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Abstract— In this paper, a formulation of thermodynamic sys-
tems in terms of contact geometry is proposed and a systematic
approach to the description of interconnected thermodynamic
systems is developed. The paper presents a number of results
on the stability of interconnected thermodynamic systems.

I. INTRODUCTION

Since the early seventies, there has been extensive re-
search in geometric foundations of thermodynamic systems
initiated by the pioneering work of Hermann [1]. Particular
attention has been paid to the dynamical description of
the evolution of thermodynamic systems (see, e.g., [2], [3],
[4], [5]). However, to the best of our knowledge, there has
not been any systematic investigation of the properties of
interconnected thermodynamic systems. Certain results on
interconnected systems have been presented in [6], [7], albeit
without analysis of the interconnection structure.

In our previous paper [8], a systematic approach to the
description of interconnected thermodynamic systems was
developed. The key feature of this description is the notion
of interconnection constraints which constrain its evolution
and the state space. However, there are always degrees of
freedom characterizing the evolution of the composite sys-
tem. These degrees of freedom correspond to those controls
(forces) which are not specified through the interconnection
constraints.

Our goal in this paper is to specify a minimal set of
conditions on the thermodynamic controls such that the
resulting evolution of a composite system conforms with
physical observations. In particular, we are interested in the
stability analysis of interconnected thermodynamic systems.

This paper is organized as follows: in Section II, the
basic facts from equilibrium thermodynamics are presented.
We review contact geometry and its relation to equilibrium
thermodynamics and define the evolutionary equations of a
controlled system on the equilibrium manifold. Section III
is devoted to the modelling of an interconnected thermody-
namic system. Finally, Section III shows the stability analysis
of two particular interconnected structures.

II. THERMODYNAMIC ESSENTIALS

A. Properties of a Physical Thermodynamic System

A (physical) thermodynamic system is a physical substance
separated from its environment which interacts with that
environment through energy and material exchange.
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In the following, we consider a special class of thermody-
namic systems satisfying the following physical assumptions:

P1. The system consists of a single phase, single component
substance.

P2. The system (substance) does not undergo any chemical
transformations [9].

In an equilibrium state, a thermodynamic system can be
completely described by the internal energy U , the entropy

S, the volume V , and the mole number N . All these are
extensive parameters, i.e. they satisfy the additivity property.
An extensive parameter X characterizing a composite system
is equal to the sum of parameters Xi characterizing the
respective subsystems.

We restrict attention to the special class of thermodynamic
processes occurring in thermodynamic systems which are
called quasi-static (QS) processes and defined as a sequence
of equilibrium states. This represents an idealization which
never occurs in practice. However, we assume that

P3. The rate of change of the thermodynamic parameters of
the environment is sufficiently small that there are no
gradients in intensive variables within the system.

P1, P2 and P3 lead us to the formal description of a
thermodynamic system based on the internal energy function

U = U(S, V,N). (1)

Definition 1: An equilibrium state is defined as an ele-
ment of the graph E = (S, V,N, U(S, V,N)) of the energy
function U , and the locus of all equilibrium states is referred
to as the equilibrium energy manifold.

As a result, a quasi-static process can be defined as a map
ψ : T → E , where T = [t0, tf ) ⊂ R≥0. In the following we
will identify T with the positive semi-axis: T = R≥0.

The behaviour of a homogeneous closed thermodynamic

system (no material exchange, i.e., N = const) is governed
by the first and the second law of thermodynamics. The first
law states that the change of energy in a quasi-static process
can be written as

dU =W +Q, (2)

where W and Q are the differential forms describing the
work done on the system, and the amount of heat trans-
ferred to the system. W and Q cannot be written as exact
differentials. However, for the case of the work associated
with a change in volume, it follows from first principles that
W = −pdV , where p is the internal pressure. The second
term is addressed by the second law. It says that there exists
an integrating factor 1

T
such that Q

T
= dS, where dS is
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an exact differential. T is referred to as the temperature.
Therefore, (2) can be rewritten in differential form as

dU = TdS − pdV. (3)

Furthermore, the set of all meaningful thermodynamic
processes is characterized by the following requirement:

P4. In a closed system, any trajectory γ12 ∈ Γ satisfies the
following inequality (known as the Clausius inequality):

∫

γ12

Q

T
≤

∫

γ12

dS, (4)

which implies
∫

γ12

dS ≥ 0 for each adiabatic trajectory,

that is to say for each trajectory not accompanied by
heat transfer between the system and its environment
(i.e., Q = 0).

By definition, a reversible trajectory γ̄12 ∈ Γ̄ ⊂ Γ is one
for which

∫

γ̄34

dS = 0 for any γ̄34 ⊂ γ̄12. Thus, for any

reversible trajectory γ̄12:
∫

γ̄34

Q
T
= 0 for any γ̄34 ⊂ γ̄12.

One consequence of the Clausius inequality is that the
total entropy of an adiabatic system strictly increases in an
irreversible process and remains constant in a reversible one
(see [10] for a detailed discussion).

In the region of state space where no phase changes occur,
the function U(·) is assumed to be sufficiently smooth that
all required partial derivatives exist. Therefore, generalizing
(3) we can write the differential of U as

dU=
∂U

∂S
(S, V,N)dS+

∂U

∂V
(S, V,N)dV+

∂U

∂N
(S, V,N)dN,

(5)
where the partial derivatives ∂U

∂S
= T , ∂U

∂V
= −p, and

∂U
∂N

= µ are the temperature, the internal pressure (note the
minus sign), and the chemical potential, respectively. The
temperature, the internal pressure and the chemical potential
are intensive parameters, i.e. they are invariant with respect
to the partitioning of the system. Note that all the intensive
and extensive variables take on only positive values.

B. Geometry of the Equilibrium Manifold E

Let M be a smooth (2n + 1)-dimensional manifold
equipped by a special 1-form ω ∈ T ∗M which satisfy the
condition ω∧(dω)n 6= 0. Such 1-forms are called maximally

non-integrable, or contact forms [11]. Correspondingly, the
pair (M, ω) is called the contact manifold. An integral man-
ifold of the contact form ω has the least possible dimension
which is equal to n for a (2n+1)-dimensional manifold M.
These submanifolds are called Legendre (sub)manifolds.

In the following we will consider a specific contact form:
Definition 2: Let (x0, x1, . . . , xn, p1, . . . , pn) be the local

coordinates on M. The fundamental thermodynamic contact

1-form is defined as

ω = dx0 − pidx
i, 1 ≤ i ≤ n. (6)

One can check that this 1-form indeed satisfies the maximal
non-integrability condition. Note that here and throughout
the paper we adopt the Einstein summation convention: the

terms are summed over all indices which appear both in a
lower and an upper position.

The following lemma provides a way to characterize
Legendre manifolds.

Lemma 3 ([12], [13]): Let N={1, . . . , n} be the set of
indices. Given the contact form (6), a disjoint partitioning
I, J ⊂ N , I∩J = ∅, I∪J = N with nI and nJ components,
and a smooth function ζ(xI , pJ), the following equations
define a Legendre manifold on (M, ω):

pI =
∂ζ

∂xI
, xJ = −

∂ζ

∂pJ
, x0 = ζ − pJ

∂ζ

∂pJ
. (7)

Conversely, every Legendre manifold is defined in a neigh-
bourhood of every point by these formulae for at least one
choice of the subset I .

The function ζ is called a generating function of the
Legendre manifold L.

It turns out [8] that the equilibrium manifold E in an
(n + 1)-dimensional space can be described as a Legendre
manifold on a (2n + 1)-dimensional contact manifold. To
show this we consider the Legendre manifold LU which is
characterized in the following way: let in (7), n = 3, J = ∅,
and ζ(x1, . . . , x3) be the state equation U(S, V,N). The
variables (x1, x2, x3) are identified with (S, V,N). Using
the formulae given by Lemma 3, we obtain the following
description:

x0 = U(x), pi =
∂U

∂xi
(x), (8)

where the remaining variables x and p are x0 = U , and
(p1, p2, p3) = (T,−p, µ). Thus, the Legendre manifold LU

of 1-form (6) with generating function (1) can be seen as
an immersion of the equilibrium energy manifold E into the
(2n+ 1)-dimensional contact manifold M.

The manifold LU will be referred to as the Legendre

equilibrium energy manifold.

C. Equations of Motion on the Equilibrium Manifold

The following theorem characterizes the generic vector
field on the equilibrium energy manifold LU .

Theorem 4 ([8]): Let LU be the Legendre equilibrium
energy manifold given by (7) with the generating function
U = U(x1, . . . , xn). Then the generic smooth vector field
X describing the evolution of the system on the manifold
LU is

X = piΛ
[i] ∂

∂x0
+ Λ[i] ∂

∂xi
+ Λ[i] ∂2U

∂xi∂xj
∂

∂pj
, (9)

where Λ[i] are smooth functions.
The smooth functions Λ[i] in (9) are referred to as ther-

modynamic forces.
For X (9), the corresponding differential equations have

the following form:










ẋ0 = piΛ
[i]

ẋi = Λ[i]

ṗi =
∂2U

∂xi∂xj Λ
[j].
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D. Static Stability of a Thermodynamic System

The property of the static stability should not be confused
with the notion of the stability of a dynamical system.

Definition 5: An equilibrium point x̄ = (S̄, V̄ , N̄) ∈ LU

is said to be infinitesimally statically stable if there exists
a neighbourhood Nǫ(x̄) ⊂ M, ǫ > 0 such that for any
perturbation δx ∈ Nǫ(x̄), δx→ x̄ as t→ ∞.

It is shown [14, Ch. 8] that the equilibrium state x is
statically stable if the Hessian D2U is positively definite at
x̄. In particular, for a closed system this is equivalent to the
following conditions:

∂2U

∂S2
> 0,

∂2U

∂V 2
> 0,

∂2U

∂S2

∂2U

∂V 2
−

(

∂2U

∂S∂V

)2

> 0.

(10)
Moreover, it is shown that the static stability property is a

necessary condition for the absence of phase transitions. That
is to say, assumption P1 implies (10). In the following, we do
not consider in detail the nature of the perturbation δx since
assumption P3 rules out this situation. However, the property
of a system to be statically stable has many important con-
sequences which go beyond the local perturbation analysis.
In Sec. IV we will see that the above conditions play a role
in the stability analysis of an interconnected thermodynamic
system.

III. MODELS OF INTERCONNECTED
THERMODYNAMIC SYSTEMS

A. Composite Thermodynamic System

Let us consider a structure (a composite system) Σ
consisting of k thermodynamic systems Σi, i = 1, . . . , k
characterized by the state functions U i = U i(Si, V i, N i).

Let (M, ω) be a 2n + 1-dimensional contact manifold,
where n = k · ns, ns = 3 and ω be the thermodynamic
contact 1-form (6). The total energy

UΣ(xΣ)=U
1(x1, . . . , xp) + . . .+ Uk(x(n−p+1), . . . , xn)

(11)
as the generating function, and the thermodynamic variables

xΣ = (S1, V 1, N1, . . . , Sk, V k, Nk)

define the composite thermodynamic system Σ. The corre-
sponding Legendre manifold LΣ is described as in (7) and
the generic dynamics along LΣ are defined in the same way
as in Sec. II-C.

B. Extended Thermodynamic 1-form

If a composite system contains movable elements, its
energy function UΣ must be augmented by a kinetic energy
term:

Utotal = UΣ + Uk = UΣ +

nk
∑

i=1

(ρi)2

2mi

, (12)

where ρi is the linear moment of the i-th movable element,
and mi - its mass. The velocity σ of the movable element
is a conjugated variable with respect to the moment ρ: σ =
dUk

dρ
. For a rotating body the same result can be obtained

by substituting ρ and σ with the angular moment l and the
angular speed φ.

In the same way, the thermodynamic contact 1-form must
be augmented in the following way:

ωt = ω − pn+jdx
n+j , 1 ≤ j ≤ nk,

where pn+j = σj , and xn+j = ρj .

C. Geometric Interconnection Constraints

In a real system there are always heat, work, or matter
flows between the subsystems. These flows, together with
the constructive and geometrical restrictions form the inter-
connection structure of the composite system.

The interconnection structure can be described by a set of
geometric constraints imposed on the system. Now we will
state this formally.

Definition 6: The m equations

γj : M → R, 1 ≤ j ≤ m, m < n

such that rank
(

∂γ
∂(x,p)

)

= m are called the geometric

interconnection constraints. The submanifold Γ = {q ∈
M|γ(q) = 0} is called the constraint manifold.

The dynamics of the constrained thermodynamic system
has to be confined to the intersection L̄Σ = LΣ

⋂

Γ. We
note that both LΣ and Γ can be seen as integral manifolds
of corresponding exterior systems: IΣ = {dφi}i=0,...,n with
φ0 = x0 − UΣ(x), φi = pi −

∂UΣ

∂xi (x) generates LΣ, and
IΓ = {dγj}j=1,...,m generates Γ.

Below, we describe the most common types of constraints.
To put the problem into physical context we shall specifically
use thermodynamic notation instead of differential geometric
one.

All geometric interconnection constraints can be divided
in two groups: global and local ones.

1) Global Constraints: Global constraints are imposed on
the whole composite system. In the following, we will as-
sume the overall system to be isolated from its environment.
In this case the sum of all extensive variables except entropy
is constant, i.e.,

∑k
1=1 V

i = VΣ,
∑k

1=1N
i = NΣ.

In an isolated system there is no net work or heat transfer.
Therefore, according to the first law, the total energy of an
isolated system remains constant: Utotal = const.

Note that the requirement on the system to be isolated is
not overly restrictive. If there is any transfer between the
system and its environment, one can extend the composite
system by including the environment as a new subsystem.

2) Local Constraints: Local constraints characterize a
group of subsystems whereas the group may consist of 1
subsystem. Consider the following several examples.

1) The i-th and the j-th subsystem are connected through
a matter-conducting membrane and isolated from the
remaining subsystems: N i +N j = const.

2) The i-th subsystem undergoes a reversible transfor-
mation: Si = const. One particular example of a
reversible process is a quasi-static compression of a gas
in a cylinder. We recall that any process accompanied
by heat transfer is irreversible.
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D. Kinematic Constraints

The second class of constraints consists of kinematic
constraints, i.e., the constraints on both the thermodynamic
variables and their velocities. This class is subdivided into
holonomic and nonholonomic constraints [15], [16]. The
holonomic constraints may be integrated and expressed as
constraints on the thermodynamic variables. Therefore we
will consider them as a special case of geometric constraints.
The nonholonomic constraints, in turn, do not restrict the
possible position of the system on the respective Legendre
manifold but only the system’s dynamics.

Below we describe one particularly important case of non-
holonomic constraints describing the interrelation between
the thermal and mechanical components of the total system’s
energy.

Consider the full differential of the total energy Utotal

(12). It can be written as:

dUtotal = dUrev + dUirr,

where dUrev is the reversible (mechanical) component of the
total energy change and dUirr is the irreversible (thermal)
component. These two components contain mechanical or
thermal terms: dUrev = −pidV

i + σdρ and dUirr =
TidS

i, where ρ is defined in Subsection III-B. Thus we
can introduce two fictitious energy variables: mechanical
(reversible) energy Urev and thermal (irreversible) energy
Uirr such that Utotal = Urev+Uirr. In an isolated composite
system (i.e., Utotal = const) without dissipation there is no
transformation between these two energies. Therefore we can
formulate the following two constraints:

−piV̇ i + σρ̇ = 0,

TiṠ
i = 0.

(13)

For an isolated system with dissipation the constraints (13)
take the following form:

−piV̇ i + σρ̇ = −φ(ρ),
TiṠ

i = φ(ρ),
(14)

where φ(ρ) is the rate of dissipation of mechanical energy
as a function of ρ. Note that one of these two equations
is redundant since it can be substituted by the geometric
constraint Utotal = const.

IV. STABILITY ANALYSIS

In this section a particular case of a two-compartmental
composite thermodynamical system under different intercon-
nection constraints is considered. We present the respective
dynamics equations and briefly outline the derivation pro-
cedure. For the details, the reader is referred to the recent
authors’ results [8]. In this paper, our main goal is study the
dynamic stability of the resulting composite thermodynamic
systems.

To keep equations moderately sized we assume that there
is no matter transfer within the system. Therefore, all respec-
tive energy functions are considered to be the functions of
S and V only.

All results in this section are illustrated by the particular
thermodynamic system where the subsystems have energy
functions of the following form:

U i =
(

V i
)− 1

c exp

(

Si

cN iR

)

, i = 1, 2, (15)

where R = 8.314 is the gas constant and c = 5/2 is the
dimensionless heat capacity at constant volume. The energy
functions (15) correspond to the state equation of a diatomic
ideal gas.

Finally, before we proceed with the stability analysis, we
remark that the Clausius inequality (see P4) can be expressed
as the following inequality:

ṠΣ =
n
∑

i=1

Ṡi ≥ 0. (16)

A. A 2-compartment System with Heat Linkage

Let us first consider a structure shown in Fig. 1. It consists
of a closed cylinder containing two thermodynamic systems,
Σ1 and Σ2, separated by a fixed partition wall. All walls
are assumed to be rigid and impermeable to matter. The
cylinder walls are thermally isolated except for the partition
wall. Therefore, there is a heat flow between the systems
Σ1 and Σ2. Each system Σi is characterized by the set of
thermodynamic variables (Si, V i, Ti, pi).

Fig. 1. A composite thermodynamic system. δQ denotes the heat exchange.

Now the interconnection constraints can be formulated.
The volumes of the subsystems remain constant and so V i =
const, i = 1, 2. Since the composite system is isolated from
its environment, the overall energy is constant: UΣ = const.

The 1-forms dγi corresponding to the interconnection
constraints described above are

dγ1 = dV 1, dγ2 = dV 2, dγ3 = dUΣ,

whence the following set of algebraic equations is obtained:

Λ
[1]
V = 0, Λ

[2]
V = 0, T1Λ

[1]
S + T2Λ

[2]
S = 0.

Hence, one can express the thermodynamic control Λ[2]
S in

terms of the thermodynamic control Λ[1]
S : Λ[2]

S = −T1

T2

Λ
[1]
S .

The system of differential equations governing the evolution
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of the composite system is:














































Ṡ1 = Λ
[1]
S

Ṫ1 = c1SSΛ
[1]
S

ṗ1 = −c1V SΛ
[1]
S

Ṡ2 = −T1

T2

Λ
[1]
S

Ṫ2 = −c2SS
T1

T2
Λ
[1]
S

ṗ2 = c2V S
T1

T2

Λ
[1]
S ,

(17)

where ciAB = ∂2UΣ

∂Ai∂Bi , i = 1, k, A,B ∈ {S, V,N}. Note that
the equations with zero right-hand sides are not shown.

While the model (17) is very useful for simulation pur-
poses, it turns out to be inadequate for the stability analysis.
The reason for this is the fact that the evolution of a ther-
modynamic system occurs on the restricted state Legendre
manifold L̄Σ. Therefore, the system’s evolution has to be
described by a system of differential-algebraic equations
where the algebraic equations come from (8).

Thus, one can rewrite the equations (17) as






















Ṡ1 = Λ
[1]
S

Ṡ2 = −T1

T2

Λ
[1]
S

T1 = ∂UΣ

∂S1 (S
1)
∣

∣

V 1=V̄ 1
, p1 = −∂UΣ

∂V 1 (S
1)
∣

∣

V 1=V̄ 1
,

T2 = ∂UΣ

∂S2 (S
2)
∣

∣

V 2=V̄ 2
, p2 = −∂UΣ

∂V 2 (S
2)
∣

∣

V 2=V̄ 2
,
(18)

where V̄ 1 and V̄ 2 are the fixed values of compartment
volumes. Furthermore, from the definition of UΣ it follows
that T1 and p1 do not depend on S2 and T2 and p2 do not
depend on S1.

Lemma 7: Let Λ[1]
S be a continuous function of (T2(S2)−

T1(S
1)) such that

i. (T2 − T1) · Λ
[1]
S (T2 − T1) > 0,

ii. [Λ
[1]
S (T2 − T1) = 0] ⇒ [(T2 − T1) = 0].

Then the system (18) has the one-dimensional asymptotically
stable limit set

Ψ =
{

(S1, S2) ∈ R
2
≥0

∣

∣T2(S
2)− T1(S

1) = 0
}

.

Proof The time derivative of the total entropy ṠΣ has the
following form:

ṠΣ = Λ
[1]
S −

T1
T2

Λ
[1]
S =

T2 − T1
T2

Λ
[1]
S > 0,

which is positive in virtue of (i.) Therefore the condition of
entropy growth (16) holds.
Condition (ii.) guarantees that the equilibrium set of the
system (18) is

Ψ =
{

(S1, S2) ∈ R
2
≥0

∣

∣T2(S
2)− T1(S

1) = 0
}

.

To analyze the stability property of the equilibrium set Ψ
we define a LaSalle function V = 1

2 (T2(S
2)−T1(S

1))2. Its
time derivative is

V̇ = (T2(S
2)− T1(S

1))(−c2SS
T1

T2

Λ
[1]
S − c1SSΛ

[1]
S ) =

−(T2 − T1)(c
2
SS

T1

T2

+ c1SS)Λ
[1]
S .

40 45 50 55 60 65 70
40
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2

Fig. 2. System’s trajectories for different initial conditions and the subset
of equilibrium states for an ideal gas system. The parameters are N1

=

N2 = 1, V 1 = 1, V 2 = 3.

Since the partial derivatives ciSS , i = 1, 2 are strictly positive
(10) and due to (i.) we have V̇ < 0 off of Ψ. �

The last part of the proof shows an interplay between
the static and the dynamic thermodynamic stability. The
conditions ciSS > 0 come from the static stability, whereas
the stability of the equilibrium set Ψ has been formulated
for the dynamical system (18).

Fig. 2 shows the evolution of a particular system for
different initial values of (S1, S2) with state trajectories
asymptotically converging to a one-dimensional subset.

Furthermore, one can see from equations (18) that, as
long as the conditions of Lemma 7 hold, the choice of
the form of thermodynamic control Λ[1]

S does not influence
the equilibrium state eventually attained by the system. The
equilibrium state is solely determined by the initial values of
entropies (S1(t0), S

2(t0)).

B. A 2-compartment System with Work Linkage

Now consider the same system as in Sec. IV-A but with a
frictionless movable piston of mass m instead of the partition
wall. In this case, both the total energy and the thermody-
namic contact 1-form must be augmented as described in
Sec. III-B. Furthermore, the set of interconnection constraints
will change. In particular, the 1-forms dγi corresponding to
the new interconnection constraints are

dγ1 = dV 1 + dV 2, dγ2 = dS1 dγ3 = dS2 dγ4 = dUt,

and the corresponding algebraic equations are

Λ
[1]
V + Λ

[2]
V = 0, Λ

[i]
S = 0, −piΛ

[i]
V +

1

m
ρΛρ = 0,

where Λρ is the thermodynamic control associated with ρ.
Furthermore, there is one nonholonomic constraints which

relates ρ to V 1:

ρ =
m

A
V̇ 1 =

m

A
Λ
[1]
V , (19)

where A is the sectional area of the cylinder. It can be
seen that this constraint cannot be integrated to yield any
equivalent expression in terms of thermodynamic variables.
Therefore, this constraint restricts the dynamics of the system
while not restricting the set of admissible thermodynamic
variables.
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The geometric constraints taken together with kinematic
ones allow us to express Λρ:

Λρ = −(p2 − p1)A. (20)

Hence, the differential equations describing the dynamics
of the composite system:































































Ṫ1 = c1SV
A
m
ρ

V̇ 1 = A
m
ρ

ṗ1 = −c1V V
A
m
ρ

Ṫ2 = −c2SV
A
m
ρ

V̇ 2 = −A
m
ρ

ṗ2 = c2V V
A
m
ρ

ρ̇ = −A(p2 − p1)

σ̇ = −A
m
(p2 − p1).

(21)

Using the same approach as in Sec. IV-A, we rewrite (21)
as a system of differential-algebraic equations






























V̇ 1 = A
m
ρ

ρ̇ = −A(p2(V 2)− p1(V
1))

p1 = −∂UΣ

∂V 1 (V
1)
∣

∣

S1=S̄1
, T1 = ∂UΣ

∂S1 (V
1)
∣

∣

S1=S̄1
,

p2 = −∂UΣ

∂V 2 (V
2)
∣

∣

S2=S̄2
, T2 = ∂UΣ

∂S2 (V
2)
∣

∣

S2=S̄2
,

V 2 = VΣ − V 1, σ = 1
m
ρ

(22)
where S̄1 and S̄2 are the fixed values of the respective
entropies, and VΣ = V 1 + V 2 is the total volume of the
cylinder.

Lemma 8: The system (22) has a unique (non-
asymptotically) stable equilibrium at the point
(V 1

eq , ρeq) = (V ∗, 0), where V ∗ is the solution to the
equation p2(VΣ − V ∗)− p1(V

∗) = 0.
Proof The solution V ∗ to the equation p2(VΣ − V ∗) −
p1(V

∗) = 0 is unique as is shown by the global constant-sign
behaviour of the first derivative:

d

dV ∗
(p2(VΣ − V ∗)− p1(V

∗)) = −(c2V V + c1V V ) < 0,

where the sign of ciV V , i=1,2, is determined according to
(10).

Performing the change of variables v = V 1 −V ∗ one can
rewrite (22) as










v̇ = A
m
ρ

ρ̇ = −A(p̄2(v)− p̄1(v)),

p̄1(v) = p(V ∗ + v), p̄2(v) = p(VΣ − V ∗ − v)

(23)

with an equilibrium point at the origin.
Let us choose the following test function:

G =
ρ2

2m
+

v
∫

0

(p̄2(x)− p̄1(x)) dx.

Its total time derivative is

d

dt
G = −

A

m
ρ(p̄2(v)− p̄1(v)) +

A

m
ρ(p̄2(v)− p̄1(v)) = 0.

ρ

V
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−0.5

0

0.5
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Fig. 3. Level curves of the first integral G of the system 23. The parameters
are N1 = N2 = 1, S1 = 100, S2 = 150, VΣ = 4.

Therefore we conclude that G(V̄ , ρ) is the Lyapunov func-
tion for the system (23). �

In Fig. 3, a number of level curves of G(V̄ , ρ) for a
particular thermodynamic system are shown.

V. CONCLUSIONS

We have discussed the modelling of interconnected ther-
modynamic systems and analyzed the stability of the result-
ing systems. In the subsequent paper it will be shown that a
system of the type above with heat and work linkage exhibits
asymptotically stable behavior with respect to a certain (well-
defined) attraction set.
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