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Abstract— This paper proposes a new control algorithm for
automatic seabed tracking performed by a low cost autonomous
underwater vehicle subject to the fact that the seabed profile
is not known in advance. The control design amounts to cast
the problem in the framework of nonlinear output regulation
theory combined with pseudo-spectral methods to approximate
the solutions of the regulator equations. To this end, the seabed
tracking problem is re-formulated as a trajectory tracking
problem and the reference signal is constructed using Fourier
series to approximate the seabed profiles. An interesting feature
of this approach is that the combination of the Fourier
series with output regulation problem allows to bypass the
need to compute explicitly the Fourier coefficients. Stability
analysis and simulation results with real seabed data show the
effectiveness of the proposed controller.

I. INTRODUCTION

In the last decade there has been an increasing number of
scientific (and military) applications that require unmanned
underwater vehicles to execute traverses at a constant altitude
from the sea bottom. This task is called seabed tracking or
bottom following in the literature. Its solution is strongly
dependent by the following fact: i) there is a map of the
operating environment, or in the other case ii) the area is
unknown. This paper is concerned with the latter problem
where the speed profile is not known in advance. We propose
a solution to the problem of seabed tracking controller
design for a small, low cost, autonomous underwater vehicle
(AUV). We consider that the sensors are limited and, in
particular, that the altitude measurement is carried out by a
single beam acoustic altimeter sensor. The proposed solution
is to be applied to the control of the prototype Medusa
AUV, operated by the Instituto Superior Tecnico of Lisbon,
Portugal.

One of the first works on the seabed tracking using
unmanned vehicles can be traced to the work described
in [1] where Proportional Integrator (PI) controllers are
proposed. In [2] a Lyapunov based controller for a Remotely
Operated Vehicle (ROV) is developed that take into account
disturbances and uncertainties. The control law uses the
current distance from seabed and the seabed slope. These
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two quantities are estimated using the measurements given
by two echo sounders.

Another method proposed in [3] for seabed tracking takes
into account the terrain characteristics ahead of the vehicle,
that are measured by two echo sounders. The main idea
amounts to formulate the problem as a discrete time path
following control task, where a conveniently defined state
error in the space model of the plant is augmented with
bathymetric preview data.

In this paper, we exploit the framework of output regu-
lation theory and combine with it pseudo-spectral methods
to approximate the solutions of the regulator equations. To
this effect, we re-formulate the seabed tracking problem as a
trajectory tracking problem and construct the reference signal
using Fourier series to approximate the seabed profiles. It
turns out that with this approach the Fourier coefficients are
not needed to be computed explicitly.

From a practical point of view, the main contribution of
the paper compared with other methods applied to seabed
tracking is the fact that we only need one simple sensor that
provides the distance of the vehicle to the seabed, and also
that the seabed profile is not needed to know in advance.
Furthermore, there is no need to obtain measurements of the
heave velocity (that is, the vertical linear velocity).

In addition, we consider the practical situation that there
exist inner-loop tracking controllers for the linear surge ve-
locity u and pitch angular velocity q and take their dynamics
into account in the control design.

The paper is organized as follows. Section II describes
the nonlinear model for the vertical plane dynamics of the
Medusa AUV and formulates the problem of seabed tracking.
Section III introduces briefly the output regulation problem
and Section IV states the controller design procedure. The
stability analysis is discussed in Section V and in Section
VI the performance of the control algorithm is evaluated
using computer simulations and real seabed data. Finally,
Section VII contains some concluding remarks and discusses
problems that warrant further research.

II. CONTROL PROBLEM FORMULATION

This section describes the AUV equations of motion in
vertical plane and formulates the seabed tracking problem.

A. AUV modelling

Following the general practice to describe the motion of an
AUV, we resort to an earth-fixed coordinate frame {U} and
a body-fixed coordinate frame {B}. The complete kinematic
and dynamic equations of motion is described in e.g. [4]. In
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the vertical plane by neglecting the motion in the sway, roll
and yaw, the kinematic equations take the form

ẋ = u cos θ + w sin θ
ż = −u sin θ + w cos θ
θ̇ = q

(1)

where u, w and q are the linear and angular velocities of
the vehicle, respectively, in surge (x), heave (z) and pitch
(θ) direction of the body-fixed coordinates. The Cartesian
coordinates of the vehicle’s center of mass is denoted by x
and y, and θ is the pitch angle. The dynamic equations of
the vertical motion when there in no actuated force in ZB
direction (that is, the vehicle is underactuated) are given by

muu̇+mwwq + duu = τu (2a)

mwẇ −muuq + dww = 0 (2b)

mq q̇ +muwuw + dqq = τq (2c)

where mu = m−Xu̇, mw = m− Zẇ, mq = Iy −Mq̇ and
muw = mu −mw are mass and hydrodynamic added mass
terms and du = −Xu − Xu|u||u|, dw = −Zw − Zw|w||w|
and dq = −Mq−Mq|q||q| are hydrodynamic damping effects.
These scalar parameters are listed in the simulation section
for the Medusa AUV. The symbols τu and τq denote the
external force in surge direction and the external torque
around the y-axis of the vehicle, respectively.

We consider the practical situation that there exist inner-
loop controllers in charge of tracking reference signals in
u and q. For simplicity, we assume that these autopilots
controllers can be locally characterized by a first order stable
dynamics.

B. Problem formulation

The goal of seabed tracking is roughly speaking to keep
constant the vertical distance between the AUV and the
seabed. Let zs = zs(x) be the seabed depth profile in
function of the position x.

The problem of seabed tracking can be stated as follow:
Consider the AUV vertical model (1) and (2) together with
measurements on the depth z and altitude h from the seabed,
i.e. zs = z + h. Derive feedback control laws for the surge
reference velocity ur and pitch angular reference velocity qr
to drive the vehicle to move along an XB direction with a
desired horizontal velocity Vx at a constant height hd from
the seabed. In a more practical case, we are looking for a
controller that keeps the altitude zs − z around a constant
hd value.

III. NONLINEAR OUTPUT REGULATION

The framework of nonlinear output regulation as a tool
for reference tracking and/or disturbance rejection has been
received considerable attention in the last decades [5], [6] and
[7]. In what follows we briefly point out the basics of this
methodology. For convenience in this section we will adopt
some of the conventional notation in the output regulation
theory, which is not consistent and should not be associated

to the notation introduced in the previous section. Consider
the nonlinear system ẋ = f(x, u, v)

ym = hm(x, v)
e = h(x, v)

(3)

where x ∈ Rn is the state of the system, u ∈ Rm,
ym ∈ Rpm , and e ∈ Rpe are control input, measurement
output and regulated output, respectively. The functions f ,
hm and h are Lipschitz functions in all arguments and
vanishing at the origin. The signal v ∈ Rq is considered
as a reference/disturbance signal. This signal is generated by
the exo-system

v̇ = s(v) (4)

The problem of local output regulation consists in finding a
control law

η̇ = σ(η, ym)
u = k(η, ym) (5)

such that, there exists a neighborhood around the origin that
for any closed-loop trajectory that starts from it, achieves
asymptotically zero regulated output with bounded states.

Depending on the measurement output, two type of con-
trollers may be used. When all the plant and exo-system
states are available, i.e., ym = (x, v), full information static
feedback controller by setting η = 0 in (5) is enough to
find a possible solution of the output regulation problem.
Dynamic output feedback controller in general is needed
when all states are not available for feedback.

There are several approaches to precisely define the non-
linear output regulation problem and derive necessary and
sufficient conditions for solvability of the defined problem.
The first approach was introduced by [8] and [9] in two
seperate works. This approach is based on the center man-
ifold theorem and applicable to systems with C2 vector
fields. In [7], the authors describe another approach based
on the convergent dynamics concept. Since the AUV motion
dynamics (1) and (2) contains C1 functions (and not C2), we
focus on the second approach that is called uniform output
regulation [7]. To find the precise definition of the problem
and related concepts, see [7] (chapter 3). A theorem stated
in [7] provides the necessary and sufficient condition for
solvability of the local uniform output regulation problem for
system (3) with exo-system (4). Briefly, the main condition
required is that there should exist mappings x = π(v) and
u = α(v) with π(0) = 0 and α(0) = 0 that satisfy the
regulator equation

∂π(v)
∂v s(v) = f(π(v), α(v), v)

h(π(v), v) = 0
(6)

in some invariant neighborhood v = 0.
The regulator equation (6) plays a main role in the output

regulation problem. However, in general this set of n partial
differential equations and me algebraic equations has no
closed solution.
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IV. CONTROLLER DESIGN

In this section we cast the seabed tracking problem in
the output regulation setup and derive an approximation
of the solution of the regulator equations using Pseudo-
spectral approximation methods. A full information and error
feedback controllers are then obtained.

A. Nonlinear output regulation for seabed tracking problem

To formulate the seabed tracking problem in the nonlinear
output regulation format we first have to define the reference
signal that needs to be generated by a neutrally stable exo-
system. To this effect, we consider that the seabed profile is
a finite combination of N sinusoidal functions with known
frequencies Ωi and unknown amplitudes Ai and phases ϕi,
i.e.,

zs(x) = A0 +
N∑
i=1

Ai sin(Ωix+ ϕi) (7)

To represent (7) as a function of time, we also consider
that there exists a speed controller that regulate the surge
velocity u to a given reference value ur(t). The reference
signal is computed such that the horizontal velocity is
constant to some desired value Vx. In this case, from (1)
the corresponding reference signal is given by

ur =
Vx − w sin θ

cos θ
(8)

Note that we assume that the pitch angle of the vehicle is not
close to the singular points (2k ± 1)π/2, which in practice
for this type of marine vehicles is a reasonable assumption.
Also, later, ur will be redefined so that we do not need to
measure the heave velocity w.

From (8), it follows now that when u = ur we have ẋ =
Vx and therefore x = Vx(t − t0) + x(t0). Without loss of
generality set t0 = 0 and x(0) = 0. By this relation between
time and horizontal position, the seabed profile (7) can be
rewritten as a time dependent signal

zs(t) = A0 +
N∑
i=1

Ai sin(ΩiVxt+ ϕi) (9)

This reference signal can be produced by the following
autonomous neutrally stable system recalled exo-system

v̇ = Sv

S = VxDiag

(
0,
[

0,Ω1

−Ω1, 0

]
,

. . . ,
[

0,ΩN
−ΩN , 0

])
(10)

where v = [v0, v1,1, v2,1, · · · , v1,N , v2,N ]T ∈ R2N+1 is the
state vector. The output ys of the exo-system is defined as

ys = v0 + v1,1 + v1,2 + ...+ v1,N

By setting the initial conditions to the exo-system as v0(0) =
A0, v1,i(0) = Ai sin(ϕi) and v2,i(0) = Ai cos(ϕi) for i =
1, ..., N , the reference signal (9) is equal to the output of the
exo-system, i.e. zs(t) = ys(t) for all t ∈ R+.

The AUV equations with u = ur is reduced to

ẋp = fp(xp, q) (11)

where xp = [z, w, θ]T and

fp(xp, q) = Vx tan θ + w
cos θ

Zw
mw

w + Zw|w|
mw

w |w|+ mu
mw

(
Vx

cos θ − w tan θ
)
q

q


Now, the seabed tracking problem is equivalent to the

output regulation problem with plant model (11), exo-system
(10) and error e = ys − z − hd. To simplify the notation in
design procedure, we replace z + hd by z. Thus, hereafter
the output to be regulated is changed to e = ys − z. Note
that, this transformation in z does not change the vehicle
dynamics of motion in the vertical plane, (1) and (2).

B. Full-information feedback output regulator design
To design the output regulator, we first start with the full

information feedback case. Following the output regulation
framework, [5] and [8], we are looking for a controller of the
form q = q(z, w, θ, v) such that for sufficiently small initial
conditions of the plant model and the exo-system, the error
output is annihilated by time, i.e. lim

t→∞
ys(t)− z(t) = 0

One particular choice for the controller is q = qr =
αq(v) + K(xp − π(v)), where αq(v) and π(v) =
[πz(v), πw(v), πθ(v)]T are mappings such that αq(0) = 0
and π(0) = 0 and satisfy the regulator equations

∂πz
∂v Sv = −Vx tanπθ + πw

cosπθ
∂πw
∂v Sv = Zw

mw
πw + Zw|w|

mw
πw |πw|

+mu
mw

(
Vx

cosπθ
− w tanπθ

)
αq

∂πθ
∂v Sv = αq

0 = v0 + v1,1 + v1,2 + ...+ v1,N − πz

(12)

By solving these equations, the mappings are found. To com-
plete the controller, the matrix gain K should be computed
such that it stabilizes the linear part of the reduced plant
model (11) at the origin characterized by

AK
∆=
∂fp
∂xp

(0, 0) +
∂fp
∂q

(0, 0)K (13)

Some remarks about this controller worth to be mentioned:
- In general, it is difficult to find the exact solution to the

regulator equations (12). Later we propose a method to
approximate the solution.

- Since the linear part of the reduced plant model (11)
is controllable, it is possible to find a stabilizer gain
K. One way is to use the linear quadratic regulator
theory with properly chosen state and control weighted
matrices.

- To use the proposed controller, we need measurements
on all the states of the vehicle and exo-system. Thus,
designing an output regulator with output feedback is
necessary in practice.

C. Output feedback output regulator design
To design an output regulator with output feedback, we

need to find a dynamic controller of the form

η̇ = σ(η, ym)
qr = k(η, ym) (14)
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where ym satisfies the output equation

ym =
[
z
zs

]
= Cmxp + Fmv (15)

with Cm =
[

1 0 0
0 0 0

]
and Fm =

[
0

1 1 0 · · · 1 0

]
.

Note that in (14), ym is obtained from the data given by the
sensors that measure the depth z and the altitude h (where
zs = z+ h). In the output regulator framework one can find
several approaches to design the dynamic controller, see e.g.,
[5], [10] and [6]. In this paper we apply the method described
in [6], that consists in using the state feedback control law
derived in Section II.B but replacing the state by its estimate.
The dynamic controller generates η1 and η2 to estimate xp
and v, respectively, and takes the form

η̇1 = fp(η1, qr))− L1 (ym − Cmη1)
η̇2 = Sη2 − L2 (ym − Fmη2)
qr = αq(η2) +K (η1 − π(η2))

(16)

where η1 ∈ R3 and η2 ∈ R2N+1 are controller states, αq(.)
and π(.) are the same mappings as in the full-information
feedback output regulation that are obtained from the reg-
ulator equation (12), and L1 and L2 are matrix gains such
that the following matrix

AL
∆=
[
Ap 0
0 S

]
+
[
L1

L2

] [
Cm Fm

]
(17)

with Ap = ∂fp
∂xp

(0, 0) is Hurwitz. Some remarks on the output
regulator by measurement feedback are now discussed.

- The dynamic controller (16) consists of an extended
Kalman filter for the reduced plant model (11) and
a Kalman filter for the exo-system (10). These state
estimates can be easily shown to converge to the true
values by the asymptotic stability of the origin of the
estimation errors x̂p = xp−η1 and v̂ = v−η2 dynamics.

- By the result of the previous remark, the reference
signal (8) for linear velocity can be modified to use
the estimated states η1 = [ηz, ηw, ηθ]

T , that is,

ur =
Vx − ηw sin ηθ

cos ηθ
(18)

- The dynamic feedback control law (16) together with
the velocity controller (18) achieve seabed tracking re-
quiring only to know the value N (number of sinusoidal
functions generated by the exo-system to obtain the
reference signal that approximates the seabed profile),
the frequencies Ωi, i = 1, ..., N and the measurements
of depth z and altitude h = zs − z.

D. Approximate Output feedback output regulator
As mentioned, one problem in the output regulator frame-

work is the difficulty to find a closed solution to the regulator
equation (12). Approximation is an alternative way to over-
come this difficulty. For that effect, one of the oldest method
is to use truncated Taylor series expansion for approximation
of the solutions of the regulator equation. Although, Taylor
series is an easy method in computation and complexity, it is
not good in accuracy in some problems. In our case, since the

regulator equation (12) is not smooth, Taylor series method
fails to find an approximate solution to it. One way is to
approximate the nonsmooth function πw|πw| by a smooth
function, but still Taylor series expansion does not provide
a good approximate solution when v is not so close to the
origin.

To solve the problem of convergency and accuracy in
distant point, an approximation method which focuses on
a predefine interval is proposed. Pseudo-spectral method
is a good choice, because it offers high accuracy with
fast convergence in approximation order, close solution and
reasonable computational complexity. In the following, we
briefly describe the pseudo-spectral method for the output
regulation problem.

The main idea in the pseudo-spectral method for approx-
imation of functions, is to compute the function at some
collocation points and then linearly combine the basis poly-
nomials based on the computed values to approximate the
function. These basis are orthogonal set of polynomials with
respect to an inner product in the desired space.In our case,
we use Chebyshev polynomials and the unknown function
is the solution to the regulator equation. Assume the general
regulator equation (6) and suppose that we are concerned
to about the solution in a rectangular subspace I ⊂ Rq .
Based on the Chebyshev polynomials, we set collocation
points ξi ∈ I for i = 1, . . . ,ma. The number of collocation
points ma is related to the approximation order that is set and
depends on the required accuracy. Now, the solution to the
regulator equations should be computed in the collocation
points i.e. π(ξi) and α(ξi) for i = 1, . . . ,ma. This is done
by solving the regulator equation in these points. Finding
unknown mappings in collocation points from the regulator
equation result in a set of nonlinear algebraic equations. After
solving this set of equations, usually by a simple numerical
method, approximate solution to the regulator equation π(v)
and α(v) is obtained for v ∈ I as

π(v) ≈
∑ma
i=1 π(ξi)li(v)

α(v) ≈
∑ma
i=1 α(ξi)li(v) (19)

where li(.), i = 1, . . . ,ma are Lagrange polynomials with
respect to the selected collocation points.For further details
of the pseudo-spectral method in general see [11] and [12].

E. General seabed profile

Until this point, we have considered the case that the
seabed profiles can only take a shape composed by a finite
summation of sinusoidal functions with different known
frequencies. To deal with general seabed profiles, we use
the fact that each periodic function can be approximated by
harmonic sinusoidal functions. Fourier series expansion is a
tool that does this approximation, [13].

Suppose that zs(x) is a real seabed that we would like
the vehicle to track and let x ∈ [0, Tx] be a given interval.
To generate the reference signal using Fourier series, we
assume that zs(x) is periodic with period Tx. Now we can
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Fig. 1. Fourier series seabed approximation by different approximation
orders.

approximate zs by ẑs as

ẑs = a0 +
M∑
m=1

Am sin (mΩ0x+ ϕm) (20)

where M is the seabed approximation order and Ω0 = 2π
Tx

is
the main frequency of approximate signal that only depends
on the predefined length of the tracking interval.

This approximation of the seabed is in the format of
(7) by setting N = M and Ωi = iΩ0, and therefore it
can be generated by the exo-system (10). By increasing the
seabed approximation order M , ẑs converge to zs. The rate
of convergence depends on the smoothness of the seabed
profile, [13]. Fig. 1 shows a real volcanic seabed and its
approximations with different orders. Note that the resulting
controller using this exo-system enable to drive the vehicle to
move along an M th-order Fourier approximation of the real
seabed. Furthermore, we do not need to compute the Fourier
coefficients to generate the reference signal. The exo-system
only depends on the parameters M and Tx.

V. STABILITY ANALYSIS

To show the stability and performance achievement of
the closed-loop system, we consider the output feedback
controller with sinusoidal seabed profiles and exact solution
of the regulator equations.

Theorem 1: Consider the reduced model of the AUV
motion in the vertical plane (11) and seabed profiles of the
type (7). Consider the outer-loop output feedback controller

η̇1 = fp(η1, k(η1, η2))− L1 (ym − Cmη1)
η̇2 = Sη2 − L2 (ym − Fmη2)
qr = αq(η2) +K (η1 − π(η2))

(21)

where K, L1, and L2 are selected so that (13) and (17) are
Hurwitz matrices, π and αq are the solution to the regulator
equations (12) in some neighborhood W ⊂ R2N+1 of the
origin.

Then, for sufficiently small initial condition the closed-
loop system has bounded states and the vehicle altitude
converges to a desired constant distance hd from the seabed,
i.e. lim

t→∞
zs(t)− z(t) = hd.

TABLE I
MEDUSA AUV PARAMETERS

Parameter description Symbol Value
Vehicle mass (kg) m 30

Added masses (kg) (Xu̇, Zẇ) (−2.2,−4.0)
Damping (kg/s,kg/m) (Zw, Zw|w|) (−3,−12.4)

TABLE II
CONSTANT PARAMETERS IN THE SIMULATIONS

Parameter description Symbol Value
Horizontal velocity (m/s) Vx 0.1

Desired altitude (m) hd 5
Controller gain K [ 22.36 147.32 −24.91 ]

Observer gain L1

»
−3.97 −2.56 3.16

0 0 0

–T

Observer gain L2

»
0 0 0

−0.42 −1.35 −1

–T

The next theorem takes into consideration the dynamics
of the inner-loop tracking controllers.

Theorem 2: Consider the AUV motion in the vertical
plane (1) and (2) together with the inner-loop tracking
controllers, the seabed profile of the type (7), and the
dynamic feedback controller (21) where K, L1, and L2 are
selected so that (13) and (17) are Hurwitz matrices, π and
αq are the solution to the regulator equations (12) in some
neighborhood W ⊂ R2N+1 of the origin.

Then, for sufficiently small initial condition the closed-
loop system has bounded states and the vehicle altitude
converges to a desired constant distance hd from the seabed,
i.e. lim

t→∞
zs(t)− z(t) = hd.

VI. SIMULATION RESULTS

To show the effectiveness of the output regulator with
measurement feedback, we performed computer simulations
using the Medusa AUV model. Table I shows the values
of the parameters. Two set of simulations illustrate the
proposed output feedback controller performance. The con-
troller parameters and simulation conditions fixed for all
simulations are listed in Table II. The first set of simulations
is concerned about the tracking of the sinusoidal seabed
zs = 48 + 5 sin(0.2x + π

4 ) with a desired vertical distance
hd. Note that the vehicle does not know in advance the
seabed profile. The initial condition of the dynamic output
feedback controller (16) is set to η1(0) = [0, 0, 0]T and
η2(0) = [0, 0, 30]T . Fig. 2 shows the vehicle trajectories
starting from four different initial conditions

[x(0), z(0), w(0), θ(0)] = [0, 20,−1,−π/4]
[x(0), z(0), w(0), θ(0)] = [0, 30, 1, π/4]
[x(0), z(0), w(0), θ(0)] = [0, 40, 0, π/6]
[x(0), z(0), w(0), θ(0)] = [0, 50,−1,−π/6]

These simulations reveal that, although the proposed con-
troller only guarantees local stability, it is not much sensitive
to the initial condition. Fig. 3 shows the vehicle trajectory
described by the vehicle when it is required to track a real
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Fig. 3. Trajectory described by the vehicle with output feedback output
regulator for a real seabed profile.

seabed. This seabed profile belongs to the volcanic seabed
near Azores in the Atlantic ocean. Data was collected in a
one km2 area by one meter grid points. Fig. 4 shows the time
evolution of the tracking error e = zs−z−h , control inputs
and pitch angle for t ∈ [600, 1000]. In this simulation the
initial conditions of the vehicle and controller are x(0) = 0,
z(0) = 30, w(0) = 0, θ(0) = 0, η1(0) = [0, 0, 0]T

and η2(0) = [0, 0, 30]T . Seabed profile is approximated by
one sinusoidal function and a bias term. The length of the
window for Fourier approximation is set as Tx = 100m.

VII. CONCLUDING REMARKS

This paper addressed the design of a seabed tracking
controller for Autonomous Underwater Vehicles (AUVs).
Nonlinear output regulation problem is employed to design
the controller that does not require to known in advance
the seabed profile and only needs one single echo sounder
sensor to measure the altitude from the seabed. To cast the
problem in the framework of nonlinear output regulation
theory, the main steps consisted in first converting the seabed
profile to a time dependent signal. Then, using Fourier
series expansion, this signal is approximated by a finite
number of sinusoidal signals and an exo-system is derived
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Fig. 4. Time evolution of the closed-loop signals with output feedback
output regulator for a real seabed profile.

to generate this approximated seabed signal. Based on this
exo-system and the plant model, full information and output
feedback output regulators were designed and a solution
to the regulator equation was approximated by the pseudo
spectral method. Stability and zero tracking error of the
closed-loop system were analysed.

The effectiveness of the new control laws was assessed
in the MATLAB simulation environment with a nonlinear
model of the Medusa AUV. The quality of the results ob-
tained clearly indicate that the methodology derived achieves
the seabed tracking with acceptable actuation signal. Future
research will address the application of this theoretical de-
velopments to real world practical applications.
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