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Abstract— The disturbance observer (DOB) is one of the
widely-used control methods for robust tracking under plant
uncertainties and external disturbances. Typically it is imple-
mented by two (so-called) Q-filters as well as an inverse model
for the nominal plant. Observing that these two Q-filters have
identical dynamics, we propose a reduced-order implementation
of the conventional DOB configuration. Moreover, we analyze
this newly proposed configuration and claim that the robust
stability condition, which has been found for the conventional
configuration, still holds for the reduced-order case, and the
robust transient performance can also be maintained as before
with a saturation function introduced in the feedback loop.

I. INTRODUCTION

The disturbance observer (DOB), originally introduced in
[1], is known as one of powerful tools for robust control [2]
and has been successfully applied to many practical problems
in various fields such as servo systems, robotics, optical disc
drives, and automotive vehicles. See [3]–[9] and references
therein.

Its conventional configuration is depicted in Fig. 1 (the
shaded part); the input that is applied to the uncertain plant
P (s) is compared (after passing through the low-pass filter
QB(s)) with the signal ûp which is generated by the inverse
dynamics of nominal plant P−1

n (s) (after filtered by QA(s)).
Thus one may expect that ū − ûp is similar to the external
disturbance d (when P (s) and Pn(s) are similar) and may be
used for compensating the disturbance. When the mismatch
between the plant P (s) and the nominal model Pn(s) can be
lumped into the disturbance d, the compensation by the dis-
turbance observer becomes also effective to the uncertainties
in the plant.

This rough sketch of idea has been rigorously analyzed in
the literature. In the beginning of this century, robustness
and performance of DOB are discussed in the frequency
domain [10], or an extension to nonlinear plants has been
reported [11]. More rigorous analysis on stability has been
conducted in [12] using the singular perturbation theory,
where it has been emphasized that the conventional DOB
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Fig. 1. Conventional disturbance observer configuration implemented
with two Q-filters. Although they are marked as QA(s) and QB(s) for
convenience, they are actually the same Q(s).

Fig. 2. Implementation used in [3] that has only one Q-filter with
the transfer function 1/(τs + 1). The dotted area represents the DOB
configuration.

configuration has the infinite gain in the feedback loop which
explains the powerful performance of DOB, and that the
closed-loop system may experience the peaking phenomenon
[13] which might induce large overshoot during the transient
period. Then, the authors have derived an almost necessary
and sufficient condition for robust stability of the closed-
loop system with DOB, and proposed a design guideline in
[14]. Based on the analysis of DOB in the state space, the
works [15] and [16] presented nonlinear versions of DOB-
based inner-loop controller for nonlinear systems. Moreover,
a design procedure is provided guaranteeing not only the
robust stability but also the recovery of nominal transient
performance.

Basically, two stable filters (called Q-filters) are present in
the typical DOB structure as well as the inner-loop controller
developed in [15] and [16]. Thus, the number of integrators
required to implement these structures is 2ν + n0 where
ν is the dimension of Q-filter and n0 the dimension of
zero dynamics of the nominal plant (see [12] for more
details). However, observing that the transfer functions of
two Q-filters are actually the same Q(s), it is natural to ask
whether the order of final controller could be reduced. In
fact, the reference [3] has already presented the reduced-
order implementation of DOB when the plant is simply the
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first order system, as can be seen in Fig. 2. In order to
have the configuration of Fig. 2, one exploits the fact that
P−1
n (s)Q(s) = Js+B

τs+1 = J
τ −

J/τ−B
τs+1 and reorganizes the

loop so that the controller can be implemented using just
one integrator. We note that it is not very straightforward to
generalize this idea for high order systems when the nominal
system has zero dynamics. Moreover, it is not straightforward
either whether the analysis and synthesis performed in [15]
and [16] for the conventional DOB configuration still apply
to the reduced-order implementation that will be proposed
shortly.

This paper aims to present a reduced-order implementation
of the DOB configuration, and to verify that the robust
stability condition and the robust transient behavior (which
have been dealt with for the conventional DOB) are still
preserved with the reduced-order implementation. The idea
of the reduced-order implementation is to view the inner-loop
controller as a multi-input-single-output system whose inputs
are the plant input and output, and realize it together with the
inverse of the nominal plant in the state-space. On top of this
realization, a suitable coordinate transformation (modified
from [15]) is developed in order to convert the closed-loop
system into the standard singular perturbation form. Then,
the singular perturbation theory yields the robust stability
condition of the closed-loop system, and guarantees the
robust transient behavior with the introduction of a saturation
function within the feedback-loop. As a result, it is seen that,
despite the reduced-order implementation, all the properties
of previous implementations in [15], [16] are preserved for
uncertain linear systems.

The paper is organized as follows. At first we formulate
the problem in Section II. In Section III, we present the
reduced-order DOB with stability analysis, and a redesign
method with saturation to have robust transient behavior.
Some concluding remarks are given is Section IV.

Notation: 0k stands for the zero vector in Rk and Ik the
identity matrix in Rk×k. For two column vectors (or scalars)
a and b, [a; b] := [aT , bT ]T .

II. PROBLEM FORMULATION

Consider a single-input-single-output system with a rela-
tive degree ν given, without loss of generality, by

ż = Sz + Py

ẋ = Ax+B(ψT z + φTx+ g(u+ d))

y = Cx

(1)

where u ∈ R is the control input, d ∈ R the unknown
disturbance, y ∈ R the system output, x =

[
x1; . . . ;xν

]
∈

Rν and z =
[
z1; . . . ; zn−ν

]
∈ Rn−ν are the states of the

system, and the matrices A, B, and C are given by

A :=

[
0ν−1 Iν−1

0 0Tν−1

]
, B :=

[
0ν−1

1

]
, C :=

[
1 0Tν−1

]
.

It is assumed that the parameter matrices S, P , ψ, φ, and
g are unknown but belong to known compact sets ΩS , ΩP ,
Ωψ , Ωφ, and Ωg , respectively, in the matrix space. Moreover,
we assume that the sign of g is known, and thus, suppose

that 0 < g− ≤ g ≤ g+ (by reversing the sign of the input
u and the disturbance d if necessary), with known bounds
g− and g+. It is also assumed that the unknown matrix S
is Hurwitz (thus, we assume that the uncertain system is of
minimum phase). Finally, the disturbance d(t) is assumed to
be C2, and |d(t)| and |ḋ(t)| are bounded for all time t; for
example, |d(t)| ≤ d+, ∀t ≥ 0, with a known constant d+.

Suppose that an output feedback controller, represented by

ċ = Γc+ Π(yr − ȳ), c ∈ Rl

ur = Θc+ Λ(yr − ȳ), ur ∈ R
(2)

where yr is the reference command, has been designed for
the disturbance-free nominal plant for (1) given by

˙̄z = S̄z̄ + P̄ ȳ

˙̄x = Ax̄+B(ψ̄T z̄ + φ̄T x̄+ ḡur)

ȳ = Cx̄

(3)

where S̄, P̄ , ψ̄, φ̄, and ḡ are nominal parameters of S, P , ψ,
φ, and g, respectively, and we assume that they also belong
to their corresponding parameter sets (e.g., ψ̄ ∈ Ωψ). We
now make an assumption for the output feedback controller
(2).

Assumption 1: The reference input yr(t) and the closed-
loop system (2)–(3) satisfy the following:

1) |yr(t)| ≤ yr+,∀t ≥ 0, with a known constant yr+ and
|ẏr(t)| is bounded.

2) The closed-loop system (2) and (3) is asymptotically
stable.

�
We consider a dynamic inner-loop controller of the form

χ̇ =

[
χ̇1

χ̇2

]
=

[
Υ1(χ, y, ur)
Υ2(χ, y, ur)

]
= Υ(χ, y, ur)

u = υ(χ, y, ur)

(4)

where χ1 ∈ Rn−ν and χ2 ∈ Rν . With this controller the
closed-loop system becomes

ż = Sz + Py

ẋ = Ax

+B
[
ψT z + φTx+ g(υ(χ,Cx,Θc+ Λ(yr − Cx)) + d)

]
ċ = Γc+ Π(yr − Cx)

χ̇ = Υ(χ,Cx,Θc+ Λ(yr − Cx)).
(5)

In this paper, we are interested in designing the controller
(4) which is an n dimensional system (same dimension
as the plant) and guarantees robust stability and robust
transient performance. By the robust stability, we mean
that the closed-loop system is asymptotically stable under
the variation of uncertain parameters within the compact
parameter sets. We say that the closed-loop system has the
robust transient performance if [x(t); c(t)] of the closed-loop
trajectory [z(t);x(t); c(t);χ(t)] of (5) can be made arbitrar-
ily close to [xN (t); cN (t)] of the nominal closed-loop tra-
jectory [zN (t);xN (t); cN (t)] with [zN (0);xN (0); cN (0)] =
[χ1(0);x(0); c(0)] (that is the solution of (2) and (3)) in
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the whole time horizon, under the variation of uncertain
parameters.

III. MAIN RESULT

A. Reduced-order Implementation of DOB

As seen in Fig. 1, conventional implementations of DOB
contain two Q-filters. However, the following argument sug-
gests a reduced-order implementation using a single Q(s).
From the figure, it is observed that

w(s) = Q(s)u(s)−Q(s)P−1
n (s)y(s)

=
[
Q(s) −Q(s)P−1

n (s)
] [u(s)
y(s)

]
=: Q(s)

[
u(s)
y(s)

]
(6)

where, as in other literature including [15], [16], we take
Q(s) as

Q(s) =
a0

(τs)ν + aν−1(τs)ν−1 + · · ·+ a0
.

Here, ai’s and τ are design parameters to be determined.
Let us consider an n dimensional state-space representation
of Q(s). Since x̄i = ȳ(i−1) (i = 1, · · · , ν) and ˙̄xν = ȳ(ν) =
ψ̄T z̄+φ̄T x̄+ ḡur from (3), the inverse dynamics of Pn(s) =
ȳ(s)/ur(s) is obtained by

˙̄z = S̄z̄ + P̄ ȳ

ur =
1

ḡ

(
ȳ(ν) − φ̄T x̄− ψ̄T z̄

)
=

1

ḡ

(
sν ȳ − φ̄νsν−1ȳ − · · · − φ̄1ȳ − ψ̄T z̄

)
where s represents the differentiation operator. Since y is
an input to Q(s), we obtain the dynamics for P−1

n (s) =
y†(s)/y(s) as (the output is denoted by y†)

˙̄z = S̄z̄ + P̄ y

y† =
1

ḡ

(
sνy − φ̄νsν−1y − · · · − φ̄1y − ψ̄T z̄

)
.

With this in mind, one can rewrite (6) as

((τs)ν + aν−1(τs)ν−1 + · · ·+ a0)w(s)

= a0

(
u(s) +

1

ḡ
ψ̄T z̄(s)

)
− a0

ḡ

(
sν − φ̄νsν−1 − · · · − φ̄1

)
y(s).

Motivated by a state-space realization of the above rela-
tion, we propose the following form of the DOB implemen-
tation which corresponds to (4):

˙̄z = S̄z̄ + P̄ y, z̄ ∈ Rn−ν (7a)

q̇ = Aqτq +
a0

τν
Bqτ

[
u+ 1

ḡ ψ̄
T z̄

1
ḡy

]
, q ∈ Rν (7b)

w = Cq − 1

ḡ

a0

τν
y (7c)

u = ur + w (7d)

where

Aqτ =


−aν−1

τ 1 0 · · · 0
−aν−2

τ2 0 1 . . . 0
...

...
...

. . .
...

− a1
τν−1 0 0 · · · 1
− a0
τν 0 0 · · · 0

, Bqτ =


0 φ̄ν + aν−1

τ
0 φ̄ν−1 + aν−2

τ2

...
...

0 φ̄2 + a1
τν−1

1 φ̄1 + a0
τν

 .
Remark 1: The inner-loop controller developed in [15],

[16] is of dimension n+ ν = 2ν + (n− ν), in which 2ν is
due to the two Q-filters of dimension ν and (n−ν) is due to
the nominal zero dynamics. It was shown in [15] that one Q-
filter acts like a high gain observer while the other provides
the infinite gain property. However, this kind of interpretation
is lost in the reduced-order implementation (7). �

B. Robust Stability Condition and Selection of Design Pa-
rameters

In this subsection, we investigate the stability of the
closed-loop system (5) with (7) playing the role of (4) (i.e.,
χ = [z̄; q]). First of all, we show that the system (5) can be
transformed into the standard singular perturbation form [13]
with the time separation parameter τ . The proof is omitted
due to page limit.

Lemma 1: The coordinate transformation defined by

ηi = τ i−1

(
q

(i−1)
1 − a0

τν
1

ḡ
y(i−1)

)
, i = 1, . . . , ν, (8)

transforms the closed-loop system (1), (2), and (7) into

ż = Sz + Py

˙̄z = S̄z̄ + P̄ y

ẋ = Ax+B(ψT z + φTx+ g(ur + η1 + d))

ċ = Γc+ Π(yr − Cx), ur = Θc+ Λ(yr − Cx)

τ η̇ = Aη −B
[
a0

g
ḡ a1 · · · aν−1

]
η + a0Bur

+
a0

ḡ
B
(
ψ̄T z̄ − ψT z + (φ̄− φ)Tx− g(ur + d)

)
.

(9)

�
Remark 2: If we express (8) with the states q and x, it

will be seen that

ηi =

i∑
j=1

(
τ j−1αijqj +

1

τν
µij(τ)xj

)
(10)

where αij is a constant coefficient and µij(τ) is a polynomial
of order i − 1 with respect to τ . The implication of (10) is
that, even though the initial conditions q(0) and x(0) are
bounded, the initial condition η(0) may become arbitrarily
large as τ approaches zero. This behavior is actually due
to the peaking phenomenon and becomes an obstacle for
achieving the robust transient performance by reducing the
design parameter τ (see [15]). Fortunately, since the term
µij(τ)/τν is the polynomial of (1/τ), it can be seen that
global exponential stability of the η-subsystem will yield
arbitrarily small |η(T ) − η∗(T )| (η∗ is defined in Section
III-C) at arbitrarily small time T with sufficiently small τ ,
and that the mal-effect of the peaking on the plant state x(t)
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can be blocked by introducing a saturation function in the
feedback loop.

The equality (10) can be proved by induction. Indeed, it
holds for i = 1 with α11 = 1 and µ1

1(τ) = −a0/ḡ. Suppose
it holds for 1 ≤ i ≤ ν − 2. Then we obtain

ηi+1 =τ η̇i

=

i∑
j=1

[
τ jαij(−aν−j/τ j · q1 + qj+1

+ a0/τ
ν · (φ̄ν−j+1 + aν−j/τ

j)x1/ḡ)

+ τ/τν · µij(τ)xj+1

]
=

i∑
j=1

(−αijaν−jq1 + τ jαijqj+1 + τ/τν · µij(τ)xj+1)

+
( i∑
j=1

τ jαija0φ̄ν−j+1 + αija0aν−j

)
x1/(τ

ν ḡ).

By taking αi+1,1 := −
∑i
j=1 αijaν−j , αi+1,j := αi,j−1

for 2 ≤ j ≤ i + 1, µi+1
1 (τ) :=

∑i
j=1(τ jαija0φ̄ν−j+1 +

αija0aν−j)/ḡ, and µi+1
j (τ) := τµij−1(τ) for 2 ≤ j ≤ i+ 1,

the claim follows. �
Now we discuss the stability of the closed-loop system (9)

applying the singular perturbation theory [13]. The theory
says that if the dynamics of one subsystem (called fast
dynamics) is sufficiently fast compared to the other part
(called slow dynamics), and if the state of the fast dynamics
converges to its equilibrium point which is parameterized by
the states of the slow dynamics with the slow states frozen,
then the trajectory of slow states of the original system is
close to that of the so-called quasi-steady-state subsystem.
The quasi-steady-state subsystem is defined as the dynamics
of the slow system with the states corresponding to the fast
dynamics replaced by their equilibrium points. In our case,
the dynamics of η comprises the fast dynamics, while the
dynamics of z, z̄, x, and c corresponds to the slow dynamics.
From now on, η is called the fast variable and z, z̄, x, c, yr,
ur, and d slow variables.

In order to apply the singular perturbation theory, it is
firstly noted that with the slow variables frozen, the fast
dynamics has one and only one equilibrium point given by

η∗1 =
ḡ − g
g

ur +
1

g

(
ψ̄T z̄ − ψT z + (φ̄− φ)Tx

)
− d,

η∗2 = · · · = η∗ν = 0.

With this result at hand, the quasi-steady-state subsystem is
obtained from (9) as follows:

ż = Sz + Py

˙̄z = S̄z̄ + P̄ y

ẋ = Ax+B(ψ̄T z̄ + φ̄Tx+ ḡur)

ċ = Γc+ Π(yr − Cx), ur = Θc+ Λ(yr − Cx).

(11)

Then, it is seen that the input-output relation (from yr to
y = Cx) is exactly the same as that of the disturbance-free
nominal closed-loop system (2) and (3). Since the state z is

unobservable in the system (11), the stability of the quasi-
steady-state subsystem is determined by the stability of the
nominal closed-loop system (2) and (3), and by the stability
of the zero dynamics ż = Sz + Py.

On the other hand, let us compute the boundary-layer
subsystem [13] of (9), which can be obtained by rewriting
the dynamics of η̃ := η− η∗ in the new time scale σ := t/τ
and setting τ = 0; namely

dη̃

dσ
= Aη̃ −B

[
a0

g
ḡ a1 · · · aν−1

]
η̃ =: Af η̃. (12)

From the structure of A and B, we obtain the following.
Lemma 2: The boundary-layer subsystem (12) is expo-

nentially stable if and only if the polynomial sν+aν−1s
ν−1+

· · ·+ a1s+ (g/ḡ)a0 is Hurwitz. �
Remark 3: Since the bounds g− and g+ for the uncertain

parameter g are known, one can always find ai’s such that
Af is Hurwitz over all possible parameters of g. For this,
we recall the design proposed in [15]; that is, one can find
a1, . . . , aν−1 first such that sν−1 + aν−1s

ν−2 + · · · + a1

is a Hurwitz polynomial, and then, pick a0 > 0 sufficiently
small. For details, see [15]. �

The robust stability condition, by which we mean that the
system matrix of the closed-loop system (9) is asymptotically
stable despite the uncertainties, is given as follows.

Theorem 1: Suppose that

(a) the quasi-steady-state subsystem (11) is exponentially
stable, i.e., the matrix

As =


S 0 PC 0
0 S̄ P̄C 0
0 Bψ̄T A+B(φ̄T − ḡΛC) BḡΘ
0 0 −ΠC Γ

 (13)

is Hurwitz for all S ∈ ΩS (which is equivalent to
the fact that S is Hurwitz and the nominal closed-loop
system (2) and (3) is exponentially stable),

(b) the boundary-layer subsystem (12) is exponentially sta-
ble, i.e., the matrix Af is Hurwitz for all g ∈ Ωg .

Then, there exists τ∗ > 0 such that, for each 0 < τ < τ∗,
the linear closed-loop system (1), (2), and (7), or equivalently
(9), is robustly stable. (The quantity τ∗ depends on the sets
ΩS , ΩP , Ωψ , Ωφ, and Ωg in general, and as the size of those
sets gets larger, the value of τ∗ gets smaller.) �

Proof: Define η̃(t) := η(t)− η∗(t). Then, we have

τ ˙̃η = Af η̃ − τB̄η̇∗1 (14)

where B̄ = [1; 0; · · · ; 0] ∈ Rν . By performing a tedious
computation of η̇∗1 along (9), one can see that

η̇∗1 = MCη̃ +N1[z; z̄;x; c] +N2[yr; ẏr; d; ḋ] (15)

where M = −(ḡ−g)ΛCB+(φ̄−φ)TB, and N1 and N2 are
some constant matrices. With these results, the closed-loop
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system (9) is expressed as

ż = Sz + Py

˙̄z = S̄z̄ + P̄ y

ẋ = Ax+B(ψ̄T z̄ + φ̄Tx+ ḡ(Θc+ Λ(yr − Cx)) + gη̃1)

ċ = Γc+ Π(yr − Cx)

˙̃η =
1

τ
Af η̃

− B̄(MCη̃ +N1[z; z̄;x; c] +N2[yr; ẏr; d; ḋ])

whose system matrix is given by[
As ∗
−B̄N1

1
τAf − B̄MC

]
where ∗ represents some constant matrix. Since As and Af
are Hurwitz matrices by assumption, and all blocks of the
above matrix except the (2, 2) block are independent of τ , it
can be shown that there exists τ∗ > 0 (possibly depending
on the size of uncertainties) such that, for all 0 < τ < τ∗,
the system matrix of (9) is Hurwitz.

The stability achieved in Theorem 1 is a global one, and
therefore, the closed-loop system (1), (2), and (7) is stable
for any initial conditions with sufficiently small τ . However,
if x(0) 6= 0, then η(0) in the equivalent closed-loop system
(9) gets arbitrarily large with small τ (see Remark 2). This
implies that, if we compare the solution of the closed-loop
system with its nominal solution of (11) initiated at the same
initial condition z̄(0), x(0), and c(0), it is seen that very
large overshoot of η(t) in its initial period may disrupt the
closeness of two solutions. Therefore, if the robust transient
response is of interest, we should block the mal-effect of the
unwanted large overshoot in η(t) propagating into the plant.
This is achieved by saturating some signal in the feedback
loop, sacrificing the global stability.

C. Redesign for Robust Transient Performance
We saturate the feedback signal generated by the DOB in

order that the effect of large peaking does not propagate to
the slow variables. It is important to note that the domain
of interest in the state space (the set of initial conditions
q(0), z(0), z̄(0), x(0), and c(0)) covered by this method
is bounded. In particular, we suppose that the trajectory
[z̄(t); x̄(t); c(t)] of the stable nominal closed-loop system (2)
and (3) under a bounded reference command yr(t) remains
in an open connected and bounded set U ⊂ Rn+l when
the initial condition [z̄(0); x̄(0); c(0)] is located in a known
compact set S0 ⊂ U . With the solution x̄(t), we also suppose
that the solution z(t) of ż = Sz + Py with y(t) = Cx̄(t)
resides in a compact set Z even under the variations of S and
P , when z(0) is in the projection of S0 into the z subspace.

The redesigned DOB for robust transient performance is
given by

˙̄z = S̄z̄ + P̄ y, z̄ ∈ Rn−ν

q̇ = Aqτq +
a0

τν
Bqτ

[
u+ 1

ḡ ψ̄
T z̄

1
ḡy

]
, q ∈ Rν

u = ur + Φ(w), w = Cq − 1

ḡ

a0

τν
y

(16)

where Φ is a globally bounded C1 function satisfying

Φ(w) = w,∀w ∈ Sw, and 0 ≤ dΦ

dw
(w) ≤ 1,∀w ∈ R (17)

in which

Sw =
{
s =

ḡ − g
g

(Θc+ Λ(yr − Cx))

+
1

g

(
ψ̄T z̄ − ψT z + (φ̄− φ)Tx

)
− d :

z ∈ Zδ, [z̄;x; c] ∈ Uδ, |yr| ≤ yr+, |d| ≤ d+,

g ∈ Ωg, φ ∈ Ωφ, ψ ∈ Ωψ

}
(18)

with any small positive constant δ, where Zδ implies {z+ z̄ :
z ∈ Z, |z̄| ≤ δ} and Uδ is similarly defined. In principle, the
set Sw can be computed because all the bounds of unknown
parameters are known, which however is quite a daunting
task. Instead, by observing the fact that the set is designed
so that the saturation function becomes inactive in the slow
transient and in the steady-state, one can simply tune the
saturation level sufficiently large by roughly overestimating
such bounds or by repeating computer simulations.

In order to have robust transient performance, we also
tune the parameter a0 after choosing ai’s such that sν−1 +
aν−1s

ν−2 + · · · + a1 is a Hurwitz polynomial, which is
explained below. Consider a disk D (g−/ḡ, g+/ḡ) which is
defined as a closed disk in the complex plane whose diameter
is the line segment [−ḡ/g−,−ḡ/g+] on the real axis. Choose
a sufficiently small a0 such that the disk is disjoint from the
Nyquist plot of

G(s) =
1

s

a0

sν−1 + aν−1sν−2 + · · ·+ a1
(19)

and the plot does not encircle the disk. Note that this is
always possible since the Nyquist plot is bounded to the left
(by assumption, all the poles of G(s) except the pole at the
origin are stable) and it shrinks towards the origin as a0

becomes smaller.
By applying the transformation (8) one obtains the dy-

namics of new closed-loop system as follows:

ż = Sz + Py

˙̄z = S̄z̄ + P̄ y

ẋ = Ax+B(ψT z + φTx+ g(ur + Φ(η1) + d))

ċ = Γc+ Π(yr − Cx), ur = Θc+ Λ(yr − Cx)

(20a)

τ η̇ = (Aη −BaT )η + a0
ḡ − g
ḡ

B(ur + Φ(η1))

+
a0

ḡ
B
(
ψ̄T z̄ − ψT z + (φ̄− φ)Tx− gd

) (20b)

where a = [a0; · · · ; aν−1].
In spite of the saturation function Φ, the equilibrium point

η∗ for the boundary-layer subsystem of (20) is the same as
before. Indeed, it immediately follows that η∗2 = · · · = η∗ν =
0, and for η∗1 , we solve from (20b) that

ḡη1 − (ḡ − g)Φ(η1)

= (ḡ − g)ur + ψ̄T z̄ − ψT z + (φ̄− φ)Tx− gd.
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Since the left-hand side of this equation is strictly increasing
with respect to η1, it has a unique solution η∗1 = ḡ−g

g ur +
1
g

(
ψ̄T z̄ − ψT z + (φ̄− φ)Tx

)
− d since Φ(η∗1) = η∗1 by

construction.
Now let us consider the dynamics of η̃ = η − η∗. Then,

we have that

˙̃η =
1

τ
(A−BaT )η̃ − B̄MCη̃

+
a0

τ
(1− g/ḡ)B (Φ(η̃1 + η∗1)− Φ(η∗1))

− B̄θ∗(z, z̄, x, c, yr, ẏr, d, ḋ)

(21)

where

θ∗(z, z̄, x, c, yr, ẏr, d, ḋ) = N1[z; z̄;x; c] +N2[yr; ẏr; d; ḋ]

and the matrices B̄, M , N1, and N2 are defined in (14) and
(15). For this system, we have the following result.

Lemma 3: Suppose that z(t) ∈ Z and [z̄(t);x(t); c(t)] ∈
U . Then, there exist positive constants τ1, k, and λ such that,
for each 0 < τ ≤ τ1, it holds that

|η̃(t)| ≤ ke−λ tτ |η̃(0)|+ γ(τ), ∀t ≥ 0 (22)

where γ is a class K function. �
By virtue of this lemma, we obtain the robust transient

behavior as follows.
Theorem 2: Suppose that the stability condition of the

item (a) in Theorem 1 holds, and the coefficients ai’s are
designed as discussed in this subsection. Let Sq be a compact
set for the initial condition q(0), and Sz be the projection
of S0 into the z subspace. Then, for a given ε > 0, there
exists a τ∗ such that for any 0 < τ < τ∗, the trajectory
[z(t); z̄(t);x(t); c(t)] of the closed-loop system (1), (2),
and (16), initiated at [z(0); z̄(0);x(0); c(0)] ∈ Sz × S0, is
bounded for all t ≥ 0 and satisfies that∣∣[x(t); c(t)]− [x̄N (t); cN (t)]

∣∣ ≤ ε, ∀t ≥ 0 (23)

where [x̄N (t); cN (t)] is from the solution
[z̄N (t); x̄N (t); cN (t)] of the nominal closed-loop system (2)
and (3), with [z̄N (0); x̄N (0); cN (0)] = [z̄(0);x(0); c(0)]. �

This theorem shows that all the benefits of the inner-loop
controller using the DOB in [15] and [16] are preserved with
the reduced-order implementation proposed in this paper.

IV. CONCLUSION

We have proposed a reduced-order implementation of the
conventional DOB structure and it is shown that all the
benefits of previous implementations are preserved through
rigorous stability analysis. Although the current paper is on
linear systems, it seems that extensions to nonlinear systems
are possible to some extent but we believe that it is not trivial
for the general case. It is mainly because in our previous
implementations, one Q-filter plays the role of high gain
observer while it is not certain whether the plant state can be
reconstructed with the proposed implementation. The authors
are currently working on this problem and the result will be
reported in the near future.
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