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Abstract— This paper introduces the class of dual-random-
rate systems (i.e., dual-rate systems with random output rates),
which is well suited to model image-based control systems. It
is shown that a dual-random-rate system can be reformulated
as a switched linear system with a (quasi-periodic) random
switching signal that is a static function of Markov chain.
This reformulation makes it possible to study dual-random-rate
systems with the stability and output performance analysis tools
developed for Markov jump linear systems. The approach is
illustrated via a practical example: the compensation of image
drift in a transmission electron microscope.

I. INTRODUCTION

Over the past 20 years, new control applications have
emerged where computer vision or image-based sensors are
used to control variables of interest. These applications range
from robot or industrial process control [1]–[3], to biology
[4], medicine [5], and microscopy [6], [7]. A common
property of these so-called image-based control systems is
that, due to the need of acquiring and processing images
for feedback purposes, their sensing (or measurement) rates
are generally slower than their actuation rates. This prop-
erty allows one to analyze and design image-based control
systems using multirate system theory [8], [9]. Multirate sys-
tems are generally analyzed under the assumption that their
input and output rates are constant. In several image-based
control systems, however, this assumption does not hold. For
instance, image-based control can be used in a transmission
electron microscope to regulate its optical properties [10].
However, not every image produce by the microscope can be
used for control purposes (some must be used for scientific
purposes). Moreover, the image acquisition and processing
time can vary depending on the type of image being acquired
(e.g., some images require longer acquisition times to ensure
higher signal-to-noise ratios [11]). Thus, the rate of output
data available for feedback purposes is not constant, and it is
better described by a random variable of finite range. Thus,
image-based control in a transmission electron microscope
(and similar applications) is better represented by a multirate
system with random output rates. However, to the best of
our knowledge, such systems have not been studied in the
literature yet.

This paper presents the initial steps towards a theory of
multirate systems with random output rates. The analysis
is restricted to the subclass of single-input, single-output
linear dual-rate systems with random output rates, called
here dual-random-rate systems, since these are the simplest
subclass of multirate systems (see [12], [13] for information
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J. R. Chávez-Fuentes is with the Department of Mathematics, Pontificia
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Fig. 1. Dual-rate, sampled-data, closed-loop control system. The sensing
rate, T2, is assumed to be η times slower than actuation rate, T1 (i.e.,
T2 = ηT1).

on dual-rate sytems). The analysis is based on the connec-
tion between dual-rate systems and periodic switched linear
systems [14]. It is shown that a dual-random-rate system
can be reformulated as a switched linear system with a
(quasi-periodic) random switching signal that, under certain
conditions, can be shown to be a static function of a Markov
chain. This connection makes it possible to study dual-
random-rate systems with tools developed for Markov jump
linear systems (MJLSs) [15], [16].

The rest of the paper is organized as follows: Section
II presents the basics on dual-rate systems, shows their
connection with switched linear systems and introduces the
class of dual-random-rate systems. Section III summarizes
the standard stability and output performance analysis tools
for MJLS and relates them to dual-random-rate systems.
Section IV presents an illustrative example, the compensation
of image drift in a transmission electron microscope, while
Section V presents our conclusions.

II. DUAL-RANDOM-RATE SYSTEMS

This section is divided in three parts. The first one provides
the basic definition of a dual-rate system taking into account
two types of output sensors: delayed and sporadic (see Figure
1). The second part provides dynamical models for such sen-
sors and reformulates dual-rate systems as periodic switched
linear systems. Finally, the last part introduces dual-random-
rate systems, and shows that they can be reformulated as
switched linear systems with a specific type of random
switching signal.

In the sequel, N and R
+ denote, respectively, the positive

integers and the non-negative real numbers; random variables
and processes are defined with respect to the probability
space (Ω,F ,Pr) and denoted with boldface fonts; and E{·}
denotes expectation.

A. Dual-Rate Systems

Consider the sampled-data, closed-loop control system
shown in Figure 1. It is composed of a discrete-time con-
troller in feedback interconnection with a linear continuous-
time plant that is equipped with a “fast” actuator and a
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Fig. 2. Input, state, and output sequences of a delayed sensor.

“slow” sensor. More precisely, the controller drives the plant
through an ideal hold operator, HT1 , with hold period T1,
while the plant’s output, yp(t), t ∈ R

+, is measured by
an ideal sensor equipped with a sample operator, ST2 , with
sample period T2 ≥ T1. For simplicity, it is assumed that
T2 = ηT1, 1η ∈ N, and that the sample and hold operators
are synchronized. Thus, from the controller’s perspective,
the plant dynamics are discretized at the hold’s rate and
represented by

xp[k + 1] = Apx[k] + Bpup[k]

yp[k] = Cpxp[k] +Dpup[k],
(1)

where k = 0, 1, . . . , xp[k] ∈ R
np , yp[k],up[k] ∈ R, and

Ap, Bp, Cp, and Dp are matrices of appropriate dimensions.
On the other hand, the sensor provides the controller with
a delayed-and-down-sampled or a down-sampled version of
yp[k], depending on the sensor type. More specifically, the
sensor output at k = mη, m = 0, 1, . . . , is given by

Delayed: ys[mη] = yp[(m− 1)η] + d[(m− 1)η], 1 (2a)

Sporadic: ys[mη] = yp[mη] + d[mη], (2b)

where d[k] ∈ R, k = 0, 1, . . . , denotes a random output
perturbation process. A delayed sensor is one that does not
produce instantaneous readouts of the plant output. That is,
its dynamics are slower than plant’s time constants (see e.g.,
[2], [12]). On the other hand, a sporadic sensor is one that has
fast dynamics but can be used only infrequently compared
to the plant’s actuation rate (e.g., those used for image drift
control [6]). This leads to the following definition (see also
[12], [13]).

Definition 2.1: The system with input up[k] and output
ys[mη] described by (1)-(2) is called a dual-rate system.

Note that although ys[k] is not defined for k = mη +
1, . . . , (m+1)η−1, it is needed for control law calculations
for all k = 0, 1, . . . . Although several strategies can be used
to solve this problem [13], it is assumed here that the sensor’s
output is held constant between measurements. That is,

ys[k] , ys[mη], (3)

for k = mη + 1, . . . , (m+ 1)η − 1. This piecewise constant
extension of ys[mη] allows one to derive a joint switched
dynamical model for the plant and the sensor as shown next.

B. Sensor Model and Switched System Representation

It follows from (2) and (3) that the sensor must posses
internal memory in order to generate a piecewise constant

1ys[0] is set to an arbitrary value.

output. Thus, from a modeling perspective, the sensor can be
considered a dynamical system, with input us[k] and output
ys[k], that operates under two regimes: one while ys[k] is
held constant and another while ys[k] is updated.

Consider first the case of a delayed sensor and let us[k] =
yp[k] + d[k] (i.e., assume there is an ideal sampler, with
sample period T1, between the summation node and ST2 in
Figure 1). It follows from equations (2a) and (3) that ys[k] =
us[(m − 1)η], k = mη, . . . , (m + 1)η − 1, m = 0, 1, . . . .
Thus, as shown in Figure 2, two internal states, xs1 [k] and
xs2 [k], are needed to, respectively, down-sample us[k] and
hold ys[k] constant. The information flow among the sensor’s
input, states, and output is indicated by arrows in Figure 2.
As needed, ys[k] = us[(m − 1)η] when k = mη. Note
that us[(m − 1)η] is assumed to be stored in xs1 [k], since
it is not available from the input at time k = mη. Thus,
us[k] must be stored in xs1 [k] every mη sample periods.
Also, when k = mη, xs1 [k] must be copied into xs2 [k] to
allow for ys[k] = us[(m − 1)η] (i.e., ys[k] = xs2 [k]) when
k = mη + 1, . . . , (m + 1)η − 1. Finally, when k = mη +
1, . . . , (m+ 1)η, xs1 [k] and xs2 [k] are held constant. Thus,
a delayed sensor can be modeled as a switched linear system
with state xs[k] , [xT

s1
[k] xT

s2
[k]]T ∈ R

ns , with ns = 2, and
dynamics given by

xs[k + 1] = Asθ[k]
xs[k] +Bsθ[k]

us[k]

ys[k] = Csθ[k]
xs[k] +Dsθ[k]

us[k],
(4)

where θ[k] is the periodic switching signal given by

θ[k] =

{

1, k = mη,m = 0, 1, . . .

2, otherwise,
(5)

and

As1 , Bs1 , Cs1 , Ds1 = [ 0 0
1 0 ] , [

1
0 ] , [ 1 0 ] , 0

As2 , Bs2 , Cs2 , Ds2 = [ 1 0
0 1 ] , [

0
0 ] , [ 0 1 ] , 0.

(6)

In the case of a sporadic sensor, a similar reasoning shows
that the sensor can still be modeled by the periodic switched
system in (4)-(5) provided that xs[k] is simplified to a single
state variable (i.e., ns = 1) and that (6) is replaced by

As1 , Bs1 , Cs1 , Ds1 = 0, 1, 0, 1

As2 , Bs2 , Cs2 , Ds2 = 1, 0, 1, 0.
(7)

Finally, to derive a compact representation for the plant and
the sensor, it will be assumed that d[k], k = 0, 1, . . . , is
a zero-mean, stationary random process. Consequently, d[k]
can be assumed to be the output of a linear system driven by
a scalar, zero-mean, independent and identically distributed
(i.i.d.) process w[k], k = 0, 1, . . . [17]. That is,

xd[k + 1] = Adxd[k] +Bdw[k]

d[k] = Cdxd[k] +Ddw[k],
(8)

where xd[k] ∈ R
nd . Combining this equation with (1)-(5)

yields the desired compact representation:

x[k + 1] = Aθ[k]x[k] +Bθ[k]up[k] +Gθ[k]w[k]

y[k] = Cθ[k]x[k] +Dθ[k]up[k] + Fθ[k]w[k]
, (9)

where x[k] , [xT

p[k] x
T

d[k] x
T

s[k]]
T, θ[k] is given by (5), and

Aθ[k] =

[

Ap 0 0
0 Ad 0

Bsθ[k]
Cp Bsθ[k]

Cd Asθ[k]

]

, Bθ[k] =

[

Bp

0
Bsθ[k]

Dp

]

,
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Fig. 3. (a) Autonomous, time-driven, deterministic automaton that generates

θ[k] in (5). (b) State transition diagram of the Markov chain θ̃[k] that
generates θ[k] in (11). The states are labeled with the standard ·/· notation
denoting the state/output values. In (b), each arrow is labeled with a
transition probability value.

Cθ[k] = [Dsθ[k]
Cp Dsθ[k]

Cd Csθ[k] ] , Dθ[k] = Dsθ[k]
Dp,

Fθ[k] = Dsθ[k]
Dd, Gθ[k] =

[

0
Bd

Bsθ[k]
Dd

]

.

Throughout this subsection η has been considered fixed.
In many practical situations, however, η may vary randomly,
which motivates the analysis presented next.

C. Dual-Random-Rate Systems

In the previous subsection it was shown that a dual-rate
system can be reformulated as a linear switched system
driven by a periodic switching signal θ[k]. The latter can be
considered to be generated by an autonomous, time-driven,

deterministic automaton with state θ̃[k] ∈ {1, . . . , η}, initial

state θ̃[0] = 12, output map ̟ : {1, . . . , η} → {1, 2}

̟ : θ̃[k] 7→ θ[k] = ̟(z[k]) =

{

1, θ̃[k] = 1,

2, θ̃[k] 6= 1
, (10)

and state transition diagram given in Figure 3(a). Clearly,
each cycle of θ[k] lasts exactly η sample periods. In many
practical situations, however, each cycle’s duration may be
shorter or longer than η sample periods. For instance, the
time it takes an image-based sensor to generate a new
output may vary depending on the amount of processing time
that each particular image needs. Similarly, in a networked
control system, the time it takes new sensor data to reach
the controller varies depending on the network’s level of
congestion [18]. In such cases, each cycles’ duration can
be considered a random variable with an average value
of η sample periods. Thus, let ηm ∈ {ηL, . . . , ηH}, with
ηL, ηH ∈ N and ηL ≤ ηh, denote m-th cycle’s duration
and, for simplicity, assume that all ηm, m = 0, 1, . . . are

i.i.d. with probability distribution, µ , [µηL , . . . , µηH ], with
µi = Pr{ηm = i}, i = ηL, . . . , ηH , m = 1, 2, . . . . Clearly,
under these conditions, the switching signal becomes the
random process, θ[k], k = 0, 1, . . . , given by

θ[k] =

{

1, k = 0,η1,η1 + η2, . . .

2, otherwise
. (11)

2Note that θ̃[0] is set to 1 to make θ[0] = 1. This, however, was only

needed to simplify the derivation of (4). Thus, in general, θ̃[0] can take any
value from the set {1, . . . , η}.
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Fig. 4. Alternative representation for a dual-random-rate system.

Moreover, if θ[k] = 1 for some k ≥ 0 then

Pr{θ[k + i] = 1
∣

∣θ[k] = 1} =

{

µi, i = ηL, . . . , ηH ,

0, otherwise
. (12)

This leads to the following definition.
Definition 2.2: The switched system (9) switched by the

signal θ[k] in (11)-(12) is called a dual-random-rate system
and denoted D.

Observe from (11) and (12) that θ[k] can be generated
by applying the map ̟ in (10), with extended domain
{1, . . . , ηH}, to an ηH -states homogeneous Markov chain

θ̃[k], k = 0, 1, . . . , with state transition diagram given

by Figure 3(b), initial distribution3 µθ̃0 , [µθ̃01 . . . µθ̃0ηH
],

and transition probability matrix Π = [πi,j ] with transition
probabilities

πi,j =















1, i = 1, . . . , ηL − 1, j = i+ 1,
µi

ηH∑

l=i

µl

, i = ηL, . . . , ηH , j = 1,

1− πi,1, i = ηL, . . . , ηH , j = i+ 1

. (13)

Thus, D can be considered to be a switched linear system
switched by a static function of a Markov chain (see Figure
4), so its stability and performance properties can be estab-
lished using tools available for MJLSs, as shown next.

III. STABILITY AND PERFORMANCE ANALYSIS OF

DUAL-RANDOM-RATE SYSTEMS

This section is divided into two parts. The first part
summarizes well-known results on the stability and output
performance of MJLSs. The second part relates these results
to dual-random-rate systems.

A. Stability and Output Performance of MJLS

Consider the Markov jump linear system

x̃[k + 1] = Ã
θ̃[k]x̃[k] + B̃

θ̃[k]u[k] + G̃
θ̃[k]w[k]

ỹ[k] = C̃
θ̃[k]x̃[k] + D̃

θ̃[k]u[k] + F̃
θ̃[k]w[k]

, (14)

where, x̃[k] ∈ R
n, x̃[0] is a second-order random vector,

ỹ[k],u[k] ∈ R, w[k] is the i.i.d. process in (8), and θ̃[k],
k = 0, 1, . . . , is the Markov chain defined in (13).

Note that by construction, the states of θ̃[k] constitute a
single recurrent class but are not necessarily aperiodic [19].
However, aperiodicity can be guaranteed by imposing mild

additional conditions on θ̃[k], k = 0, 1, . . . , (e.g., πi,1 > 0
and πi+1,1 > 0 for some i ∈ {ηL, . . . , ηH−1}). Thus, it will

be assumed in the sequel that θ̃[k], k = 0, 1, . . . , is aperiodic
and, thus, ergodic [19] (as required by Theorems 3.1 to 3.3).

The stability notion of choice for a MJLS, mean square
stability (MSS), is defined next [15], [20].

Definition 3.1: The MJLS (14) with u[k] ≡ 0 and w[k] ≡
0 is said to be mean square stable if for every initial

3As in the previous subsection, θ̃[0] must not necessarily be set to 1.
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distribution µθ̃0 and every initial state vector, x̃0, it follows
that E{‖x̃[k]‖2} → 0 as k → ∞.

MSS can be tested as follows (see [15, Theorem 3.9]).
Theorem 3.1: The MJLS (14) with u[k] ≡ 0 and w[k] ≡

0 is mean square stable if and only if the spectral radius of
A2, denoted ρ(A2), is less than 1, where

A2 , (ÃT1 ⊗ ÃT1 , . . . , Ã
T
ηH

⊗ ÃTηH )(Π⊗ In2) (15)

and In2 is an n2 × n2 identity matrix.
Different closed-loop controllers for MJLSs can compared

using the following output performance measures [16], [21].
Definition 3.2: The output performance measure J for

the MJLS (14) is given by

J =

{

J0 , E
{
∑

∞

k=0 ||ỹ[k]||
2
}

, w[k] = 0,

Jw , limk→∞ E{||ỹ[k]||2}, w[k] 6= 0

where J0 is the mean output energy and Jw is the mean
output power.
J0 is a measure of how quickly the MJLS (14) dissipates

energy at its output. To obtain a closed-form expression for it,
let C , [C1 . . . CηH ] ∈ R

n×nηH and Q , [Q1 . . . QηH ] ∈
R
n×nηH , where Cj = C̃T

jC̃j ∈ R
n×n, j = 1, . . . , ηH , and

Qi ∈ R
n×n, j = 1, . . . , ηH , are given by

Q = ϕ−1
(

(

In2ηH −A2

)

−1
ϕ(C)

)

.

In this equation, A2 is defined as in (15), and the invertible

function ϕ : Rn×nηH → R
n2ηH has action ϕ : C 7→ ϕ(C) ,

[vecT(C1) . . . vec
T(CηH )]

T, where vec(·) denotes the column
stacking operator. J0 can then be computed as follows.

Theorem 3.2 (Theorem 4.2 in [21]): Consider the MJLS
(14) with u[k] ≡ 0 and w[k] ≡ 0 and assume it is MSS. If

x̃[0] and θ̃[k], k = 0, 1, . . . , are independent, then

J0 = tr(X0Q0),

where X0 , E{x̃(0)x̃T(0)} and Q0 ,
∑ηH
j=1 Qjµ

θ̃
0j .

Jw is a measure of how well the MJLS (14) rejects w[k].
To derive a closed-from expression for it, first note from the

ergodicity of θ̃[k] that it has a unique steady state distribution

µθ̃s , [µθ̃s1 . . . µθ̃sηH
]. Next, let V , [V1 . . . VηH ] ∈

R
n×nηH and Q̌ , [Q̌1 . . . Q̌ηH ] ∈ R

n×nηH , where

Vj ,
∑ηH
i=1 πi,jG̃iG̃

T

iµ
θ̃
si

, j = 1, . . . , ηH , and Q̌j ∈ R
n×n,

j = 1, . . . , ηH , are obtained from

Q̌ = ϕ−1
(

(

In2ηH −AT

2

)

−1
ϕ(V)

)

.

Jw can be computed as follows.
Theorem 3.3: Consider the MJLS (14) with u[k] ≡ 0 and

σ2
w = 1, and assume it is MSS. If x̃[0], w[k], k = 0, 1, . . . ,

and θ̃[k], k = 0, 1, . . . , are independent, then

Jw = tr





ηH
∑

j=1

CjQ̌j



+

ηH
∑

j=1

F̃ 2
j µ

θ̃
sj
.

Proof : Since ỹ[k] is scalar, it follows from (14) that

E{‖ỹ[k]‖2} = E{(C̃
θ̃[k]x̃[k])

2 + 2C̃
θ̃[k]x̃[k]F̃θ̃[k]w[k] +

(F̃
θ̃[k]w[k])2}. Since, by assumption, x̃[k], θ̃[k], and w[k]

are independent, then it follows that E{‖ỹ[k]‖2} =
E{(C̃

θ̃[k]x̃[k])
2}+ σ2

wE{F̃ 2
θ̃[k]

}. The result follows immedi-

ately by taking the limit, when k → ∞, of the latter equality

and using [16, Theorem 9 and Corollary 8] and the ergodicity

of θ̃[k], k = 0, 1, . . . .

These results can be applied to dual-random-rate systems
as shown next.

B. Stability and Performance of Dual-Random-Rate Systems

Consider again the dual-random-rate system D and recall

that θ[k] = ̟(θ̃[k]). Next, in (14) set Ãi = A̟(i), B̃i =

B̟(i), C̃i = C̟(i), D̃i = D̟(i), F̃i = F̟(i), and G̃i =
G̟(i), for all i = 1, . . . , ηH , where Al, Bl, Cl, Dl, Fl, and
Gl, l = 1, 2, are defined as in (9). Under such conditions,
the MJLS in (14) is said to be model equivalent to the dual-
random rate system D [16]. That is, if x̃[0] ≡ x[0] and
u[k] ≡ up[k] for all k = 0, 1, . . . , then x̃[k] ≡ x[k] and
ỹ[k] ≡ y[k] for all k = 0, 1, . . . . Moreover, both systems
have equivalent stability and performance properties [16],
[22]. Consequently, the stability and performance properties
of D can be established by analyzing those of its model
equivalent MJLS (provided, of course, that x[0] is a second-

order random vector, and that it, θ̃[k], k = 0, 1, . . . , and
w[k], k = 0, 1, . . . , are independent, which is usually the
case in practice since the initial state, the output rate and the
output perturbation are independent physical variables).

Note that in practical applications θ̃[k] may be accesible
as a signal (e.g., in electron microscopy). In such cases, the
dual-random-rate system D can be connected to a MJLS
controller in a configuration similar to that in Figure 1. If
the controller dynamics are given by

xc[k + 1] = Ac
θ̃[k]

xc[k] +Bc
θ̃[k]

ys[k]

yc[k] = Cc
θ̃[k]

xc[k],
(16)

where xc[k] ∈ R
nc and yc[k] ∈ R, then the feedback

interconnection between D and the controller is given by

xcl[k + 1] = Acl
θ̃[k]

xcl[k] +Gcl
θ̃[k]

w[k]

ycl[k] = Ccl
θ̃[k]

xcl[k] + Fcl
θ̃[k]

w[k],
(17)

where xcl[k] ,
[

xT

p[k] xT

d[k] xT

s[k] xT

c[k]
]T

and Acl
θ̃[k]

,

Gcl
θ̃[k]

, Ccl
θ̃[k]

, and Fcl
θ̃[k]

are given in (18) (top of next page).

Note that Ccl
θ̃[k]

was chosen so that ycl[k] = yp[k] + d[k],
for all k = 0, 1, . . . , since this is the output signal of most
interest. Finally, note that (17) is a particular case of (14)
so it can be directly analyzed with the tools described in
Section III.A. These concepts are illustrated next.

IV. EXAMPLE

Transmission electron microscopes (TEMs) are the tools
of choice for nanotechnology and biological research since
they can reveal information on the internal structure of
a wide range of specimens. Although currently, most of
these microscopes are operated manually, it is expected
that in the near future autonomous TEMs will be needed
to perform high-throughput nano-measurements [23]. One
aspect of TEM automation that requires special attention
is that of image drift compensation (see, e.g., [24]). TEM
images are generated by shining a beam of electron through
a thin specimen. The beam is composed mostly of electrons
that have a vertical downward trajectory. When the electrons
interact with the specimen, they get scattered at angles that
depend on the atomic weight of the elements composing
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Acl
θ̃[k]

=





Ap 0 0 BpCcθ[k]

0 Ad 0 0
Bsθ[k]

Cp Bsθ[k]
Cd Asθ[k]

Bsθ[k]
DpCcθ[k]

Bcθ[k]
Dsθ[k]

Cp Bcθ[k]
Dsθ[k]

Cd Bcθ[k]
Csθ[k]

Acθ[k]
+Bcθ[k]

Dsθ[k]
DpCcθ[k]



 , Gcl
θ̃[k]

=

[ 0
Bd

Bsθ[k]
Dd

Bcθ[k]
Dsθ[k]

Dd

]

,

Ccl
θ̃[k]

= [Cp Cd 0 DpCcθ[k] ] , Fcl
θ̃[k]

= Dd. (18)

the specimen. In general, heavier atoms scatter the electrons
at higher angles than lighter atoms. Thus, by setting-up the
TEM optical system to allow only slightly scattered or un-
scattered electrons to reach the microscope’s viewing screen
or CCD camera, it is possible to generate bright-field images
that show dark spots only where the specimen contains
heavier atoms [11]. Clearly, the image content depends on the
relative position of the specimen and the beam. In practice,
even if this relative position remains constant, the image
content is known to drift due to external perturbations [25].
Image drift is corrected using shift-coils, which allow one to
laterally displace the electrons that go through the specimen
before they reach the CCD camera. In this way, one can shift
the image content and counteract the drift. Several schemes
have been proposed to automatically compensate image drift
[6], [7]. These schemes assume that images can be acquired
at regular intervals from which the drift can be estimated by
image processing. The drift information is then used to stir
the shift-coils appropriately. The aforementioned assumption,
however, overlooks the fact that not all images can be used
for drift control purposes, since some must be used for
scientific purposes. More importantly, the sequence and/or
the proportion of scientific images with respect to control
images may vary randomly. Clearly, drift compensation can
be characterized as a dual-random-rate system.

To illustrate this, assume that the position of the specimen
is fixed and that the drift only acts in one direction (i.e., the
drift is only a scalar). Let the plant in Figure 1 represent
the shift-coils and note that yp(t) represents in this case
the desired image content position (in the same direction as
the drift). The drift, d(t), is represented here as an additive
perturbation to yp(t). It can be estimated from the image
stream by an image processing algorithm that compares each
image against a reference image by using, for instance, cross
correlation methods [6]. In practice, the shift-coils transients
are much shorter than the drift time constants, so they can
be treated as static systems with static gain K [24]. (Without
loss of generality, it will be assumed that K = 1.) Thus, in
(1), Ap = 0, Bp = 0, Cp = 0, Dp = 1. In this example,
the drift is assumed to be a zero-mean ARMA(1,1) process,
so in (8), Ad = φ, Bd = 1, Cd = φ − θ, Dd = 1, with
φ = −0.1, θ = 0.9 and σ2

w = 1 (see [26]). If one assumes
that two scientific images are acquired every 9 control images
in average (i.e., 90% of the time the image stream is used
for control purposes), then the action of the CCD camera
and the image processing algorithm can be modeled as a
sporadic sensor (see (2b)) with dynamics (4), (7) driven by
θ[k] in (11)-(12), with ηL = 1, ηH = 3, µ1 = 0.9, µ2 = 0,

and µ3 = 0.1. Thus, the transition probability matrix of θ̃[k]
in (13) is given by

Π =
[

0.9 0.1 0
0 0 1
1 0 0

]

.

As suggested in [24], the controller will attempt to mini-
mize the variance of the observed image drift by executing a

minimum variance control (MVC) scheme [27]. This scheme
makes use of drift estimates, d̂[k], and an internal model
of the drift dynamics to forecast the future drift values and
compensate for them. More precisely, suppose that the k-th
image is used for control purposes and that the k+1-th and
k+2-th images are used for scientific purposes. After the k-

th image is acquired (i.e., when θ̃[k] = 1), the output of the
sensor is given by ys[k] = yp[k]+d[k]−yref −dref , where
yref + dref is the position of the reference image content
with respect to an absolute frame of spatial coordinates. If
yref +dref is assumed to be zero (see [24]), the drift can be

estimated by computing d̂[k] = ys[k]−Kup[k]. Under the

standard MVC scheme, up[k+1] = −d̂[k, 1], where d̂[k, 1]
is the forecast of d[k + 1] produced with the information
available up to the k-th image. When the scientific images

are being acquired (i.e., when θ̃[k+1] = 2 and θ̃[k+2] = 3)

the estimates d̂[k + 1] and d̂[k + 2] are no longer available.

In such case, the two and three steps ahead forecasts, d̂[k, 2]
and d̂[k, 3], are used to generate up[k + 2] and up[k + 3]
respectively. (Note that the latter alternative is not part of the
standard MVC scheme.) As shown in [26], the forecasts for
image k can be related to those for image k − 1 as follows

d̂[k, 1] = d̂[k − 1, 2] + ψ1ŵ[k]

d̂[k, 2] = d̂[k − 1, 3] + ψ2ŵ[k]

d̂[k, 3] = φd̂[k − 1, 3] + ψ3ŵ[k],

where ψi = (φ − θ)φi−1, i = 1, 2, 3, and ŵ[k] an estimate
of w[k] (which is not directly measurable) is given by

ŵ[k] = d̂[k] − φd̂[k − 1] + θŵ[k − 1]. Thus, if xc[k] ,
[d1[k] d2[k] d3[k] dm[k] wm[k]], where d1[k], d2[k],
and d3[k] are used to store, respectively, d̂[k, 1], d̂[k, 2] and

d̂[k, 3], dm[k] stores d[k], and wm[k] stores ŵ[k], then the
controller can be represented as in (16) with matrices

Ac1 =





ψ1 1 0 −ψ1φ ψ1θ
ψ2 0 1 −ψ2φ ψ2θ
ψ3 0 φ −ψ3φ ψ3θ
1 0 0 0 0
1 0 0 −φ θ



 , Ac2 = Ac3 = I5,

Bc1 = [ψ1 ψ2 ψ3 1 1]
T
, Bc2 = Bc3 = 05×1, Cc1 =

[−1 0 0 0 0], Cc2 = [0 −1 0 0 0], and Cc3 =
[0 0 −1 0 0], where I5 is a 5×5 identity matrix, 05×1

is a 5× 1 column vector of zeros.
The stability of this extended MVC scheme can be an-

alyzed by means of (17) and Theorem 3.1 (in this case,
xcl[k] ∈ R

8). It is not difficult to show that A2 = 0.8430 < 1
(see (15)), so the extended MVC scheme is mean square
stable. Also note from Theorems 3.2 and 3.3 that the mean
output energy and the mean output power are, respectively,
J0 = 120.9 and Jw = 90.86. To confirm these results,
two sets of Monte Carlo simulations were performed using
Matlab. The first simulation set illustrates Theorem 3.2.
It comprised 100000 sample paths of the closed-loop sys-
tem (17), each of a length of 100 sample periods (i.e.,

k=0,1,. . . ,99). The initial distribution of θ̃[k] was set to
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Fig. 5. Example simulation results (see Section IV). Top: Results of the

first simulation set that show that, as expected, E{
∑

k

l=0
‖ycl[l]‖

2} → J0
as k → ∞. Bottom: Results of the second simulation that show that, as
expected, E{‖ycl[k]‖

2} → Jw as k → ∞.

µθ̃0 = [1, 0, 0], xcl[0] was set to 18×1 (an 8 × 1 column
vector of ones) and w[k] to 0. To emulate the definition

of J0 (see Definition 3.2) the partial sums
∑k

l=0 ‖ycl[l]‖
2

were computed for each sample path and value of k. The
partial sums were then averaged to produce estimates of

E{
∑k

l=0 ‖ycl[l]‖
2}. The results are shown in Figure 5 (top).

As expected, E{
∑k
l=0 ‖ycl[l]‖

2} → J0 as k → ∞. The
second simulation set illustrates Theorem 3.3. It is identical
to the first simulation set with two exceptions: xcl[0] = 08×1

(an 8× 1 column vector of zeros) and w[k] was taken to be
zero-mean, Gaussian, i.i.d. process with variance σ2

w = 1.
To emulate the definition of Jw in Definition 3.2, the value
of E{‖ycl[k]‖

2} was estimated from the data for every value
of k. The simulation results are shown in Figure 5 (bottom).
As expected E{‖ycl[k]‖

2} → Jw as k grows.

V. CONCLUSIONS

The class of dual-random-rate systems, that is, dual-rate
systems with a random output (or sensing) rates, has been
introduced as a framework to study practical image-based
control systems. It was shown that dual-random-rate systems
can be reformulated as Markov jump linear systems and
analyzed with the tools available for the latter. This point
was illustrated through a simulation example: an extended
minimum variance controller used to compensate the image
drift in a transmission electron microscope. Research is
ongoing to extend the dual-random-rate framework to the
more general multirate setting.
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