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Abstract— The purpose of this paper is to study an evolution
(i.e., forward in time) mean field equation system of a dynamic
game initial mean consensus model. In this model: (i) each agent
has simple stochastic dynamics with inputs directly controlling
its state’s rate of change, and (ii) each agent seeks to minimize
its individual long run average cost function involving a mean
field coupling to the states of all other agents. The Evolution
Mean Field (EMF) equation system of the continuum (i.e., as
the population size N goes to infinity) version of this model
consists of two coupled (forward in time) deterministic PDEs
which are also coupled to a (spatially averaged) cost coupling
function. The stationary equilibrium of the EMF equation
system yields a mean-consensus behaviour in the system. The
small perturbation stability of the EMF equation system around
this stationary equilibrium solution is established. Hence, the
EMF equation system provides a forward in time process which
asymptotically in time converges to the stationary equilibrium
solution from any given initial condition in a infinitesimal
neighborhood of that equilibrium.

I. INTRODUCTION

A consensus process is the process of dynamically reach-
ing an agreement between the agents of a group on some
common state properties such as position or velocity. The
formulation of consensus systems is one of the important
issues in the area of multi-agent control and coordination,
and has been an active area of research in the systems and
control community over the past few years (see [1] and the
references therein, among many other papers).

In [2], [3], [4] we synthesized the consensus behaviour as
a dynamic game problem via stochastic Mean Field (MF)
control (or Nash Certainty Equivalence (NCE)) theory (see
[5]). In this Dynamic Game Consensus Model (DGCM):
(i) each agent has simple stochastic dynamics with inputs
directly controlling its state’s rate of change, and (ii) each
agent seeks to minimize its individual cost function involving
a mean field coupling to the states of all other agents. This
initial mean consensus formulation is motivated by many
social, economic, and engineering models (see [3]).

Based on the MF (NCE) approach developed in [6], we de-
rived an individual based MF equation system of the DGCM
and explicitly computed its unique solution in [2], [3]. The
resulting MF control strategies steer each individual’s state
toward the initial state population mean (i.e., initial mean
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consensus). Furthermore, these control laws possess an εN-
Nash equilibrium property where εN goes to zero as the
population size N goes to infinity.

In an analogous way and based on the approach developed
in [7], the continuum based MF equation system of the
DGCM is derived in [4]. Unlike [2], [3], the initial states
for all the agents of the model in [4] are not necessarily
assumed to be distributed according to a Gaussian dis-
tribution. The continuum (i.e., as the population size N
goes to infinity) based MF equation system consists of two
coupled deterministic equations: (i) a nonlinear (backward in
time) Hamilton-Jacobi-Bellman (HJB), and (ii) a nonlinear
(forward in time) Fokker-Planck-Kolmogorov (FPK), which
are also coupled to a (spatially averaged) cost coupling
function approximating the aggregate effect of the agents
in the infinite population limit. The corresponding Gaussian
stationary solution of the continuum MF equation system
and its small perturbation stability analysis (based on the
technique in [8]) are studied in [4].

The solution of the HJB equation is the relative value
function which represents perturbations around the steady-
state optimal cost rate with respect to an asymptotically
stationary process. It turns out that this HJB equation in the
MF system of equations has a larger class of stable perturbed
solutions in forward time than in backward time [8].

In this paper we study an Evolution (i.e., forward in
time) Mean Field (EMF) equation system of the continuum
version DGCM where the initial states for all the agents
are not necessarily assumed to be distributed according to a
Gaussian distribution. The EMF equation system consists of
two coupled (forward in time) deterministic PDEs which are
also coupled to the cost coupling function. This forward in
time mean field process has previously appeared in the study
of “mean field games” models in [8], [9].

In this paper the linearized stability of the EMF equa-
tion system around the stationary equilibrium solution is
shown. This stationary equilibrium yields a mean-consensus
behaviour in the system. Hence, the EMF algorithm provides
a forward in time process which asymptotically in time
converges to the stationary equilibrium solution from any
given initial condition in the infinitesimal neighborhood of
that equilibrium.

The problem formulations and the results of this paper
differ from those in [8] in the following respects: (i) in [8],
as in the Lasry and Lions mean field games [10], for systems
with finite population sizes a simplifying assumption was
used stipulating that each agent’s strategy depends only on its
own driving Brownian motion, (ii) the ergodic individual cost
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functions of our multi-agent model is fundamentally different
from the discounted logarithmic utility function considered
in [8], and hence the analysis of the corresponding EMF
equation systems are different, and (iii) finally, the consensus
behaviour is not studied in [8].

In this paper the symbols ∂t and ∂z are respectively denote
the partial derivative with respect to variables t and z, and
∂ 2

zz denotes the second derivative with respect to z.

II. THE DYNAMIC GAME CONSENSUS MODEL

Consider a system of N agents. The dynamics of the ith

agent is given by a controlled SDE:

dzi(t) = ui(t)dt +σdwi(t), t ≥ 0, 1≤ i≤ N, (1)

where zi(·), ui(·)∈R are the state and control input of agent
i, respectively; σ is a non-negative scalar; and {wi(·) : 1 ≤
i≤N} denotes a sequence of mutually independent standard
scalar Wiener processes on some filtered probability space
(Ω,F ,{Ft}t≥0,P) where Ft is defined as the natural filtra-
tion given by σ -field σ(zi(τ) : 1≤ i≤ N,τ < t). We assume
that the initial states {zi(0) : 1 ≤ i ≤ N} are measurable
on F0, mutually independent, and independent of Wiener
processes {wi : 1 ≤ i ≤ N}. It is important to note that the
initial states for all the agents are not necessarily assumed
to be distributed according to a Gaussian distribution.

Let the admissible control set of the ith agent be Ui :={
ui(·) : ui(t) is adapted to the sigma-field Ft , |zi(T )|2 =

o(
√

T ),
∫ T

0 (zi(t))2dt = O(T ), a.s.
}

. The objective of the
ith individual agent is to almost surely (a.s.) minimize its
ergodic or Long Run Average (LRA) cost function given by

JN
i (ui,u−i) := limsup

T→∞

1
T

∫ T

0

(
(zi−

1
N−1

N

∑
j 6=i

z j)
2 + ru2

i
)
dt,

(2)

where r is a positive scalar and zN
−i(·) :=

(
1/(N −

1)
)

∑
N
j=1, j 6=i z j(·) is called the mean field term. To indicate

the dependence of Ji on ui, u−i := (u1, · · · ,ui−1,ui+1, · · · ,uN)
and the population size N, we write it as JN

i (ui,u−i).

III. PREVIOUS RESULTS

In this section we briefly summarize the main results of
[4]. We take the following steps to the DGCM (1)-(2) based
on the MF control approach (developed in [7] after [6]):

1) The continuum (infinite population) limit: In this
step a Nash equilibrium for the DGCM (1)-(2) in the
continuum population limit (as N goes to infinity) is
characterized by a “consistency relationship” between
the individual strategies and the mass effect (i.e., the
overall effect of the population on a given agent). This
consistency relationship is described by a so-called MF
equation system (see (12)-(14) below).

2) εN-Nash equilibrium for the finite N model: The
distributed continuum based MF control law (derived
from the MF equation system in Step 1) establishes
an εN-Nash equilibrium (see Theorem 4) for the finite
N population DGCM (1)-(2) where εN goes to zero
asymptotically (as N approaches infinity).

A. Mean Field Approximation

In a large N population system, the mean field approach
suggests that the cost-coupling function for a “generic” agent
i (1≤ i≤ N) in (2),

cN(zi(·),z−i(·)) :=
(

zi(·)−
1

N−1

N

∑
j 6=i

z j(·)
)2

,

be approximated by a deterministic function c(z, ·) which
only depends on z = zi.

Replacing the function cN(zi,z−i) with the deterministic
function c(zi, ·) in the ith agent’s LRA cost function (2)
reduces the DGCM (1)-(2) to a set of N independent optimal
control problems.

Now we consider a “single agent” optimal control prob-
lem:

dz(t) = u(t)dt +σdw(t), t ≥ 0, (3)

inf
u∈U

J(u) := inf
u∈U

limsup
T→∞

1
T

∫ T

0

(
c(z, t)+ ru2(t)

)
dt, (4)

where z(·), u(·) ∈ R are the state and control input, respec-
tively; w(·) denotes a standard scalar Wiener process; c(z, ·)
is a known positive function; and U is the corresponding
admissible control set of the generic agent.

An admissible control uo(·) ∈U is called a.s. optimal if
there exists a constant ρo such that

J(uo) = limsup
T→∞

1
T

∫ T

0

(
c
(
zo(t), t

)
+ r
(
uo(t)

)2
)

dt = ρ
o, a.s.,

where zo(·) is the solution of (3) under uo(·), and for any
other admissible control u(·) ∈U , we have a.s. J(u)≥ ρo.

The associated Hamilton-Jacobian-Bellman (HJB) equa-
tion of the optimal control problem (3)-(4) is given by (see
[4] for the derivation)

∂tv(z, t)+
σ2

2
∂

2
zzv(z, t)+H

(
z,∂zv(z, t)

)
+ c(z, t) = ρ

o, (5)

where v(z, ·) is the relative value function, ρo is the optimal
cost and

H(z, p) := min
u∈U

{
up+ ru2}, z, p ∈ R,

is the Hamiltonian. For x∈R and 0< t <∞, v(x, t) is defined
as

inf
u∈U

(
inf
τ≥t

E
[∫ τ

t

(
c
(
z(s),s

)
+ r
(
u(s)

)2−ρ
o
)

ds
∣∣z(t) = x

])
,

(6)

where the inner infimum is over all bounded stopping times
with respect to the natural filtration {Ft}t≥0 (see [11]).

The solution of the optimal control problem (3)-(4) is

uo(t) := H
(
z,∂zv(z, t)

)
=− 1

2r
∂zv(z, t), t ≥ 0.

Substituting uo(·) into the HJB equation (5) yields the
(backward in time) nonlinear deterministic PDE:

∂tv(z, t)−
1
4r

(
∂zv(z, t)

)2
+

σ2

2
∂

2
zzv(z, t)+ c(z, t) = ρ

o. (7)
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We enunciate the following assumption:
(A1) We assume that the sequence {Ezi(0) : 1 ≤ i ≤ N}

is a subset of a fixed compact set A independent of N, and
has a compactly supported probability density f0(z) (which
is not necessarily a Gaussian density). Let

fN(x, t) :=
1
N

N

∑
i=1

δ
(
x−Ezi(t)

)
,

be the empirical distribution density associated with N agents
where δ is the Dirac delta. We assume that { fN(x,0) : N≥ 1}
converges weakly to f0, i.e., for any φ(x)∈Cb(R) (the space
of bounded continuous functions on R),

lim
N→∞

∫
B

φ(x) fN(x,0)dx =
∫

B
φ(x) f0(x)dx,

for any subset B⊂A .
For any function φ(x) ∈Cb on R we have∫

φ(x) fN(x, t)dx =
1
N

N

∑
i=1

φ
(
Ezi(t)

)
.

Since the processes {zi(·) : 1 ≤ i ≤ N} are independent and
identically distributed (i.i.d.), by the ergodic theorem we
have

lim
N→∞

∫
φ(x) fN(x, t)dx =

∫
φ(x) f u(x, t)dx, a.s. (8)

where f u(z, ·) is the density of the generic agent’s state which
evolves according to the SDE (3) with control law u(·)∈U .

The evolution of the population density f u(z, ·) satisfies
the Fokker-Planck-Kolmogorov (FPK) equation

∂t f u(z, t)+∂z
(
u f u(z, t)

)
=

σ2

2
∂

2
zz f u(z, t), (9)

where f u(z,0) = f0(z) is characterized by (A1).
Now by substituting the optimal control uo(·) into its

FPK equation (9) we get the (forward in time) nonlinear
deterministic PDE

∂t f (z, t)− 1
2r

∂z

((
∂zv(z, t)

)
f (z, t)

)
=

σ2

2
∂

2
zz f (z, t), (10)

where f (z,0) = f0(z), and v(z, ·) is the solution of the
equation (7).

Finally, for a generic agent i the ergodic theorem in
(8) suggests the approximation of cN(zi,zo

−i) for a large N
population system by

c̄(zi, ·) =
(
zi−

∫
R

z f (z, ·)dz
)2

=
(∫

R
(zi− z) f (z, ·)dz

)2
, (11)

where f (z, ·) is the population density under the optimal
control uo(·) (i.e., f (z, ·) is the solution of the equation (10)).

B. Mean Field Equation System

In this section we aim to construct the “consistency
relationship” (between the individual strategies and the mass
influence effect) in the stochastic MF control theory (based
on the approach developed in [7] after [6]). The key idea
is to prescribe a spatially averaged mass function c̄(z, ·)
characterized by the property that it is reproduced as the
average of all agents’ states in the continuum of agents

whenever each individual agent optimally tracks the same
mass function c̄(z, ·).

Considering the continuum population limit (i.e., as N
approaches ∞) of the DGCM (1)-(2) where f (z,0) = f0(z)
is the initial population density and

∫
R f (z, t)dz = 1 for any

t ≥ 0, we obtain the following continuum based mean field
(MF) equation system:

[MF-HJB]

∂tv(z, t) =
1
4r

(
∂zv(z, t)

)2− c̄(z, t)+ρ
o− σ2

2
∂

2
zzv(z, t), (12)

[MF-FPK]

∂t f (z, t) =
1
2r

∂z

((
∂zv(z, t)

)
f (z, t)

)
+

σ2

2
∂

2
zz f (z, t), (13)

[MF-CC]

c̄(z, t) =
(∫

R
(z− z′) f (z′, t)dz′

)2
. (14)

The system of equations (12)-(14) consists of: (i) the
nonlinear (backward in time) MF-HJB equation (7) which
describes the HJB equation of a generic agent’s ergodic
optimal problem (3)-(4) with cost coupling c̄(z, ·), (ii) the
nonlinear (forward in time) MF-FPK equation (10) which
describes the evolution of the population density with the
optimal control law

uo(·) :=− 1
2r

∂zv(z, ·), (15)

and (iii) the spatially averaged MF-CC (Cost-Coupling) (11)
which is the aggregate effect of the agents in the infinite
population limit.

C. Gaussian Stationary Solution

In the stationary setting, the MF equation system (12)-(14)
takes the form:

1
4r

(
∂zv∞(z)

)2− σ2

2
∂

2
zzv∞(z) = c̄∞(z)−ρ

o, (16)

1
2r

∂z

((
∂zv∞(z)

)
f∞(z)

)
=−σ2

2
∂

2
zz f∞(z), (17)

c̄∞(z) =
(∫

R
(z− z′) f∞(z′)dz′

)2
. (18)

Theorem 1: [4] For any arbitrary µ ∈ R, there exists the
following solution of the stationary equation system (16)-
(18):

v∞(z) =
√

r(z−µ)2, ρ
o = σ

2√r, (19)

f∞(z) =
1√

2πs2
exp
(
− (z−µ)2

2s2

)
, s2 :=

σ2√r
2

, (20)

c̄∞(z) = (z−µ)2, (21)

where v∞(z) is defined up to a constant.
It is important to note that the stationary solution of the

system f∞(·) is Gaussian even thought the initial states for
all the agents are not necessarily assumed to be distributed
according to a Gaussian distribution. The asymptotically lin-
earized stability of the MF equation system (12)-(14) around
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the stationary solution (19)-(21) determines the solution of
equation (12) uniquely as

v(z, t) = v∞(z) =
√

r(z−µ)2, t ≥ 0, (22)

where

µ :=
∫
R

z f0(z)dz, (23)

is the initial state population mean (see [4]).

D. Mean-Consensus

Definition 2: [2] Mean-consensus is said to be achieved
asymptotically for a group of N agents if limt→∞ |Ezi(t)−
Ez j(t)|= 0 for any i and j, 1≤ i 6= j ≤ N.

Using (22) for a finite N population system (1)-(2) yields
the set of control laws

uo
i (·)≡−

1
2r

∂zv(z, ·)
∣∣
z=zi

=
−1√

r
(zi(·)−µ), 1≤ i≤ N, (24)

where µ is given in (23).
Applying the MF control laws (24) to the agents’ dynamics

(1) yields (1≤ i≤ N)

dzo
i (t) =

−1√
r

(
zo

i (t)−µ
)
dt +σdwi(t), t ≥ 0. (25)

The processes (25) have the solutions:

zo
i (t) = µ + e

−t√
r
(
zi(0)−µ

)
+σ

∫ t

0
e−

(t−τ)√
r dwi(τ),

for t ≥ 0 and 1≤ i≤ N < ∞. We have the following theorem
which is the analogous version of Theorem 3 in [2].

Theorem 3: [4] By applying the continuum based MF
control laws (24) in a finite population DGCM (1)-(2), a
mean-consensus is reached asymptotically (as time goes to
infinity) with individual asymptotic variance σ2√r/2.

E. ε-Nash Equilibrium Property

Now we present the εN-Nash equilibrium property of the
continuum based MF control laws (24) for a finite N popu-
lation system (1)-(2) where εN goes to zero asymptotically
(as the population size N approaches infinity).

Theorem 4: [4] The set of MF control laws {uo
i ∈Ui : 1≤

i≤N} in (24) generates an a.s. O(εN)-Nash equilibrium, i.e.,
for any fixed i, 1≤ i≤ N, we have

JN
i (u

o
i ,u

o
−i)−O(εN)≤ inf

ui∈Ui
JN

i (ui,uo
−i)≤ JN

i (u
o
i ,u

o
−i), a.s.

where uo
−i := (uo

1, · · · ,uo
i−1,u

o
i+1, · · · ,uo

N).

IV. THE EVOLUTION MEAN FIELD EQUATION SYSTEM

The relative value function v(z, ·) defined in (6) represents
perturbations around the steady-state optimal cost rate. It
turns out that the corresponding HJB equation (12) in the
MF system of equations has a larger class of stable perturbed
solutions in forward time than in backward time (see [8]).

In this section we introduce an Evolution (i.e., forward in
time) Mean Field (EMF) equation system (based on [8]) to
exhibit a forward in time process which asymptotically (as
time goes to infinity) converges to the stationary equilibrium

solution (19)-(21) (where µ is given in (23)) from any
given initial guess in a infinitesimal neighborhood of this
equilibrium.

The EMF equation system is given by

∂tv(z, t) =
−1
4r

(
∂zv(z, t)

)2
+ c̄(z, t)−ρ

o +
σ2

2
∂

2
zzv(z, t), (26)

∂t f (z, t) =
1
2r

∂z

((
∂zv(z, t)

)
f (z, t)

)
+

σ2

2
∂

2
zz f (z, t), (27)

c̄(z, t) =
(∫

R
(z− z′) f (z′, t)dz′

)2
, (28)

for t ≥ 0, where v(z,0) and f (z,0) are the given initial guess
of the stationary equilibrium.

In the EMF equation system (26)-(28) the equations (27)-
(28) are the same as (13)-(14) but the backward in time MF-
HJB equation (12) is replaced by a forward in time equation
(26). It is important to note that the stationary solution of
the EMF equation system (26)-(28) is the same as that of
the MF equation system (12)-(14) (see Theorem 1).

A. Stability Analysis
By taking the approach of [8]) we study the small per-

turbation stability of the EMF equation system (26)-(28)
around the stationary equilibrium solution (19)-(21) (where
µ is given in (23)). In the nonlinear EMF equation system
(26)-(28) we let the perturbation of the solution be

vε(z, t) = v∞(z)+ ε ṽ(z, t), (29)

fε(z, t) = f∞(z)
(
1+ ε f̃ (z, t)

)
, (30)

c̄ε(z, t) = c̄∞(z)+ ε c̃(z, t), (31)

for z ∈ R and t ≥ 0, where v∞, f∞ and c̄∞ are defined in
(19)-(21), and f̃ (z,0) and ṽ(z,0) are given and represent the
perturbations on f∞(z) and v∞(z).

Remark 5: The reason why we take the relative perturba-
tion form of the density function f in (30) is to employ the
Hermite series expansion for the resulting linearized equation
system (see below).

By (20) and since f is a probability density, (30) implies
that ∫

R
f̃ (z, t) f∞(z)dz = 0, t ≥ 0. (32)

On the other hand, we have µ ≡
∫
R z f0(z)dz =

∫
R z f∞(z)dz

(by (23) and (20)) and therefore (30) yields∫
R

z f̃ (z,0) f∞(z)dz = 0. (33)

Proposition 6: The linearization of the EMF equation
system (26)-(28) around the stationary equilibrium solution
(19)-(21) takes the form

∂t ṽ(z, t) =
−(z−µ)√

r
∂zṽ(z, t)+

σ2

2
∂

2
zzṽ(z, t)+ c̃(z, t), (34)

∂t f̃ (z, t) =
−(z−µ)√

r
∂z f̃ (z, t)+

σ2

2
∂

2
zz f̃ (z, t)

− 1
σ2r

( (z−µ)√
r

∂zṽ(z, t)−
σ2

2
∂

2
zzṽ(z, t)

)
, (35)

c̃(z, t) =−2(z−µ)
(∫

R
z f̃ (z, t) f∞(z)dz

)
, (36)
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where f̃ (z,0) and ṽ(z,0) are given.
Proof. See the appendix.

For the analysis of the linearized equation system (34)-
(36) we introduce the Hermite polynomials associated to the
Hilbert space L2(R, f∞(z)dz). In this space we have the inner
product (g,h) :=

∫
R g(z)h(z) f∞(z)dz, and the norm is given

by ‖g‖L2 := (g,g)1/2.
Definition 7: ([12]) We define the nth Hermite polyno-

mial, n ∈ N0, of the space L2(R, f∞(z)dz) by

Hn(z) := (−1)ns2n exp
( (z−µ)2

2s2

) dn

dzn exp
(−(z−µ)2

2s2

)
,

where µ and s2 are defined in (23) and Theorem 1.
Lemma 8: ([4] after [8]) We have the following:

(a) The set of Hermite polynomials {Hn : n ∈ N0} forms
an orthogonal basis of the Hilbert space L2(R, f∞(z)dz)
such that (

Hm,Hn
)
= s2nn! δ (n,m), (37)

where δ is the Kronecker delta function.
(b) The Hermite polynomials Hn are eigenfunctions of the

operator

L g(z) :=
1√
r
(z−µ)∂zg(z)−

σ2

2
∂

2
zzg(z), (38)

such that L Hn = (1/
√

r)nHn for any n ∈ N0.
By using the operator L defined in (38) we can rewrite

the equation system (34)-(36) as

∂t ṽ(z, t) =−L ṽ(z, t)+ c̃(z, t), (39)

∂t f̃ (z, t) =− 1
σ2r

L ṽ(z, t)−L f̃ (z, t), (40)

c̃(z, t) =−2(z−µ)
(∫

R
z f̃ (z, t) f∞(z)dz

)
, (41)

where f̃ (z,0) and ṽ(z,0) are given.
Definition 9: [4] A stationary solution (v∞, f∞) of the

nonlinear equation system (12)-(14) (where µ is given in
(23)) is linearly asymptotically stable if the solution f̃ of
the linear equation system (34)-(36) with initial pertur-
bation f̃ (z,0) ∈ L2( f∞(z)dz) exists in L2(R, f∞(z)dz) and
limt→∞ ‖ f̃ (z, t)‖L2 = 0.

Let f̃ (z,0) ≡ ∑
∞
n=0 kn(0)Hn(z) and ṽ(z,0) ≡

∑
∞
n=0 ln(0)Hn(z) then since v and hence ṽ in (29) are

defined up to a constant we choose l0(0) = 0. On the other
hand, (32) and (33) respectively yield∫

R
f̃ (z,0) f∞(z)dz = (H0, f̃ (z,0)) = k0(0) = 0,

and∫
R

z f̃ (z,0) f∞(z)dz = (µH0 +H1, f̃ (z,0)) = k1(0) = 0.

We enunciate the following assumption:
(A2) Assume that the initial perturbations f̃ (z,0) and

ṽ(z,0) of the stationary solutions f∞(z) and v∞(z) are in the
space L2( f∞(z)dz) and are such that

f̃ (z,0) =
∞

∑
n=2

kn(0)Hn(z), ṽ(z,0) =
∞

∑
n=1

ln(0)Hn(z),

for z ∈ R.
Theorem 10: Assume (A1) and (A2) hold. Then, we have

the following:
(a) (Existence and uniqueness) There exists a well-defined

unique, bounded and C∞ (i.e., all of its partial derivatives
exist) solution to the equation system (34)-(36) in the
space L2(R, f∞(z)dz). The solution is

ṽ(z, t) =
l1(0)

2

(
1+ exp

(−2t√
r

))
H1(z)

+
∞

∑
n=2

ln(0)exp
(−nt√

r

)
Hn(z), (42)

f̃ (z, t) =
−l1(0)
4
√

rs2

(
1− exp

(−2t√
r

))
H1(z)

+
∞

∑
n=2

(
kn(0)−

nt
σ2r
√

r
ln(0)

)
exp
(−nt√

r

)
Hn(z), (43)

c̃(z, t) =
−l1(0)

4
√

r

(
1− exp

(−2t√
r

))
, (44)

for t ≥ 0 and z ∈ R.
(b) (Asymptotic linearized stability) Under the unique,

bounded and C∞ solution (42)-(44), the stationary equi-
librium solution (v∞, f∞, c̄∞) (where µ is given in (23))
of the EMF equation system (26)-(28) is linearly asymp-
totically stable if l1(0) = 0.

Proof. See the appendix.
Remark 11: Since l1(0) =

∫
R zṽ(z,0) f∞(z)dz, the interpre-

tation of the assumption l1(0) = 0 in the above theorem
is that the initial perturbation ṽ(z,0) is an even function
in the space L2(R, f∞(z)dz) (the same evenness assumption
appears in Guéant’s model [8]). Moreover, this assumption
yields c̃(z, t) = 0 in (44). In other words, by the evenness
assumption the initial perturbations ( f̃ (z,0) and ṽ(z,0)) have
no effect on the cost perturbation c̃(z, t).

The ε perturbed asymptotically stable solution of the
equation (26), v(z, ·) = v∞(z)+ε ṽ(z, ·) where ṽ(z, ·) is defined
in (42) with l1(0) = 0, yields the control law:

uo(z, ·) =− 1√
r
(z−µ)+ ε

∞

∑
n=2

nln(0)exp
(−nt√

r

)
Hn−1(z),

by (15) where we use the fact that ∂zHn(z) = nHn−1(z).
Hence, the resulting control law of the (forward in time)
EMF equation system (26)-(28): (i) gives the same asymp-
totic steady-state performance as (24) which is derived from
the (backward/forward) MF equation system (12)-(14), and
(ii) has a larger class of stable perturbed solutions than the
control law (24) in the transient state.

APPENDIX

Proof of Proposition 6: For (34) and (35) we follow the
approach of Proposition 8 in [8]. By substituting (29) and
(31) into the equation (26) we get

ε∂t ṽ(z, t) =
−1
4r

(
∂zv∞(z)

)2− ε√
r
(z−µ)∂zṽ(z, t)+ c̄∞(z)

+ ε c̃(z, t)−ρ
o +

σ2

2
∂

2
zzv∞(z)+ ε

σ2

2
∂

2
zzṽ(z, t)+O(ε2),
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where we use ∂zv∞(z) = 2
√

r(z− µ) by (19). Since v∞, c̄∞

and ρo are the solutions of the stationary equation (16), the
terms of first order in ε in the above equation yield (34).

By substituting (29) and (30) into the MF-FPK equation
(26) we get

ε ∂t f̃ (z, t) f∞(z) =
1
2r

∂z

((
∂zv∞(z)

)
f∞(z)

)
+

+ ε
1
2r

∂z

((
∂zv∞(z)

)(
f̃ (z, t) f∞(z)

)
+
(
∂zṽ(z, t)

)
f∞(z)

)
+

σ2

2
∂

2
zz f∞(z)+ ε

σ2

2
∂

2
zz
(

f̃ (z, t) f∞(z)
)
+O(ε2). (A.1)

By (17) and the properties of the Gaussian form of f∞:

∂z f∞(z) =
−(z−µ)

s2 f∞(z), ∂
2
zz f∞(z) =

( (z−µ)2

s4 − 1
s2

)
f∞(z),

where s2 =σ2√r/2 is defined in (20), the terms of first order
in ε in the perturbed equation (A.1) yield (35).

Finally, by substituting (30) into equation (14) we get

c̄(z, t) =
(∫

R
(z− z′) f (z′, t)dz′

)2

=
(
(z−µ)+ ε

∫
R
(z− z′) f̃ (z′, t) f∞(z′)dz′

)2
= (z−µ)2

+2ε(z−µ)
(∫

R
(z− z′) f̃ (z′, t) f∞(z′)dz′

)
+O(ε2)

= c̄∞(z)+ ε c̃(z, t)+O(ε2).

This together with (32) results in (36).
Proof of Theorem 10: (a) Note that at any time t ≥ 0

the linearized cost c̃(z, t) ∈ span
(
H1(z)

)
(see (A.2) below).

Therefore, for n≥ 2 we can write the equation system (39)-
(40) in the Hermite coordinates as the ODE

∂

∂ t

(
ln(t)
kn(t)

)
=

(
− n√

r 0
− n

σ2r
√

r − n√
r

)(
ln(t)
kn(t)

)
, t ≥ 0,

by Lemma 8-(b), where ln(0) and kn(0) are given. The unique
and bounded solution of the above equation is

ln(t) = ln(0)exp
(−nt√

r

)
, t ≥ 0, n≥ 2,

kn(t) =
(

kn(0)−
nt

σ2r
√

r
ln(0)

)
exp
(−nt√

r

)
, t ≥ 0, n≥ 2,

On the other hand, (41) yields

c̃(z, ·) =−2H1(z)
(
z,

∞

∑
n=1

kn(·)Hn(z)
)
=−2s2k1(·)H1(z),

(A.2)

by (37) and since z = µH0(z) + H1(z). Then the Hermite
coordinates of the equation system (39)-(41) for n= 1 satisfy
the ODE (by Lemma 8-(b))

∂

∂ t

(
l1(t)
k1(t)

)
=

(
− 1√

r −2s2

− 1
2s2r − 1√

r

)(
l1(t)
k1(t)

)
, (A.3)

for t ≥ 0 where l1(0) and k1(0) = 0 are given and s2 =
σ2√r/2. The matrix

A :=

(
− 1√

r −2s2

− 1
2s2r − 1√

r

)
,

has one zero and one negative eigenvalue, and can be written
in the Jordan normal form A = PJP−1 with

J :=

(
0 0
0 −2√

r

)
, P :=

(
−2
√

rs2 2
√

rs2

1 1

)
.

Therefore, the solution of (A.3) is(
l1(t)
k1(t)

)
=

 l1(0)
2

(
1+ exp

(−2t√
r

))
−l1(0)
4
√

rs2

(
1− exp

(−2t√
r

))
 , t ≥ 0.

It can be shown that for any fixed t > 0, (kn(t))n
and (ln(t))n are in the space l1 (i.e., the space of se-
quences whose series is absolutely convergent). Moreover,
f̃ (z, ·) = ∑

∞
n=2 kn(·)Hn(z) and ṽ(z, ·) = ∑

∞
n=1 ln(·)Hn(z) are

well-defined, bounded, C∞ functions in the Hilbert space
L2(R, f∞(z)dz), and satisfy the equation system (34)-(36).
This completes the proof of Part (a).

(b) By part (a) we get

lim
t→∞

k1(t) =−l1(0)/(4
√

rs2), lim
t→∞

kn(t) = 0, n≥ 2.

Now by the Lebesgue Dominated Convergence theorem and
(37), (43) yields limt→∞ ‖ f̃ (z, t)‖L2 = l1(0)/(4

√
rs), which is

zero if l1(0) = 0. Hence, based on Definition 9 the stationary
equilibrium solution (v∞, f∞, c̄∞) (where µ is given in (23))
is linearly asymptotically stable if l1(0) is equal to zero.
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