
On the Extension of the Hybrid Minimum Principle to Riemannian

Manifolds

Farzin Taringoo and Peter E. Caines

Abstract— This paper provides a geometrical derivation of
the Hybrid Minimum Principle (HMP) for autonomous hybrid
systems on Riemannian manifolds. The analysis is expressed
in terms of extremal trajectories on the cotangent bundle of
the manifold state space. In the case of autonomous hybrid
systems, switching manifolds are defined as smooth embedded
submanifolds of the state manifold. The HMP results are
obtained in the case of time invariant switching manifolds on
Riemannian manifolds.

I. INTRODUCTION

The problem of hybrid systems optimal control (HSOC)

in Euclidean spaces has been studied in many papers, see

e.g [8], [12], [13], [14], [16], [17], [18]. In particular, [13]

and [19] present an extension of the Minimum Principle to

hybrid systems and [13] gives an iterative algorithm which is

based upon the Hybrid Minimum Principle (HMP) necessary

conditions for both autonomous and controlled switching

systems. In general the previously cited papers consider

HSOC problems with a priori given sequences of discrete

transitions.

A geometric version of Pontryagin’s Maximum Principle

for a general class of state manifolds is given in [1], [4],

[16]. In this paper, we employ the control needle variation

method of [1] to analyze state variation propagation

through switching manifolds and hence we obtain a Hybrid

Minimum Principle for autonomous hybrid systems on

Riemannian manifolds. It is shown that under appropriate

hypotheses on the differentiability of the hybrid value

function, the discontinuity of the adjoint variable at the

optimal switching state and switching time is proportional

to a differential form of the hybrid value function defined

on the cotangent bundle of the state manifold. In the case

of open control sets and Euclidean state spaces, this result

for hybrid systems appeared in [13] without using the

language of differential geometry. We note that the analysis

in this paper is extended to the case of multiple autonomous

switchings which has been treated in [13] for hybrid systems

defined on Euclidean spaces.

Definition 2.1:

H := {H = Q ×M,Γ,A, I = Σ× U, F,N} (1)
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Where:

Q = {1, 2, 3, ..., |Q|} is a finite set of discrete states and M
is a smooth differentiable state manifold.

H is the hybrid state space of H.

Γ : H × Σ → Q is the time independent (partially defined)

discrete transition map.

A : Q → 2Q is a set valued function for which for a state

q ∈ Q all and only discrete controlled transitions in to the q
dependent subset A(q) ⊂ Q are allowed under Γ.

Σ = Σu∪Σc∪{id} is a finite set of distinct autonomous (i.e.

uncontrolled) and controlled discrete event transition labels

extended with the identity element {id} such that for i ∈ Q,

σi,j ∈ Σ only if j ∈ A(i).
U ⊂ Ru is a set of admissible input control values, where

U is an open bounded set in Ru. The set of admissible input

control functions is U := U(U,L∞[0, T∗)), the set of all

bounded measurable functions on some interval [0, T∗), T∗ <
∞, taking values in U .

I := Σ× U is a set of system input values.

F is a indexed collection of vector fields {fj}j∈Q such that

fj : M × U → TM is a vector field assigned to each

control location such that fj is continuous on M × U and

continuously differentiable on M for all u ∈ U .

N := {ñk
γ : γ ∈ Q × Q, k ∈ Z+} is a collection of

time independent manifold subcomponents such that for any

ordered pair γ = (p, q), ñk
γ is a smooth, i.e. C∞, codimen-

sion 1 submanifold of M, possibly with boundary ∂ñk
γ . By

abuse of notation, in the case of embedded submanifolds

(in M), we describe the manifold subcomponents locally

by ñk
γ = {x : ñk

γ(x) = 0}. A switching manifold np,q is

the union (over k) of a disjoint set of connected switching

manifold components nk
p,q =

⋃

ki;1≤i≤n(k) ñ
ki
p,q, ñ

ki
p,q ∈ N ,

where

(i) x ∈ ñki
γ is such that x ∈ ñki

γ

⋂

ñ
kj
γ , ki 6= kj , if and

only if x ∈ ∂ñki
γ

⋂

∂ñ
kj
γ .

(ii) If ∂ñki
γ

⋂

∂ñ
kj
γ 6= ø then ∂ñki

γ

⋂

∂ñ
kj
γ is a piece-wise

smooth codimention 2 submanifold of M (possibly with

boundary).

(iii) (Local Finiteness Condition) For all γ ∈ Q ×Q, the

family of switching manifolds subcomponents intersections

are locally finite, i.e., for any x ∈ ñki
γ

⋂

ñ
kj
γ , ki 6= kj

there exists a neighbourhood Nx of x meeting only a finite

number of switching manifolds.

In this paper it is assumed that all phase transitions are

autonomous, therefore there is no optimization over the
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discrete part of the hybrid control σ.

A1: The initial state h0 := (x(t0), q0) ∈ H is such

that x0 /∈ N for all qj ∈ Q. It is assumed that for all

p, q, whenever a trajectory governed by the controlled

vector field fp meets any given manifold np,q transversally,

there is an autonomous switching to the controlled

vector field fq, also transversal to np,q and, conversely,

any autonomous switching corresponds to a transversal

intersection (for the definition of transversal intersection see

[13]). u

A hybrid system input is a triple I := (τ, σ, u)
defined on a half open interval [t0, T ), T ≤ ∞, where

u ∈ U and (τ, σ) is a hybrid switching sequence

(τ, σ) = ((t0, σ0), (t1, σ1), (t2, σ2), . . .) of pairs of

increasing switching times and discrete input events where

σ0 = id, σi ∈ Σ, i ≥ 1 and in general σi consists of both

autonomous and controlled transition events.

A hybrid state trajectory is a triple (τ, q, x) consisting of a

strictly increasing sequence of times τ = (t0, t1, t2, . . .), an

associated sequence of discrete states q = (q0, q1, q2, . . .),
and a sequence x(·) = (xq0 (·), xq1 (·), xq2 (·), . . .) of

absolutely continuous functions xqj : [tj , tj+1) →
M.

Let {lj}j∈Q, lj ∈ Ck(M × U;R+), k ≥ 1 be a family of

loss functions and h ∈ Ck(M;R+), k ≥ 1, be a terminal

cost with the associated initial time t0, final time tf < ∞,

initial hybrid state h0 = (q0, x0), and the total number of

switchings L̄ < ∞. Let

SL = ((t0, σ0), (t1, σ1), . . . , (tL, σL)) be a hybrid switching

sequence and let u ∈ U be a hybrid input function subject

to A1, where L ≤ L̄ < ∞ is the number of switchings. We

define the hybrid cost function as

J(t0, tf , h0, u) :=

L
∑

i=0

∫ ti+1

ti

lqi(xqi (s), u(s))ds

+h(xqL(tf )), u ∈ U . (2)

In the standard non-hybrid case, without loss of generality,

the Bolza problem is equivalent to the Mayer problem (with

possible state extension) which is given as follows:

J(t0, tf , h0, u) := h(xqL(tf )),

xqL(tf ) = Φ
(tf ,tL)
fu
qL

(x(tL)), u ∈ U . (3)

where the flow Φ is defined below. In this paper we adopt:

A2: All pairs of states x1, x2 are mutually

accessible via ẋq(t) = fq(xq(t), u(t)), q ∈
Q. u

Definition 2.2: The Hybrid Optimal Control Problem

(HOCP) is defined as the infimization of the hybrid cost

over the hybrid input functions u.

Jo(t0, tf , h0) = infu∈UJ(t0, tf , h0, u). (4)

The continuous dynamics of the hybrid system are specified

as the following mapping:

(xq , u) : [ti, ti+1) → M× U, (5)

which is an integral curve of fq, satisfying

ẋq(t) = fq(xq(t), u(t)), a.e. t ∈ [ti, ti+1).

fq is the vector field defined on M for any given u ∈ U
such that

fq(., u) : M× [ti, ti+1) → TM, (6)

u(t) ∈ U ⊂ Ru, u(.) ∈ L∞(U), h0 = (q0, x0),

i = 0, 1, . . . , L,

xqi+1(ti+1) = limt→ti+1xq(t), tL+1 = tf < ∞. (7)

In general, different control inputs result in different sets

of discrete states of different cardinality. However, in this

paper, we shall restrict the infimization to be over the class

of control functions, U , which generates an aprior given

sequence of discrete transition events σk, k = 0, ..., L
The time dependent flow associated to a differentiable time

dependent vector field fq is a map Φfu
q

as follows:

Φfu
q
: [ti, ti+1)× [ti, ti+1)×M → M,

(t, s, x) → Φfu
q
((t, s), x) ∈ M. (8)

By the definition above we have

Φ
(t,s)
fu
q

: M → M, Φ
(s,s)
fu
q

(x) = x, (9)

d

dt
Φ

(t,s)
fu
q

(x)|t = fq(Φ
(t,s)
fu
q

(x(t)), u(t)). (10)

We associate TΦ
(t,s)
fu
q

(.) to Φ
(t,s)
fu
q

as the push-forward of

Φ
(t,s)
fu
q

which is a generalization of the Jaccobian matrix of

the smooth maps defined on Euclidean spaces, see [5].

TΦ
(t,s)
fu
q

: TxM → T
Φ

(t,s)

fu
q

(x)
M. (11)

The corresponding tangent lift of fu
q (.) is a time dependent

vector field fT,u
q (.) ∈ TTM defined on TM which is given

as follows (fu
q (.) is used instead of fq(., u(t))):

fT,u
q (vx) :=

d

dt
|t=sTxΦ

(t,s)
fu
q

(vx), vx ∈ TxM, (12)

where locally

fT,u
q (x, v) =

[

fu,i
q (x)

∂

∂xi
+ (

∂fu,i
q

∂xj
vj)

∂

∂vi

]n

i,j=1

, (13)

and TxΦ
(t,s)
fu
q

(.) is evaluated at vx ∈ TxM, see [3]. For the

sake of simplicity in the notations we use fq instead of fu
q .

Lemma 1: ([1]) Consider fq(x, u) as a time dependent

vector field on M and Φ
(t,s)
fq

as the corresponding flow. The

flow of fT,u
q , denoted by Ψ : I × I × TM → TM, I =

[t0, tf ], satisfies

Ψ(t, s, (x, v)) = (Φ
(t,s)
fq

(x), TΦ
(t,s)
fq

(v)) ∈ TM, (x, v)

∈ TM.
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II. PONTRYAGIN MAXIMUM PRINCIPLE FOR OPTIMAL

CONTROL SYSTEMS

In general, a Bolza problem can be converted to a Mayer

problem using an auxiliary state variable in the dynamics,

see [1] and [13]. Here we review some results presented in

[1], [2] and [4] which are essential for our proofs in this

paper.

A. Elementary Control Perturbation and Tangent Perturba-

tion

Consider the nominal control u(.) and define the associ-

ated perturbed control as

uπ(t, ǫ) =

{

u1 t1 − ǫ ≤ t ≤ t1,
u(t) elsewhere,

(14)

where u1 ∈ U, 0 < ǫ,. Associated to uπ(., .) we have

the corresponding state trajectory xπ(t, ǫ) on M. It may

be shown that under suitable hypotheses on the differen-

tiability of xπ with respect to ǫ at the switching times,

limǫ→0xπ(t, ǫ) = x(t) uniformly for t0 ≤ t ≤ tf , see

[?] and [2]. However in this paper we employ hypotheses

on the differentiability of xπ before and after the switching

times but must accommodate the fact that there may be a

discontinuity of
dxπ(t)

dǫ
|ǫ=0 at a switching time ti. Following

(9), the flow resulting from the perturbed control is defined

as:

Φ
(t,s),x
π,fq

(ǫ) : [0, τ ] → M, x ∈ M, t, s ∈ [t0, tf ], τ ∈ R+. (15)

The following lemma gives the formula of the variation of

Φ
(t,s),x
π,fq

(.) at ǫ = 0+. We recall that the point t1 ∈ (t0, tf )
is called Lebesgue point of u(.) if, ([4]):

lim
s→t1

1

|s− t1|

∫ s

t1

|u(τ)− u(t1)|dτ = 0. (16)

For any u ∈ L∞([t0, T∗], U), u may be modified on a set

of measure zero so that all points are Lebesgue points (see

[10], page 158), in which case, necessarily, the value of any

cost function is unchanged.

Lemma 2: ([1]) For the Lebesgue time t1, the curve

Φ
(t,s),x
π,fq

(ǫ) : [0, τ ] → M is differentiable at ǫ = 0 and the

corresponding tangent vector d
dǫ
Φ

(t1,s),x
π,fq

|ǫ=0 is

[fq(x(t1), u1)− fq(x(t1), u(t1))] ∈ TxM. (17)

The tangent vector [fq(x(t1), u1)−fq(x(t1), u(t1))] is called

the elementary perturbation vector associated to the per-

turbed control uπ. The displacement of the elementary

perturbation vectors at x ∈ M is explained by the push-

forward of the flow corresponding to the vector field fq. By

definition Φ
(t,s)
fq

: M → M therefore

TΦ
(t,s)
fq

: TM → TM, TΦ
(t,s)
fq

(vs) ∈ T
Φ

(t,s)

fq
(x)

M, (18)

where

vs ∈ TxM, Φ
(s,s)
fq

(x) = x. (19)

B. Adjoint Processes

In the case M = Rn based on the differentiability of fq,

let us define the following variational differential system:

λ̇T (t) = −λT (t)
∂fq
∂x

(x(t), u(t)), t ∈ [t0, tf ], x ∈ Rn. (20)

As is shown in [2], the matrix solution ϕ of the system

ϕ̇(t) =
∂fq
∂x

(x(t), u(t))ϕ where ϕ(0) = I gives the transfor-

mation between tangent vectors on the state trajectory x(t)
from time t1 to t2, that is to say considering v1 as a tangent

vector at x(t1), the push-forward of v1 under the map Φ
(t2,t1)
fq

is

v2 = TΦ
(t2,t1)
fq

(v1) = ϕ(t2 − t1)v1, v1 ∈ Tx(t1)R
n = Rn. (21)

The vector v(t) = ϕ(t)v(0) is the solution of the following

differential equation, (see [2]):

v̇(t) =
∂fq
∂x

(x(t), u(t))v(t), v(t) ∈ Tx(t)R
n = Rn. (22)

The significance of (20), which plays a major role in the

proof of the Maximum Principle for optimal control, is that

along x(t), λT (t)v(t) remains constant, see [2]. For a general

Riemannian manifold M, the role of the adjoint process

λ is played by a trajectory in the cotangent bundle of M,

i.e. λ(t) ∈ T ∗
x(t)M. Similar to the definition of the tangent

lift we define the cotangent lift which corresponds to the

variation of a differential form α ∈ T ∗M along x(t), see

[6]:

fT∗,u
q (αx) :=

d

dt
|t=sT

∗
xΦ

(t,s)−1

fu
q

(αx), αx ∈ T ∗
xM, (23)

where here x = x(t) = Φ
(t,s)
fu
q

(x(s)) . Similar to (13) in the

local coordinates (x, p) of T ∗M, we have

fT∗,u
q (x, p) =

[

fu,i
q (x)

∂

∂xi
− (

∂fu,i
t

∂xj
pj)

∂

∂pi

]n

i,j=1

.(24)

The mapping T ∗
x is the pull back defined on the differential

forms on the cotangent bundle of M. The covector αx is an

element of T ∗
xM, see [6]. The following lemma gives the

connection between the cotangent lift defined in (23) and its

corresponding flow on T ∗M.

Lemma 3: ([1]) Consider fq(x(t), u(t)) as a time depen-

dent vector field on M, then the flow Γ : I × I × T ∗M →
T ∗M, satisfies (I = [t0, tf ])

Γ(t, s, (x, p)) = (Φ
(t,s)
fq

, (T ∗
xΦ

(t,s)
fq

)−1(p)), (x, p)

∈ T ∗
xM, (25)

and Γ is the corresponding integral flow of fT∗,u
q .

The mapping (T ∗
xΦ

(t,s)
fq

)−1 = T ∗
xΦ

(−t,s)
fq

) is defined as a

pull back of Φ−1 which its existence is guaranteed since

Φ : M → M is a diffeomorphism, see [1] . Equations

(20, 22) in Euclidean spaces are generalized to Reimmanian

manifolds by defining the tangent and cotangent lift in (12)

and (23) .

For a given trajectory λ(t) ∈ T ∗M, its variation with

respect to time, λ̇(t), is an element of TT ∗M. The vector
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field defined in (23) is the mapping fT∗,u
q : T ∗M →

TT ∗M, which is the general description of (20) as the

mapping from λ(t) ∈ T ∗M to λ̇(t) ∈ TT ∗M.

Proposition 1: ([1]) Let fq(., u) : I × M → M be the

time dependent vector field with the associated fT,u
q , fT∗,u

q .

Along the state trajectory x(t) which is the integral curve of

fq(., u) on M we have that

〈Γ,Ψ〉 : I → R, (26)

is a constant map, where Γ is the integral curve of fT∗,u
q

in T ∗M and Ψ is the integral curve of fT,u
q in TM and

I = [t0, tf ].

Γ and Ψ play the role of λ(.) and v(.) appeared in the

solution of (20) and (22). The variation of the elementary

tangent perturbation in Lemma 2 is given in the following

proposition.

Proposition 2: ([1]) Let Ψ : [t1, tf ] → TM be the

integral curve of fT,u
q with the initial condition Ψ(t1) =

[fq(x(t1), u1)− fq(x(t1), u(t1))] ∈ Tx(t1)M, then

d

dǫ
Φ

(t,t1),x
π,fq

|ǫ=0 = Ψ(t), t ∈ [t1, tf ]. (27)

By the result above and Lemma 1 we have

d

dǫ
Φ

(t,t1),x
π,fq

|ǫ=0,x(t)∈M = TΦ
(t,t1)
fq

([fq(x(t1), u1)−

fq(x(t1), u(t1))]) ∈ Tx(t)M. (28)

For an optimal control problem restricted to non-hybrid

cases on M, evolving by the vector field fq(x(t), u(t)), q ∈
Q (q is fixed), the Hamiltonian function is defined as:

H : T ∗M× U → R, (29)

H(x, p, u) = 〈p, fq(x, u)〉, p ∈ T ∗
xM, fq(x, u) ∈ TxM. (30)

Employing the notation of Hamiltonian functions introduced

in [4], the general Hamiltonian is a smooth function H(u) =
H ∈ C∞(T ∗M) which is associated to a Hamiltonian vector

field
−→
H as follows (see [4]).

Denote
−→
H ∈ TT ∗M as the associated Hamiltonian vector

field to H by

σλ(.,
−→
H ) = dH, λ ∈ T ∗M, (31)

where σλ ∈ Ω2(T ∗M) is the symplectic structure defined

on T ∗M. The definition of Ωk can be found in [5]. The

Hamiltonian vector field satisfies the following equation, see

[4]:

i−→
H
σ = −dH, (32)

where i−→
H

is the contraction mapping along the vector

field
−→
H , see [5], [11]. The Hamiltonian systems λ̇(t) =

−→
H (λ(t)), λ(t) = (x(t), p(t)) ∈ T ∗M is locally written

as:

{

ẋ(t) = ∂H
∂pi

ṗ(t) = − ∂H
∂xi

, λ(t) ∈ T ∗M. (33)

X0

xf

MN

Fig. 1. Hybrid State Trajectory On An Sphere

III. HYBRID MINIMUM PRINCIPLE FOR AUTONOMOUS

HYBRID SYSTEMS

Here we consider a simple impulsive autonomous hybrid

system consisting of one switching manifold. Consider a

hybrid system with two distinct modes q1, q2 associated with

the following dynamics:

ẋqi(t) = fqi(x(t), u(t)), a.e. t ∈ [ti, ti+1), i = 1, 2, (34)

and

fqi(., u) : M× [ti, ti+1) → TM, i = 1, 2. (35)

Here we assume the state trajectory of both phases are

evolved on the same smooth differentiable n dimensional

manifold M. The switching manifold is an embedded n− 1
dimensional submanifold N of M. Similar to the proof in

[13] we divide the proof into two different parts. First, the

control needle variation is applied after the optimal switching

time so there is no state variation propagation along the state

trajectory before hitting the switching manifold.

Second, the needle variation is applied before the opti-

mal switching time. Figure 1 shows an autonomous hybrid

systems defined on an sphere with an embedded one dimen-

sional switching manifold.

Recalling assumption A2 on the accessibility of ẋ(t) =
fq1(x(t), u(t)), let us define v(x, t) for a hybrid system with

one autonomous switching, i.e. L = 1, as follows:

v(x, t) = infu∈UJ(t0, tf , h0, u), x ∈ M, t ∈ R, (36)

where

Φ
(t0,t)
fq1

(x0) = x ∈ N ⊂ M. (37)

In this paper we assume that the value function defined

above is differentiable at the optimal switching state on the

switching manifold.

Generalizing the HOCP results in the case M = Rn

in [13] we have the following theorem which gives the

HMP for autonomous hybrid systems with one autonomous

switching which occurs on the switching manifold N ⊂ M.
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dv(x, t) is introduced here as the differential form of

v(., t) : M → R for a given t ∈ R in the local coordinate

of x ∈ M.

Theorem 1: ([15]) Consider a hybrid system satisfying

hypotheses A1 and A2 on a smooth Riemannian n dimen-

sional state manifold M with the associated Riemannian

metric g and an n − 1 dimensional embedded switching

submanifold N ⊂ M; then corresponding to the optimal

control and optimal trajectory uo, xo, there exists a nontrivial

λo(t) ∈ T ∗M along the optimal state trajectory such that:

Hqi(x
o(t), po(t), uo(t)) ≤ Hqi(x

o(t), po(t), u1),

∀u1 ∈ U, t ∈ [t0, tf ], i = 1, 2, (38)

and the corresponding optimal adjoint variable λo(t) ∈ T ∗M
satisfies:

λ̇o(t) =
−→
H qi(λ

o(t)), t ∈ [t0, tf ], i = 1, 2. (39)

At the optimal switching state and switching time xo(ts), ts
from q1 to q2 we have

po(t−s ) = po(t+s )− µdv(xo(ts), ts),

po(t−s ), λ
o(t+s ) ∈ T ∗

x(ts)
M, (40)

xo(t0) = x0, po(tf ) = dh(xo(tf )) ∈ T ∗
xo(tf )

M,

dh =

n
∑

i=1

∂h

∂xi
dxi ∈ T ∗

xM, (41)

Hqi(x
o(t−s ), p

o(t−s ), u
o(t−s )) =

Hqi+1(x
o(t+s ), p

o(t+s ), u
o(t+s )). (42)

where µ ∈ R and

dv(xo(ts), ts) = Σn
j=1

∂v(xo(ts), ts)

∂xj
dxj ∈ T ∗

xo(ts)
M, (43)

IIn order to use the methods introduced in [4], [1], [2], we

establish the following lemmas using the perturbed control

uπ(.) and the associated state variation at the final state

xo(tf ).

Denote by ts(ǫ) the switching time corresponding to

uπ(t, ǫ) which is assumed to be differentiable from the right

with respect to ǫ for all u ∈ U then

Lemma 4: ([15]) For a HOCP defined on a Reimannian

state manifold M with an associated metric g we have

〈−dh(xo(tf )), vπ(tf )〉 ≤ 0, ∀vπ(tf ) ∈ Ktf , (44)

where

K1
tf

=
⋃

ts≤t<tf

⋃

u∈Ut

TΦ
(tf ,t)
fq2

[fq1(x
o(t, u))− fq1(x

o(t), uo(t))]

⊂ Tx(tf)M, t ∈ [ts, tf ], (45)

and

K2
tf

=
⋃

t0≤t<ts

⋃

u∈Ut

TΦ
(tf ,ts)
fq2

◦ TΦ
(ts,t)
fq1

×[fq1(x
o(t, u))− fq1(x

o(t), uo(t))] +
dts(ǫ)

dǫ

×TΦ
(tf ,ts)
fq2

(

fq2(x
o(ts), u

o(ts))

−fq1(x
o(t−s ), u

o(t−s ))
)

⊂ Tx(tf )M, t ∈ [t0, ts),

(46)

and

Ktf = K1
tf

∪K2
tf
. (47)

Since N is an embedded submanifold of M there neces-

sarily exists an embedding i : N → M. The push-forward

of the inclusion i is written as follows:

T i : TxN → TxM. (48)

For any vector X ∈ TxN , the image vector T i(X) ∈ TxM
is a tangent vector on M. If we write the coordinate represen-

tation of X as X = Σn
j=1X

j ∂
∂xj then X ∈ TxN if and only

if Xj = 0, j > k, where k is the dimension of N , see [5],

page 178. The following lemma gives the relation between

the differential form dv(x(ts), ts) = Σn
j=1

∂v(x(ts),ts)
∂xj dxj ∈

T ∗
x(ts)

M and any tangent vector X ∈ Tx(ts)M which is also

a tangent vector in Tx(ts)N .

Lemma 5: ([15]) Consider the value function v for an

autonomous HOCP with two different regimes separated by

an embedded switching manifold N ⊂ M of dimension k;

at the optimal switching state xo(ts) ∈ N and switching

time ts we have

〈dv(xo(ts), ts), X〉 = 0, ∀X ∈ T i(Tx(ts)N ). (49)

IV. SIMULATION RESULTS

The results presented in this paper are applied to hybrid

systems defined on Riemannian manifolds. We employ the

Gradient Geodesic-HMP (GG-HMP) as the optimization

algorithm which is the extension to Rimannian manifolds

of the HMP algorithm introduced in [13], see [7]. This is

done by introducing a geodesic gradient flow algorithm on

N and constructing an HMP algorithm along geodesics on

N .

Here we apply the GG-HMP algorithm to an HOCP

defined on a torus with the following parametrization:

x(ζ, w) = (R + rcos(w))cos(ζ),

y(ζ, w) = (R+ rcos(w))sin(ζ),

z(ζ, w) = rsin(w), w, ζ ∈ [0, 2π]. (50)

where R = 1, r = 0.5. The hybrid system goes through each

phase in numerical order and the dynamics are given in the

local parametrization space of the torus T 2 as follows:

S1

(

ζ̇
ẇ

)

=

(

1.5 0
0 1

)(

ζ
w

)

+

(

1
1

)

u, (51)
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S2

(

ζ̇
ẇ

)

=

(

5 0
0 1

)(

ζ
w

)

+

(

1
1

)

u, (52)

S3

(

ζ̇
ẇ

)

=

(

3 0
0 4

)(

ζ
w

)

+

(

1
1

)

u, (53)

S4

(

ζ̇
ẇ

)

=

(

1 0
0 3

)(

ζ
w

)

+

(

1
1

)

u, (54)

S5

(

ζ̇
ẇ

)

=

(

1 0
0 2

)(

ζ
w

)

+

(

1
1

)

u, (55)

S6

(

ζ̇
ẇ

)

=

(

1 0
0 3

)(

ζ
w

)

+

(

1
1

)

u. (56)

We consider the induced metric from R3 as the Riemannian

metric on T 2. The switching submanifolds and the cost

function are defined as follows:

{0 ≤ w ≤ 2π, ζ = 0,
π

6
,
π

3
,
π

2
,
2π

3
}, J =

∫ 8

0

u2(t)dt, (57)

and the boundary conditions are given as:

x0 = (1.4117,−0.4367,−0.1478) ∈ R3, (58)

xf = (−0.1478,−0.49980, 0.10130) ∈ R3.

Figure 2 shows the state trajectory on the torus

and Figure 3 depicts the adjoint variable with the

discontinuity at the optimal switching times ts =
[1.2137, 2.6250, 4.0145, 5.2821, 6.6382].
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