(x, ζ) + b(x, ζ)u[
v

ω

]
= c(x, ζ) + d(x, ζ)u.

(4)

with ζ ∈ R
q and u = (u1, u2) ∈ R

2 and an open subset of

initial conditions U ×V ⊂ R
4×R

q such that γ ⊂ h(U) and

such that the closed-loop system satisfies

PF1 For each initial condition in U×V , the output (2) along

solutions of the closed-system (1), (4) asymptotically

approaches the path.

PF2 The level set s(y) is output invariant, i.e., if the system

is initialized on the path with the velocity vector tangent

to the curve the system remain on the path σ(D) for all

t ≥ 0.

PF3 On the path, the car-like robot tracks a desired velocity

or acceleration profile.

The dimension q of the controller state ζ is not fixed a priori.

It will be determined based on analysis of the path following

manifold which we discuss in the next section.

III. DYNAMIC EXTENSION

The path following manifold, denoted Γ⋆, associated with

the curve γ is the maximal controlled invariant subset of

the lift Γ. Physically it consists of all those motions of the

car-like robot (1) for which the output signal (2) can be

made to remain on the curve γ by suitable choice of control

signal [16]. The path following manifold is the key object

that allows one to treat the path following problem as a set

stabilization problem. If the path following manifold can be

made attractive and controlled invariant, then PF1 and PF2

will be satisfied.

When we apply the above definition to the car-like robot,

or more generally, to any drift-less system, it is immediate

that Γ⋆ = Γ. This is because one can trivially make the entire

set Γ controlled invariant by setting the translational speed

v to zero. Specifically, in the case of the car, the equation

(∂x1
α cosx3 + ∂x2

α sinx3) v = 0

can always be solved by choosing v = 0. From the point of

view of mobile robots, this is not a useful characterization

because such a controller causes the system to stop and hence

not traverse the curve.

On the other hand, when v 6= 0 is fixed, the path following

manifold can be characterized [7] using the steering input ω.

In fact, in [7] it was shown that for the system (1) with v
fixed, the function α = s ◦ h yields a well-defined relative

degree of 3 at each point on the path. This fact was used

to apply transverse feedback linearization to stabilize the

path following manifold and thereby solve the path following

problem. The main deficiency with the solution presented

in [7] is that PF3 cannot be satisfied. In particular, since

v is fixed the motion on the path is fixed. In this paper we

present a solution to the path following problem that removes

this deficiency.

Consider once again the model of a car like robot (1).

The control objective is to make the output y approach and

traverse the curve γ. Making y → γ is equivalent to making

the state x of (1) approach the set Γ. Let v = v > 0 be fixed.

In [7] it was shown that for system (1), a path satisfying

Assumptions 1 and 2, the path following manifold is given

by

Γ⋆ =
{
x ∈ R

4 : x = (σ(λ), ϕ(λ),

arctan

(
ℓ

v
ϕ̇(λ)

))
, λ ∈ D

} (5)

where ϕ(λ) = arg (σ′
1 + jσ′

2) is the angle σ′(λ) makes with

the y1 axis.

Let n⋆ := dim (Γ⋆). In this case n⋆ = 1 and its co-

dimension is n − n⋆ = 3. Let r⋆ = 1 denote the derivative

of α at which the control input v appears. We use dynamic

extension to generate a controller of the form (4) and thereby

increase the dimension of the closed-loop system so that the

dimension and co-dimension of Γ⋆ are equal. In other words,

we delay the appearance of the input v in the derivatives of

α so that ω and the delayed version of v appear in the same

derivative. This effectively increases the dimension of the
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path following manifold; we call this approach tangential

dynamic extension. This goal can be achieved if we increase

the dimension of Γ⋆ by two which suggest we pick q =
n−n⋆− r⋆ = 2 in (4) so that the control law has two states

ζ = (ζ1, ζ2).
Let v = v + ζ1, where ζ1 is the first state of our

dynamics controller. In general [13] we are free to choose

any dynamics for ζ̇1 but we take the simplest possible

structure for the control law (4) and let ζ̇1 = ζ2. In order to

finish defining the control law we let ζ̇2 = u1 where u1 is

a new, auxiliary input that we will use to indirectly change

the translational velocity v. The structure of the control law

so far is
ζ̇1 = ζ2

ζ̇2 = u1

v = v + ζ1

ω = u2.

(6)

For the extended system the path following manifold is given

by

Γ⋆ =
{
(x, ζ) ∈ R

4 × R
2 : x = (σ(λ), ϕ(λ),

arctan

(
ℓ

v
ϕ̇(λ)

))
, λ ∈ D

}
.

To simplify notation we will no longer distinguish between

states of the system (x1, x2, x3, x4) and states of the con-

troller (ζ1, ζ2). Let x5 := ζ1, x6 := ζ2. Therefore the system

we study is given by

ẋ = f(x) + g1(x)u1 + g2(x)u2

=




(v + x5) cosx3

(v + x5) sinx3

(v+x5)
ℓ

tanx4

0

x6

0




+




0

0

0

0

0

1




u1 +




0

0

0

1

0

0




u2

(7)

Our objective is to now design the control law u = (u1, u2)
to solve the the path following problem. Stabilizing the path

following manifold in extended coordinates remains the key

way to accomplish PF1 and PF2 in Section II. On the other

hand since v is not fixed and because the path following

manifold has dimension three, we expect to able to control

the motion along the path in order to satisfy PF3.

IV. PATH FOLLOWING CONTROL DESIGN

In this paper we treat path following problem as a set

stabilization problem and we follow the general approach

of [16] for designing path following controllers, see also [14].

In order to satisfy PF1 and PF2 we first stabilize the path

following manifold Γ⋆. Once the path manifold has been

stabilized we use any remaining freedom in the control law

to impose desired dynamics on the path.

We find a particular “virtual” output function for the

system (7) and show that it yields a well defined relative

degree. The benefit of using this physically meaningful

output is that it facilitates control design. In this case the

output yields a well-defined relative degree of {3, 3} and

hence system (7) is feedback linearizable.

Before implementing the above program we must intro-

duce a projection operator in the output space of the car.

This operator associates to each point y in the output space

of (1) sufficiently close to the path γ a number in D. Let

γǫ ⊂ R
2 denote a tubular neighbourhood of the curve γ.

The tubular neighbourhood has the property that if y ∈ γǫ
then there exists a y⋆ ∈ γ that is closest to y. The tubular

neighbourhood allows us to define the function

̟ :γǫ → D

y 7→ arg inf
λ∈D

‖y − σ(λ)‖.
(8)

This function is as smooth as σ is which we assume to be

at least C3. Using the above map we define the “virtual”

output function

ŷ =

[
π(x)

α(x)

]
=

[
̟ ◦ h(x)

s ◦ h(x)

]
. (9)

We now show that as long as the car does not have zero

translational speed, then this output yields a well-defined

relative degree along the path.

Lemma 4.1: The dynamic extension of the car-like

robot (7) with output (9) yields a well-defined vector relative

degree of {3, 3} at each point on Γ⋆ where x5 = ζ1 6= −v.

Proof: Let x⋆ ∈ Γ be arbitrary. By definition of Γ the

output h(x⋆) is on the path γ. Let λ⋆ ∈ D be such that

h(x⋆) = σ(λ⋆). By the definition of vector relative degree

we must show that

Lg1L
i
fπ(x) = Lg2L

i
fπ(x) = Lg1L

i
fα(x) = Lg2L

i
fα(x) = 0

for i ∈ {0, 1} in a neighbourhood of x⋆ and that the

decoupling matrix

D(x⋆) =

[
Lg1L

2
fπ(x

⋆) Lg2L
2
fπ(x

⋆)

Lg1L
2
fα(x

⋆) Lg2L
2
fα(x

⋆)

]
(10)

is non-singular. Since

∂π(x)

∂xi

=
∂α(x)

∂xi

≡ 0

for i ∈ {3, 4, 5, 6}, it is easy to check that LgjL
i
fπ(x) =

LgjL
i
fα(x) = 0 for i ∈ {0, 1}, j ∈ {1, 2}.

To show that the decoupling matrix is full rank, it suffices

to show that the determinant of D(x⋆) is not zero. Direct

calculations yield

Lg1L
2
fα = (v+x5)

2

ℓ
(∂x2

α cosx3 − ∂x1
α sinx3) sec

2 x4

Lg2L
2
fα = ∂x1

α cosx3 + ∂x2
α sinx3

Lg1L
2
fπ =

(v + x5)
2

ℓ
(1 + tan2 x4)(σ

′
2 cosx3 − σ′

1 sinx3)

Lg2L
2
fπ = σ′

1 cosx3 + σ′
2 sinx3

(11)
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where σ′
i =

∂σi

∂λ

∣∣
λ=λ⋆ , i ∈ {1, 2}. Hence

det (D(x)) =
(v + x5)

2

ℓ cos2 x4
[σ′

1∂x2
α− σ′

2∂x1
α] . (12)

The only way for this determinant to vanish is if either (i)

v = −x5 or (ii) σ′
1∂x2

α − σ′
2∂x1

α = 0. We argue that

condition (ii) never occurs on the path because the vectors

col(∂x1
α, ∂x2

α) and σ′ are orthogonal.

By the chain rule and the form of the output map (2)

[
∂x1

α

∂x2
α

]

x=x⋆

=

[
∂y1

s

∂y2
s

]

y=h(x⋆)

= ds⊤h(x⋆).

By Assumption 2 the differential dsy is non-zero when

y ∈ γ. Thus the vector ds⊤h(x⋆) is a non-zero gradient vector

and is orthogonal to the path at h(x⋆). On the other hand

the vector σ′(λ⋆) is non-zero because σ is regular and also

tangent to the curve. Hence dsh(x⋆)σ
′(λ⋆) = 0. If we rotate

the vector ds⊤h(x⋆) by π/2 radians then the rotated vector and

σ′ will be linearly dependent. Let Rπ
2

be a rotation by π/2.

Then

Rπ
2
ds⊤h(x⋆) = k(σ(λ⋆))σ′(λ⋆)

for some smooth, scalar-valued, non-zero function k : R2 →
R. The function k is never equal to zero because the vector

ds⊤h(x⋆) is never zero.

Returning to the expression for det (D(x)), we have that

σ′
1∂x2

α− σ′
2∂x1

α =
(
Rπ

2
ds⊤h(x⋆)

)⊤
σ′(λ⋆)

= (k(σ(λ⋆))σ′(λ⋆))
⊤
σ′(λ⋆)

= k(σ(λ⋆))‖σ′(λ⋆)‖2

= k(σ(λ⋆)).

We have shown for any x⋆ ∈ Γ with x5 6= −v that

det (D(x⋆)) 6= 0. Since Γ⋆ ⊂ Γ, the lemma is proved.

An immediate consequence of Lemma 4.1 is that it allows

us to define a local diffeomorphism using the function π(x)
and α(x) and their iterated Lie derivatives along the vector

field f(x).

Corollary 4.2: Let x⋆ ∈ Γ\{x ∈ R
6 : x5 +v = 0}. There

exists a neighbourhood U ⊂ R
6 containing x⋆ such that the

mapping T : U ⊂ R
6 → T (U) ⊂ R

6, defined by




η1

η2

η3

ξ1

ξ2

ξ3




= T (x) =




π(x)

Lfπ(x)

L2
fπ(x)

α(x)

Lfα(x)

L2
fα(x)




(13)

is a diffeomorphism.

Using the coordinate transformation T from Corollary 4.2,

in a neighbourhood of any point x⋆ ∈ Γ the system (7) in

(η, ξ) coordinates reads

η̇1 = η2

η̇2 = η3

η̇3 = L3
fπ + Lg1L

2
fπu1 + Lg2L

2
fπu2

∣∣
x=T−1(η,ξ)

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = L3
fα+ Lg1L

2
fαu1 + Lg2L

2
fαu2

∣∣
x=T−1(η,ξ)

(14)

This coordinate transformation is physically meaningful for

path following applications. When ξ = 0 the system is

restricted to evolve on the path following manifold. Thus

stabilizing the ξ states is equivalent to getting the car on the

desired path with heading velocity tangent to the path. We

call the ξ-subsystem the transversal subsystem and the states

ξ the transversal states. On the path following manifold the

motion of the car-like robot on the path is governed by the η-

dynamics. We call the η-subsystem the tangential subsystem

and states η the tangential states. When the robot is on the

path following manifold, i.e., ξ = 0 then η1 determines the

position of the robot on the path, η2 represent velocity of

the robot along the path and η3 represent acceleration of the

robot along the path.

Consider the regular feedback transformation
[
u1

u2

]
:= D−1(x)

([
−L3

fπ

−L3
fα

]
+

[
v‖

v⋔

]
,

)
(15)

where (v‖, v⋔) are auxiliary control inputs. By Lemma 4.1

this controller is well-defined in a neighbourhood of every

x⋆ ∈ Γ\{x ∈ R
6 : x5 + v = 0}. Thus in a neighbourhood

of x⋆ the closed-loop system becomes

η̇1 = η2

η̇2 = η3

η̇3 = v‖

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = v⋔

(16)

We refer to the control input v⋔ as the transversal input

and v‖ as the tangential input. The control law (15) has

decoupled the transversal and tangential subsystems which

makes designing (v‖, v⋔) to solve the path following prob-

lem particularly easy. In summary, dynamic extension and

transverse feedback linearization allow us to represent the

system as a linear time invariant system (LTI) and use

LTI controller design techniques to design the controller for

system (16). Another way to state this is to say that the

output (9) is a flat output for the car-like robot (1) [10],

[17].

A. Transversal and tangential controller design

The objective of the transversal controller is to force the

system to converge to the path. For that we need ξ = 0, i.e.,

we need to stabilize the origin of the transversal subsystem.
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We use state feedback controller to control the transversal

subsystem. The transversal controller is given by,

v⋔(ξ) = k1ξ1 + k2ξ2 + k3ξ3, (17)

with ki < 0, i ∈ {1, 2, 3}. This controller exponentially

stabilizes ξ = 0 and hence makes the path following

manifold attractive. Physically, since ξ = 0 is an equilibrium

of the closed-loop transversal subsystem, if the robot is

initialized on the path with the initial velocity tangent to

the path, then it will remain on the path for all future time.

Hence the property of path invariance is achieved.

In order to achieve the goal of controlling the speed of the

robot on the curve a simple proportional feedback controller

is used

v‖(η) = k4(η1 − ηref1 ) + k5(η2 − ηref2 ) + k6η3, (18)

where ki < 0, i ∈ {4, 5, 6}. The parameter ηref1 is the

desired reference position on the path and ηref2 is a desired

reference velocity profile. Note however that whenever x5 =
−v the robot has no translational velocity. In that case the

decoupling matrix loses rank and the control law (15) is not

well-defined. Hence we cannot stabilize a particular point

on the curve using this control law and henceforth we set

k4 = 0.

V. IMPLEMENTATION ISSUES AND SIMULATION RESULTS

In order to implement the controller described in Sec-

tion IV we must compute the coordinate transforma-

tion (x1, x2, x3, x4, x5, x6) 7→ (ξ1, ξ2, ξ3, η1, η2, η3) defined

in (13), the feedback (15) with D(x) defined in (10) and the

transversal and tangential controllers (17), (18).

A. Computation of transversal states

We assume that we have a zero level set representation of

the curve γ. Hence we know the function α(x) = s ◦ h(x)
and therefore ξ1, ξ2 and ξ3 can be computed symbolically.

Similarly the terms L3
fα, Lg1L

2
fα and Lg2L

2
fα can be

computed easily to at least partially define the feedback (15).

B. Computation of tangential states

The states η1, η2 and η3 are slightly more complicated

to compute. In general a regular parameterized curve is not

given with unit speed parameterization and finding a closed-

form expression for the unit speed parameterization may be

difficult or even impossible. Let σ̃ : R → R
2 be the given

Cr, r ≥ 3 curve that satisfies Assumptions 1 and 2. We

do not assume that σ̃ has unit-speed parameterization. If σ̃
models a closed curve then for some T > 0 it is true that

for all λ ∈ R σ̃(λ+ T ) = σ̃(λ).
Let V ⊆ R

2 be a neighbourhood of R
2 such that V ∩ γ

contains a single connected component of γ. Since γ is a

one-dimensional manifold, such a V exists. If γ is a closed

curve then we can take V such that γ ⊂ V .

If γ is non-closed let I := (λs, λe) ⊂ R be an interval of

the real line such that γ ∩ V = σ̃ (I). Since we can always

reparameterize σ̃, without loss of generality we let λs = 0.

If γ is closed we take I = [0, T ). Let L denote the length

of the portion of the curve in V . Now introduce a projection

operator which is essentially the same as the map (8)

λ⋆ = ˜̟ (y) = arg inf
λ∈I

‖y − σ̃(λ)‖ (19)

defined in γǫ. To calculate the first tangential state we must

find the unit-length parameter so we let

η1 = g(λ⋆) :=

∫ λ⋆

0

∥∥∥∥
dσ

dλ

∥∥∥∥ du (20)

so that η1 = g ◦ ˜̟ ◦ h(x). To calculate η2 we note

η2 =
∂(g ◦ ˜̟ ◦ h)

∂x

dx

dt

=

(
∂g

∂λ

)∣∣∣∣
λ=λ⋆

(
∂ ˜̟
∂y

)∣∣∣∣
y=h(x)

[
(v + x5) cos (x3)

(v + x5) sin (x3)

]
.

Simple geometric arguments, similar to those used in the

proof of Lemma 4.1, show that ∂ ˜̟

∂y

∣∣∣
y

is given by

∂ ˜̟
∂y

=
(σ′(λ⋆))

⊤

‖σ′(λ⋆)‖2
. (21)

Differentiating (20) one obtains

η2 =
(σ′(λ⋆))

⊤

‖σ′(λ⋆)‖

[
(v + x5) cos (x3)

(v + x5) sin (x3)

]
. (22)

To simplify notation let

∆(x) :=
(σ′(λ⋆))

⊤

‖σ′(λ⋆)‖
, Ω :=

[
(v + x5) cos (x3)

(v + x5) sin (x3)

]
.

To find η3 we differentiate (22) and get η3 = ∆̇Ω+∆Ω̇. The

term Ω̇ is easy to compute using the system dynamics (7).

The term ∆̇ = ∆′λ̇ can be found by noting that

∆′ :=
∂∆

∂λ
=

(σ′′)
⊤
‖σ′‖2 − (σ′)

⊤∑2
i=1 σ

′
iσi

‖σ′‖3
(23)

and, using (20) and the chain rule,

λ̇ =
1

‖σ′‖2
η2. (24)

This shows that the tangential state η3 can be computed

effectively using (21), (23), (24), Ω and Ω̇.

Finally, in order to implement the feedback transforma-

tion (15) we must find expressions for L3
fπ and the first row

of the decoupling matrix (10). The entries of the decoupling

matrix are given by (11). Taking the time derivatives of

η3, tedious, yet easy, calculations yield an expression for

L3
fπ(x).
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Fig. 2. Solid curve represents the desired path, dashed line represents the
output trajectory of the closed-loop system.
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Fig. 3. Velocity along the path η2 tracking the desired speed profile (25).

C. Simulation Results

We simulate the car-like robot (1) with dynamic con-

troller (6) and feedback law (15), (17), (18) where (η,ξ)
are defined in (13). Consider the curve σ : R → R

2,

λ 7→ col(λ, cos (λ)) with implicit representation γ ={
y ∈ R

2 : s(y) = y2 − cos (y1) = 0
}

. In the first simulation

we solve the path following problem where the desired

velocity profile along the curve is given by

ηref2 =

{
−0.5 0 ≤ t < 10s

−1 t ≥ 10s.
(25)

Figure 2 shows the position and orientation of the closed-

loop system versus time. By choosing the transversal gains

{k1, k2, k3} much larger than the tangential gains {k5, k6}
we can ensure that the exponential convergence of ξ to zero

is much faster than the convergence to the desired profile

along the curve. Figure 3 shows that the robot follows the

desired speed profile.

In the second simulation we follow the same path shown

in Figure 2 with a different velocity profile expressed as

ηref2 = 1
5 sin(η1) + 2. Here the motion along the path is

not parameterized by time, but rather depends on the car’s

position along the path. Figure 4 shows that the robot follows

the desired speed profile.
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Fig. 4. Velocity along the path η2 tracking the speed profile η
ref
2

=
1

5
sin(η1) + 2.
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