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Abstract—Glucose is the primary source of energy for the 

human body. Keeping the blood glucose level between certain 

thresholds is essential for the proper energy transport. Insulin 

plays a key role in maintaining the glucose homeostasis. 

Because of its great importance, many models were published 

on either to describe the glucose-insulin interaction in case of 

patients under Intensive Care Unit (ICU), or to model Type 1 

Diabetes Mellitus (T1DM). Currently for most of the models 

linear control concepts are used in order to design an 

appropriate controller. The aim of the current paper is to 

investigate applicability of nonlinear control theory providing 

exact mathematical background in the control problem of 

glucose-insulin interaction. Both ICU and T1DM cases are 

analyzed on well-known models with different complexity. Our 

aim is to hide the nonlinearity of the models by transforming 

the input signal so that the response of the model would mimic 

the behavior of a linear system; hence extending the validity of 

linear controllers. The asymptotic tracking problem needs the 

value of the state variables; therefore extended Kalman-filter is 

applied. The capabilities of this approach are examined 

through classical control algorithms and input data recorded in 

clinical environment. 

I. INTRODUCTION 

HE blood glucose level is maintained through a 
complex endocrine system of the human body, which is 

responsible among others for energy transport. The normal 
blood glucose concentration varies in a narrow range (70 - 
110 mg/dL). If the human body is unable to control the 
glucose-insulin interaction diabetes is diagnosed. The 
consequences of diabetes are mostly long-term; among 
others increasing the risk of neuropathy, retinopathy and 
cardiovascular diseases [3]. Due to its frightening increase 
the World Health Organization (WHO), warns that diabetes 
could be the “disease of the future” [4]. 
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From an engineering point of view, the treatment of 
diabetes mellitus can be represented by an outer control 
loop, to replace the partially or totally deficient blood 
glucose control system of the human body. The quest for 
artificial pancreas can be structured in three different tasks 
[5]-[6]: continuous glucose sensor for measurements, insulin 
pump for infusion and control algorithm. 

To design an appropriate controller, an adequate model is 
necessary. In the last few decades different mathematical 
models of the human blood glucose system appeared. A 
brief overview can be found in [7]. Nowadays, the most 
complex models used in T1DM research are [2], [8]-[10]. 

On the other hand, blood glucose control is also very 
important in intensive care treatment. Critically ill patients 
admitted to the ICU often display hyperglycaemia and 
insulin resistance associated with adverse outcomes, which 
can result in increased morbidity and mortality [11]. Tight 
glycaemic control (TGC) can reduce these adverse outcomes 
[12], as well as reducing economic costs [13]. Hence, TGC 
using model-based methods has become an active research 
field [14]. The best known model is the minimal model of 
Bergman [15]. However, the model’s simplicity is a 
disadvantage. Hence, different models were derived from 
the minimal model, trying to generalize / extend the validity 
for the ICU case [1], [16]-[17]. 

The nonlinearity in each of the above mentioned models, 
ICU or T1DM represent specific control aspects, but the 
applied control strategies are usually developed for their 
linearized (i.e. working point based) versions. 

Generalization of this problem can be realized using 
nonlinear control theory [18]. The current paper investigates 
this aspect in terms of differential geometric approach. A 
similar method has been presented in [19], for a 4th order 
model containing a discrete-delay differential equation. In 
this paper both ICU and T1DM cases are analyzed on well-
known, but different complexity models: the model 
presented by Lotz et al [1] in case of ICU, and the model 
presented by Magni et al [2] in case of T1DM. 

Our aim is to hide the nonlinearity of the physiological 
model by transforming the control input provided by a linear 
controller so that the response of the model would mimic the 
behavior of a linear system. Hence, the validity of linear 
controllers can be extended from the neighborhood of a 
working point to a larger subset of the state-space bounded 
by specific constraints. 

This approach might not increase the performance of the 
controllers to a great extent, but the reliability of tight 
glucose control can directly effect the quality of life of a 
type-1 diabetes or ICU patient. Our goal is a control 
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algorithm whose stability and performance can be 
guaranteed and mathematically proven according to 
adequate medical specifications. 

The paper is structured as follows. First, the target of our 
investigation, the two models (ICU [1] and T1DM [2]) are 
presented. This is followed by a brief summary of the 
applied nonlinear control theory methods and aspects of 
Kalman-filtering. Section IV presents the obtained results, 
while Section V concludes the paper and formulates further 
research directions. 

II. MODELS 

A. The considered ICU model 

The clinically validated model of [1] is basically a 
generalization of the Bergman minimal model [15]. It better 
captures insulin losses to the liver and kidneys, and 
saturation dynamics through the use of Michaelis-Menten 
functions. The parameters of the model have been identified 
to a wide range of patients. Below, we summarize the model 
equations. Numerical values can be found in [1]. 
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The states of the system are: 
x G is the deviation of plasma glucose concentration 

(mmol/L) from equilibrium level (GE); 

x I represent the concentration of plasma insulin 
resulting from external input (mU/L); 

x Q is the concentration of insulin bounded to 
interstitial sites (mU/L); 

Regarding the inputs of the system, P represents the 
glucose input through enteral feeding (mmol/min), while uex 
is the intravenously administered external insulin (mU/min). 

Other notations appeared represent parameters: pG is the 
endogenous glucose clearance (min-1); SI is the insulin 
sensitivity (L/mU/min); .G is the insulin dependent glucose 
clearance/insulin effect (L/mU); EGP is the endogenous 
glucose production (mmol/min); VG, VQ and VP are the 
glucose distribution volume, interstitial fluid volume and the 
plasma volume with fast exchanging tissues (L); xL 
represents the fraction of hepatic extraction (-); nK, nL are the 
kidney and liver clearance rates of insulin from plasma (min-

1); nI is the diffusion constant of insulin between 
compartments (L/min); nC is the cellular insulin clearance 
rate from interstitium (min-1); .I is the plasma insulin 
disappearance rate (L/mU); uen is the constant endogenous 
insulin production (mU/min). 

B. The considered T1DM model 

The T1DM model of [2] represents an in-silico glucose 
metabolism model with compartments to describe 
subcutaneous insulin delivery and subcutaneous continuous 
glucose monitoring, as well as an intestinal glucose 
absorption model integrated into its structure. The model has 
a modular build, but in this paper it will be presented as a 
single system. Numerical values can be found in [2], [8]. 

The system has 10 state variables: 

x GM – subcutaneous glucose concentration (mg/dL); 

x Gp – glucose in plasma and rapidly equilibrating 
tissues (mg/kg); 

x Gt – glucose in slowly equilibrating tissues (mg/kg); 

x X – insulin in interstitial fluid (pmol/L); 

x Id, I1 – state variables for delayed insulin signal 
(pmol/L); 

x Ip – insulin mass in plasma (pmol/kg); 

x Il – insulin mass in liver (pmol/kg); 

x S2 – monomeric insulin in the subcutaneous tissue 
(pmol/kg); 

x S1 – polymeric insulin in the subcutaneous tissue 
(pmol/kg). 

The inputs of the system are the u injected insulin flow 
(pmol/min) and Ra the glucose rate of appearance in plasma 
(mg/min). 

The parameters of the model are the followings: VG is the 
distribution volume of glucose (dL/kg); Uii is the insulin-
independent glucose utilization (mg/kg/min); k1, k2 are rate 
parameters of the glucose subsystem (min-1); ke1 represents 
renal glomerular filtration rate (min-1); ke2 renal threshold 
(mg/kg); Vi is the insulin distribution volume (L/kg); m1, m2, 
m3, m4 are rate parameters of the insulin subsystem (min-1); 
BW is the body weight (kg); kp1 is the extrapolated 
endogenous glucose production at zero glucose and insulin 
(mg/kg/min); kp2 is the liver glucose effectiveness (min-1); 
kp3 is the indicator of effect of a delayed insulin signal 
(mg·L/kg/min/pmol); ki is the model parameter of delayed 
insulin signal (min-1); Ib is the basal level of plasma insulin 
concentration (pmol/L); p2U is the rate constant of insulin 
action (min-1); Km0, Kmx, Vm0 and Vmx are model parameters 
for insulin-dependent glucose utilization (-); kd is 
degradation constant (-); ka1, ka2 are absorption constants (-); 
ks.c. is rate constant for the subcutaneous glucose 
compartment (-). 

A big advantage of the model is the integrated, three-
compartment intestinal glucose absorption model, which 
describes glucose transit through the stomach and intestine 
to the plasma in case of enteral feeding. Detailed description 
of this system can be found in [8]. 

Although the glucose absorption model is used in the 
simulations to acquire glucose absorption profile, it is not 
regarded as part of the model. The glucose rate of 
appearance (Ra) is either considered as disturbance or a 
known time-varying parameter. 
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III. METHODS 

A. Exact linearization via feedback 

The concept of exact linearization of a nonlinear system 
via nonlinear state feedback control was introduced in [18]. 
Consider a SISO nonlinear system in the form: 
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where f and g are smooth nR -valued mappings and h is a 
smooth real-valued mapping defined on an open set nRU � . 
For system (2) the concepts of relative degree analysis, exact 
linearization and asymptotic output tracking can be 
considered according to [18]. Let us choose a prescribed 
reference linear system of the form: 
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Then, the following control law can be used for 
asymptotic tracking of the output of the reference system 
with the original (3) nonlinear system: 
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where ai and bi (i=0…r) are the parameters of the tracking 
dynamics. 

Both exact linearization and asymptotic output tracking 
need the values of the state variables. However, in practice 
the only measured quantity is either the intravenous or 
subcutaneous glucose concentration. The sensors used in 
these measurements usually have relatively high noise and a 
sampling time of 3-5 minutes, therefore a Kalman-filter is 
needed to provide adequate state-estimation. In our case, the 
algorithm presented in [20] was used. 

IV. RESULTS 

A. Asymptotic tracking of the ICU model 

The relative degree of the ICU model is maximal, 
therefore the coordinate transformation for both exact 
linearization and asymptotic output tracking are 
unequivocally determined, and the system has no zero 
dynamics. The system has a single output (G), and only the 
external insulin input (uex) can be controlled, therefore the 
system can be considered as a SISO system. The other input 
(P) can be regarded as disturbance, but its value is known. 
Considering the connections between each compartment the 
system can be divided into a subsystem described by 
differential equations (1/b) and (1/c) with Q as its output, 
and a second one described by a single differential equation 
(1/a). Hence, determining control law for exact linearization 

or asymptotic output tracking separately is possible. Real 
advantage of this approach is when working with more 
complex models [8]-[10]. 

The first subsystem is transformed into a series of 
integrators through exact linearization. The local coordinate 
transformation determined by the Lie-derivates is a local 
diffeomorphism regardless of the state variables. 
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The control law is applicable as long as 3
1 x

I
z� �D , 

which is always satisfied as 3x  represents a concentration. 

The second control law of the controller does not realize 
exact linearization, but asymptotic output tracking, working 
with the following nonlinear system: 
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The local coordinate-transformation for this system is a 
local diffeomorphism as long as: 
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The properties of the second control loop are determined 
in a way that the nonlinear system would track the output of 
its own steady-state linearization with appropriately fast 
error dynamics. 

To provide the values of state variables for the control 
laws, an extended Kalman-filter algorithm has been used. 
The discrete-time nonlinear model has been created with 
fourth-order Runge–Kutta method. 

The output signal was measured with 5 minute sampling 
time. The performance of the Kalman-filter is presented in 
Fig. 1. 

The output of the nonlinear system with and without 
using the presented control laws is compared with the series 
of linear systems determined for the tracking error and the 
linear system that needs to be followed in Fig. 2. 

For the steady-state linearization of model (1) a classical 
PID controller was implemented to show the advantages of 
the applied methodology even in case of a low level 
controller (Fig. 3). It can be seen that quality parameters 
(settling time and overshoot) gave better results in case of 
asymptotic tracking then in case of the nonlinear model. The 
structure of the controller was first determined in continuous 
time domain, and then transformed into a discrete-time: 
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Figure 1.  The real and estimated values of state variables acquired from 
the simulated output samples with added Gaussian measurement noise. 
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Figure 2.  Comparison of the steady-state linearization of the ICU model 

with the output resulting from asymptotic output tracking and with the 
output of the original model. 
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Figure 3.  Glucose absorption profile used in the simulations (top) and the 
performance of a PID controller with and without asymptotic output 

tracking (bottom). 
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B. Asymptotic output tracking of a T1DM model 

The model presented in [2] is not easy to be handled with 
methods based on differential geometry, because it has a 
relatively high number of state variables and it has a relative 
degree that is almost the half of that value. Moreover, some 
modifications need to be done in order to have smooth 
mappings in the system. Considering the connections 
between each compartment the system can be divided into 
three subsystems. 

The first subsystem has 4 states, with injected insulin flow 
as input, and Ip as output. It is basically linear with a relative 
degree of 2. 
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The second subsystem has 5 states, with Ip as input, and 
Gp as output. Its relative degree is 3. 
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The last subsystem is a first order linear system with Gp as 
input and GM as output. 
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The three subsystems are noted on Fig. 4 with 1

~
f , 2

~
f  and 

3

~
f  respectively. 

We can perform exact linearization on the first subsystem 
using the following local coordinate transformation: 
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Figure 4.  Structure of the tracking controller for the T1DM model [2]. 

The zero dynamics of the system are uniformly 
asymptotically stable in Ljapunov-sense (16). 
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After applying the proper control law, it is essential to 
transform the resulting series of integrators into an 
asymptotically stable system with poles p1 and p2 
guaranteeing that the zero dynamics of the next subsystem 
will be asymptotically stable as well: 
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Consequently, the structure of the current control problem 
can be delimited in two loops: the first responsible for the 
exact linearization via feedback and Kalman-filtering, while 
the second for the asymptotic output tracking. The structure 
of the complete controller is presented in Fig. 4. 

In the second loop, the asymptotic output tracking will be 
realized on the series of (17) and the second subsystem. 

The relative degree of this system is 5; therefore, two 5th 
order linear systems are needed: Let W1(s) be a reference 
system (3) for the output tracking and W2(s) the tracking 
dynamics. Due to the subsystems’ nonlinearities, the 
coordinate transformation and the control law have limited 
applicability with several inequality-constrains to be taken 
into consideration, and singular points to be avoided. 
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Figure 5.  Comparison of the steady-state linearization of model (2) with 

asymptotic output tracking and with the deviation of the output for the 
original model from its basal value (250 mg/dL). 

Since the steady-state linearization of the series of the first 
two subsystems results in a 9th order linear system, only one 
extra pole should be added to complete W1(s) and W2(s). In 
Fig. 4 C1(z) represents the state-feedback for exact 
linearization of the first subsystem, while C2(z) represents the 
control law (4). 

The difference between the steady-state linear system, the 
model, and the model combined with the control law 
introduced above is shown in Fig. 5. Although the 
asymptotic output tracking response converges to the 
linearized model, slight deviations occur when there is a 
sudden change in the meal absorption input. This is caused 
by the fact that the relative degree of the model for the 
absorbed glucose input (Ra) is less than the relative degree 
for the injected insulin input. We should also mention that 
for the original system the deviation of the output from its 
basal value (250 mg/dL) is displayed. 

For the state estimation the extended Kalman-filter was 
used similarly to the ICU case. The sensor model is similar 
to the one presented in [21]. The sampling time was 5 
minutes. The performance of the Kalman-filter is displayed 
on Fig. 6. It can be seen that the output is well filtered even 
with a relatively big measurement noise. 

For the steady-state linearization of the model a classical 
PID controller was implemented to show the advantages of 
the applied methodology. The structure of the controller was 
first determined in continuous time domain, and then 
transformed into discrete-time with the same 5 minute 
sampling frequency that was used in the sensor model: 
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Figure 6.  The real and estimated values of three state variables (Gp, Ip and 

X) acquired from the simulated output samples with added Gaussian 
measurement noise (bottom right). 
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Figure 7.  Glucose absorption profile used in the simulations (top) and the 

performance of a PID controller with and without asymptotic output 
tracking (bottom). 
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The performance of the controller on the model has been 
compared with the case when the control law for asymptotic 
tracking is used (Fig. 7). In this case, the glucose rate of 
appearance (Ra) is considered as a known time-varying 
parameter. It can be seen that the designed nonlinear 
approach is able to keep the glucose level inside the defined 
80-120 mg/dL interval. For T1DM case simulations a 
clinically recorded feeding profile has been used (Fig. 7.), 
regarding 1 week’s real data of a 17 year old boy. 

V. CONCLUSION 

The aim of the current paper was to apply asymptotic 
tracking for the nonlinear models [1]-[2]. We managed to 
hide the nonlinearity of the physiological model by 
transforming the control input provided by a linear 
controller so that the response of the model would mimic the 
behavior of a linear system. In addition, a Kalman-filter 
extended for nonlinear systems was designed to estimate the 
values of the state variables. 

Simulation results concluded that the methods presented 
could extend the validity of linear controllers. However, 
several practical issues should be considered in the future, 
like: state estimation particularities; limited sensor 
capabilities; meal detection and estimation. Identification 
and the effect of parameter variability among patients are 
not investigated in this paper, and represent future tasks as 
well. 
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