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Abstract— The purpose of this paper is to present a model
of immune control based on recently discovered regulatory
properties of the immune system. The immune system is a
control system which self optimizes over time to eliminate
disease while avoiding harm to the host. The controller acts
without centralized authority. Recent research has revealed new
T-cell populations involved in regulating the immune response.
We show how interactions of these populations at the cellular
level can give rise to population dynamics which mimic a
PID controller with on/off switching. We study these nonlinear
dynamics and show stability using Lyapunov analysis. We also

include the results of simulation.

I. INTRODUCTION

The purpose of this paper is to improve our understanding

of the immune system by understanding how it acts as

a decentralized control system. The immune system is a

collection of interacting biological and cellular processes

which controls the body’s response to infection. We consider

the adaptive immune response which, in contrast to the innate

immune response, can vary depending on the threat. One ap-

plication of this research is harnessing the immune response

for the treatment of cancer. In recent years, immunotherapy

approaches to treatment of cancer have been proposed [1].

These approaches are based on an ability of the immune

system to identify and destroy cancerous cells [2]. However,

cancer immunotherapy efforts thus far have had little success.

To understand why cancer immunotherapy fails, we need to

better understand the immune system.

Modeling the immune response to cancer and other types

of disease is typically based on experimental observation.

Observation can be at either the cellular or population

level. At the cellular level, we observe the mechanics of

reproduction and interaction, and scale these mechanics to

deduce population-level dynamics. At the population level,

we observe the evolution of populations of cells and induce

empirical laws governing the growth of these populations.

In this paper, we observe that the immune system eliminates

infectious disease while avoiding harmful interactions with

the host - an effect. We deduce that the immune system

must have an internal control system with mechanisms

for detection, discrimination and elimination. We look for

cellular interactions which produce this effect when scaled to

population-level dynamics. This idea is similar to the concept

of self-organized criticality [3].

There are several existing models of the immune response

to infection, e.g. [4], [5]. Control of cancer has been treated

in numerous works, e.g. [6] and recently [7], [8], [9]. The

contribution of this paper is a focus on using new experi-

mental research to describe control aspects of the immune

system, such as determination of self/nonself and switching.

We also focus on the decentralized control problem of how

cells with limited knowledge and authority can collectively

decide and act in the face of a threat.

We concentrate on two key decentralized control problems.

• How can the control system determine self from non-

self without central memory?

• How can millions of cells coordinate a response with

no central authority?

We use models of biological interaction to show that

simple responses of individual cells, when scaled to a

population-level interaction, result in a behavior similar to

a biological circuit with PID control and on/off switching.

The paper is organized as follows. In Section II, we present

basics of the immune system. In Section III, we present a

simplistic model of proportional response. In Section IV, we

present a more complex model with differential response.

In Section V, we present an even more complicated model

which includes switching. Finally, in Section VI, we give

a model which includes integral response. Next, we use

computational tools to define the region of convergence of

the model and use simulation to illustrate the dynamics.

The immune system is a robust, well designed control

system. In the past, understanding of how this control system

works has been poor. This paper leverages recent experimen-

tal research to shed light on this important question.

II. BACKGROUND

A. Immune Functions
In this section, we review some of the elements of the im-

mune response. The immune system is complex. We include

only those elements used in defining our model. Additionally,

there is uncertainty and overlap in many immune functions.

For the purpose of of clarity, we make simplifications in

categorizing these immune functions.

• An Antigen is any molecule with the potential for

recognition by the immune system.

• Antigen-Presenting Cells (APCs) such as dendritic

cells and macrophages process antigens throughout the

body and present them to T-cells for potential targeting.

T-Cells: We model T-cells as controlling the decision-making

aspect of immune system. They determine whether a target

is a threat or not and regulate the response. While it is

known that B-cells and dendritic cells also have a role in

this process, we do not model these populations separately.

• A Naı̈ve T -Cell is a T-cell which has not been activated.

• A Cytotoxic T-Cell (Tc, CD8+) is a cell which, once it

has been activated, is capable of targeting cells which
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express a specific antigen. Tc cells are not involved in

decision-making per se, but rather in actuation.

• Helper T-Cells amplify immune response. Some exam-

ples include Th1, Th2 and CD4+Foxp3- T cells.

• Regulatory T-Cells suppress immune response. Until

recently their existence was controversial. Several dis-

tinct types of Treg cells have been identified. e.g. iTreg,

CD4+Foxp3+ Treg, Tr1.

Our models of control do not include the effect of Memory

T-Cells, which provide future immunity after an infection

has been cleared, and act on longer time-scales.

Signalling: Cells of the immune system communicate in two

ways; Either through direct interaction or through the release

of and binding with signalling molecules.

• Cytokines are signalling molecules. Some of these

cause cell activation and division. e.g. IL− 2

III. A BASIC BIOLOGICAL CIRCUIT

We begin this section by describing how the immune

system detects the concentration of antigens.

a) Sensing: As mentioned previously, antigens are

present throughout the body. Antigen-Presenting Cells

(APCs) process antigens and present them regularly to naı̈ve

T-cells with a frequency proportional to their concentrations

in the body [10]. Thus the laws of mass-action dictate that

the rate of creation of antigen-specific activated T-Cells is

rEaa(t)N(t), where a(t) is the antigen concentration, N(t)
is the naı̈ve T -Cell concentration and rEa is a reaction

coefficient. We assume that the population of all naı̈ve T-cells

is always far greater than any population of antigen-specific

T-cells and is replenished quickly. A basic population model

for naı̈ve T-cells can be found in, e.g. [11].

Ṅ(t) = sN − dNN(t)

where dN is the death rate and sN is the rate at which

the cells are replenished. Note that nominal estimates for

all parameters are listed in Table VIII.1. Naturally, the

dynamics are stable for any positive values of sN and dN .

The equilibrium value is Neq = sN
dN

. In this initial model

of sensing, we assume that the dynamics occur on a short

time-scale and concentrations are small. If an infection is

intense and extended, then activation of naı̈ve T-cells may

cause depletion of the equilibrium population. However, we

discount this effect. This assumption can also be found in

the models of [12], [13], [14].

The population dynamics for helper cell concentration,

E(t), become

Ė(t) = rEaa(t)Neq − dEE(t),

where dE is the death or deactivation rate of helper T -Cells.

For a fixed reservoir of naı̈ve T-cells, the helper cell dynamics

are stable. Moreover, using the stated parameter values, the

helper cell population will track the antigen concentration

with rise time (time to 90%) Tr = 2.2/dR
∼= 9days for

CD4+ helper cells. The equilibrium value is Eeq =
rEaNeq

dE
a(t).

Thus the helper cell population E is proportional to the

concentration of antigen, a(t), yet amplified by a factor

of ∼= 324. Simple mechanics of interaction give rise to a

proportional response. Note that we do not specify which

helper cell population we use. The rate of response will vary

depending on the subspecies of helper cell.
b) Actuation: In this section, we describe how the

activation of CD8+ T-Cells by helper cells on an individual

cellular level gives rise to a population of cytotoxic T-cells

proportional to the concentration of helper cells.

We use the antigen-specific cytotoxic T-cell concentration,

Tc, as the measure of actuator response. As was the case

for helper cells, there is a stabilized pool of naı̈ve CD8+

T-cells. The equilibrium concentration is Nc = sNc
dNc

, where

dNc is the death rate of naı̈ve T-cells and sNc is the rate

at which they are replenished. Naı̈ve T-cells are activated

by contact with certain helper cells, or through signalling

compounds. Helper cells recruit Tc cells at rate proportional

to concentration E(t)Nc. The Tc cell dynamics are

Ṫc(t) = rEcE(t)Nc − dTcTc(t).

where dTc is the death and deactivation rate of activated Tc-

Cells. The population dynamics are stable and linear for any

dTc . The Tc population will track the helper population with

steady-state value Tc = rEc
Nc
dTc

E .

c) Proportional Response: In experimental immunol-

ogy, detailed time-series data is not available. Although some

planning for higher resolution data is in the works, at present

the best human data will give three or four measurements

of E and a over the course of several months. Due to

the granularity of measurement, model validation requires a

simplified framework. Therefore, we summarize the Sensor-

Actuation model presented in this section as a proportional

feedback with gain

K = rEcrEa
Nc

dTc

Neq

dE
As a system, the APC-CD4+-CD8+ interactions predict a

proportional response to antigen concentration. This predic-

tion can be readily tested experimentally. Experience tells

us, however, that such a simple response is not possible.

Taking our model at face value, the logical implication would

be that there would be a larger response to internal antigen

targets than to external ones, resulting in deadly autoimmune

disease. Specifically, the proportional response model does

not admit a mechanism for self-tolerance. In the next section,

we show how the behavioral difference between self-antigens

and non-self-antigens can be distinguished using differential

feedback. We also show how maturation delay in regulatory

cells can create a circuit for this differential feedback.
IV. THREAT DETECTION: DERIVATIVE RESPONSE

The problem we address in this section is how to dif-

ferentiate a ’friendly’ target from a ’hostile’ target without

centralized coordination. Individual cells, when presented

with an antigen, can choose to ignore the antigen or to

activate. Once activated, the cell can recruit CD8+ cells or

release cytokines to increase immune response. However, the

cell must make the determination of friend or foe without any

knowledge of the biological difference between a friendly or

hostile antigen [15].

The answer to this dilemma lies in the existence of

the recently-discovered species of cell called regulatory T-

cells [16]. Regulatory T-cells, once activated, reduce immune
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response either through direct interaction with helper cells or

indirectly via cytokine signalling. The negative influence of

regulatory cells balance the positive action of helper cells.

The only recognizable difference between a threat and a

friendly antigen is that friendly antigens already exist in

abundance, while threats start small and quickly build in

quantity. This behavioral difference can be detected as a

deviation from equilibrium. The balance created by equal

and opposing populations of helper and regulatory cells

is disrupted when helper cells respond more quickly than

regulatory cells. This deviation is the trigger for the immune

system. This means that the immune system responds not

to antigen concentration, but the rate of change of antigen

concentration.

The mechanism for creation and action of Treg cells is

hotly debated. For our purposes, we suppose that the method

of creation/activation of regulatory cells is similar to that

for helper cells. There is a stabilized reservoir of naı̈ve Treg

cells. Antigen-specific Treg cells, denoted R(t), are recruited

from this reservoir by direct contact with antigen. The rate

of recruitment is rRa(t), where rR is a reaction rate which is

proportional to the naı̈ve Treg population. As was the case for

helper cells, regulatory cells in this model experience stable

linear growth.

Ṙ(t) = rRa(t)− dRE(t)

Although the mechanism of Treg creation is unclear, experi-

mental results consistently show that the regulatory response

is delayed with respect to the helper response. This may be

due to slower dynamics or a maturation delay. In either case,

we model a delay, τ, in evaluating the steady-state response

of the regulatory population R(t) = rR
dR

a(t − τ). This yields a

population of regulatory cells which mirrors the population

of helper cells, but with delay. At the population level, down-

regulation of helper cells occurs at rate rRER(t)E(t), where

rRE is a reaction coefficient. The combined Regulatory-

Helper dynamics become

Ė(t) = rEaa(t)E(t)− rRER(t)E(t)

= (rEaa(t)−KREa(t − τ))E(t)

where KRE := rRE
rR
dR

. This expression can be put in the form

of a first-order difference equation:

Ė(t) = (rEa −KRE)a(t)E(t)

+ τKRE

(a(t)− a(t− τ))

τ
E(t). (IV.1)

Because derivatives are impossible to detect directly, a first-

order hold is a standard method used for approximating the

derivative in a PD controller.

ȧ(t)∼=
a(t)− a(t− τ)

τ
Note that if there were no delay, the response would be

simply proportional:

Ė(t)∼= (rEa −KRE)a(t)E(t).

Since proportional response can be achieved by growth of

the helper cell population alone, we conclude that one of

the reasons for the existence of regulatory cells is to create

derivative feedback.

As mentioned, the existence of a proportional response

is not realistic. Thus we expect rEa
∼= KRE . In this case

there is no steady-state response. Treg cells suppress auto-

immune disease (response to persistent self-antigens) while

permitting a response to fast-acting infections. For slow-

growing diseases such as cancer, this model predicts the

immune response will be mild.

We conclude that although individual cells do not have

the capacity to determine self from non-self, at a population

level, the cells create a circuit which is able to make such a

distinction.
V. AN ON/OFF SWITCH FROM IL-2 SIGNALING

The collective decision-making power of regulatory T-

cells was discussed in the previous section. However, it is

well-known that differential response alone is not capable of

eliminating a threat. This is because there is no mechanism

for eliminating steady-state error. Steady-state error implies

persistent (chronic) infection. Furthermore, it has been shown

in several studies [17], [18], [19], [20], [21], [22], that the

strength of immune response does not vary substantially with

the initial concentration, as would be predicted from a purely

differential model of response. The differential response,

therefore, is only a trigger to recognize the threat and signal

a much larger immune reaction.

To understand how the immune system creates a large-

scale response, we turn to the phenomenon of cytokine

signalling. Cytokines such as IL-2 are known to be both

secreted and bound by several different cells. In helper cells,

binding of IL-2 triggers clonal expansion which causes the

cell to divide into two activated helper cells which, in turn

secrete more of the compound. When present in sufficient

numbers, this binding and secretion can create a positive

feedback loop leading to exponential growth in the immune

response. In pathological cases, the positive feedback loop

results in a saturation of various cytokines, such as seen

in septic shock. In this paper, we use an amalgamated

population of positive cytokines represented by p(t). These

cytokines are both produced by and bind to the helper cell

population. They are secreted by all activated helper cells

at rate rpE(t). Upon binding, they stimulate growth at rate

rE p(t)E(t). The dynamics of the helper cell population are

now
Ė(t) =−dEE(t)+ rE p(t)E(t)+ u(t),

where u(t) is an input which represents the effect of antigen

stimulation, as modeled in Equation IV.1. The cytokine-

helper relationship is illustrated in Figure V.1.

Production of signalling compound is described by

ṗ(t) = rpE(t)− dpp(t).

where rp is the production rate and dp is the loss rate.

Because p is absorbed by many different actors, we assume

that the loss due to reabsorption by E is negligible. Because

the signalling molecules are produced significantly faster

than cell activation, we can make the quasi-steady-state

approximation
p(t) =

rpE(t)

dp

.

By including the expression for p(t) in the helper-cell

dynamics, we obtain
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Fig. V.1. Release and self-absorption of growth signals creates a positive
feedback loop

Ė(t) =−dEE(t)+ rEE(t)2 rp

dp

+ u(t)

For small values of u(t), the system has two equilibrium

E

dE

dt

stable unstable

threshold

x10
-3

0 0.01 0.02 0.03
−2

−1

0

1

2

Fig. V.2. Positive feedback with antigen stimulation creates stable and
unstable equilibria

points. The lesser equilibrium point is always stable, while

the greater equilibrium is always unstable. Thus, absent per-

turbation, the helper cell population will remain contained at

some low level. Now suppose u(t) is nonzero. The equilibria

are
Eeq =

dp

rprE

(

dE ±

√

d2
E − 4

rErp

dp

u(t)

)

Because the term under the square root decreases with u,

for some value of u the equilibria no longer exist, leading

to exponential growth. Note that even if u(t) later returns to

zero, helper cell growth will continue as the population will

have surpassed the greater equilibrium point. This situation

is illustrated in Figure V.2. The dynamics mimic the effects

of a switch between stable and unstable growth where u(t)
acts as a switch with a trigger value of

utrigger = d2
E

dp

4rprE

When u(t) exceeds this value, unregulated exponential

growth ensues.

To summarize, by the secretion of positive cytokines,

individual helper cells contribute to the overall decision of

the immune system as to the level of response. Similarly,

through the binding of signalling molecules, helper cells

take into account the collective knowledge of other cells.

Once a sufficient number of helper cells decide that an

antigen constitutes a threat, the dynamics of the helper cell

population responds with unregulated exponential growth.

Naturally, unregulated exponential growth is not a realistic

model of response. Once a threat has been eliminated, the

response must contract. This question is addressed in the

following section.
VI. INTEGRAL FEEDBACK: CONTRACTION FROM

REGULATORY GROWTH

The problem with the positive feedback model of switch-

ing, as presented in the previous section is that once trig-

gered, we have indefinite increase in immune response even

if antigen stimulation is absent. While this is reasonable on

short term time scales, eventually the response must contract

if the infectious agent has been eliminated.

To account for this effect, we look at a different class

of regulatory T -cells called iTreg cells. Activated iTreg cells

are thought to arise from the helper cell population [23]. We

model these iTreg cells as being activated by or differentiating

from the population of helper cells acting under the influence

of positive growth cytokines. Thus the growth rate of these

cells is νR p(t)E(t) where νR is a reaction coefficient. The

population dynamics of iTreg cells are

Ṙi(t) = νR p(t)E(t)− dRiRi(t).

where dRi is the death/deactivation rate. Using the expression

p(t) =
rp

dp
E(t), we have

Ṙi(t) = νR

rp

dp

E(t)2
− dRiRi(t).

The constants νR, dRi are both small as the creation rate of

these cells is less than the helper rate, yet they are longer-

lived. iTreg deactivate helper cells at rate rRiERi(t)E(t) using

reaction coefficient rRiE . The combined helper-regulatory

dynamics are

Ė(t) =−rRiE Ri(t)E(t)− dEE(t)+ rEE(t)2 rp

dp

+ u(t)

Ṙi(t) = νR

rp

dp

E(t)2
− dRiRi(t).

u(t) represents the antigen stimulation. The effect of the

iTreg cells is to ensure contraction of the helper response. In

the following section, we obtain a proof of this contractive

property. However, a rough explanation for the stabilizing

effect of the iTreg cells is that if one ignores the relatively

low death rate of these cells, then

Ri(t)∼=

∫ t

0

νRrp

dp

E(s)2ds.

This is a form of integral feedback. Integral feedback is

necessary to balance the unbounded growth of the helper

cells. Once the helper cell population has become sufficiently

small, the lesser equilibrium becomes stable and the immune

response ceases.
VII. STABILITY ANALYSIS USING SUM-OF-SQUARES

In this section, we show that the iTreg population modeled

previously is capable of controlling the helper cell population

in the absence of antigen stimulation. Recall that we have

the following dynamics for E(t) and Ri(t).

Ė(t) =−rRiERi(t)E(t)− dEE(t)+ rEE(t)2 rp

dp

= f1(E,Ri)

Ṙi(t) = νR

rp

dp

E(t)2
− dRiRi(t) = f2(E,Ri)
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Fig. VII.3. Lyapunov Level Sets and Vector Field: Helper vs. Regulatory
Cell Concentration

Sum-of-Squares optimization is a computational method

for solving optimization problems with polynomial vari-

ables [24]. If we consider a Lyapunov function to be a

polynomial variable, then this method can be used to analyze

stability of nonlinear systems [25]. In this paper, we use

Sum-of-Squares optimization to search for a polynomial

Lyapunov function, V (E,Ri) such that the following holds

for all E,Ri > 0.

V (0,0) = 0, V (E,Ri)≥ ε(E2 +R2
i ) V̇ (E,Ri)≤ 0.

Let Z(x) be the vectors of monomials of degree 6 or less. We

parameterize V using a vector of coefficients c as V (E,Ri) =
cT Z(E,Ri). We search for a vector c and sum-of-squares

polynomials s1,s2,s3 and s4 such that

cT Z(E,Ri)− ε(E2 +R2
i ) = s1

cT
∇Z(E,Ri)

T

[

f1(E,Ri)
f2(E,Ri)

]

+Es2 +Ris3 =−s4.

This ensures that the stability conditions are met. The

constraints were implemented in SOSTOOLS [26] and Se-

DuMi [27]. For the nominal parameters listed in Table VIII.1,

the SOS program was feasible. The level sets of the Lya-

punov function can be seen in Figure VII.3, along with the

vector field.

Because parameters involving iTregs are speculative, we

estimated the parameter region of stability by testing param-

eter values on a grid. For νr and rRE , the stable regions

of the parameter space are shown in Figure VII.4. The

results are obtained from SeDuMi. The z-axis is feasibility. A

feasibility of 1 implies the existence of a Lyapunov function.

A feasibility of −1 implies that a Lyapunov function of

degree 6 or less does not exist. The plot indicates that

a combination of νR and rRiE contribute to stability. An

approximate condition for stability which which is consistent

with the data in Figure VII.4 is

νR · rRiE > 12.

VIII. SIMULATION

We summarize the paper with a Simulink demonstration.

We use the parameter values indicated in Table VIII.1

without any steady-state assumptions. A square antigen input

is used with helper response shown in FigureVIII.5. Note the

three different response regimes. From day 0 to 1, there is

a sharp differential in antigen concentration, which triggers

the switch and causes exponential increase. At time t = 1day,

Fig. VII.4. Stability for νR vs. rRiE . Generated from SeDuMi on a grid. 1
implies stability. −1 means indeterminate
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Fig. VIII.5. Simulation results using antigen stimulation and zero initial
conditions

this differential goes away as the pulse amplitude is constant

over the period of delay (τ= 1). We continue to see increase

in helper response, but this is balanced by a growing integral

response. At time day 3, the antigen stimulation disappears,

resulting in an imbalance of Treg cells due to the negative

differential. This causes a rapid decline in response until

day 4 when the Helper-Regulator balance is restored. At this

point integral feedback eliminates the remaining helper cells.
IX. CONCLUSION

In this paper, we have shown how the local interaction

of individual cells with limited information and authority

can yield intelligent response to an external threat. The

population dynamics are delayed and nonlinear, with several

interacting populations. However, we have shown that the

effect of these population dynamics can be interpreted as a

biological circuit. This circuit contains a differential sensor,

on/off switching and integral feedback. We have shown

that the dynamics of response are stable for regions of the

parameter space using sum-of-squares optimization.

The work presented in this paper is still preliminary in

that there are many aspects of the immune response that

are not well modeled or understood. Additionally, there is

no experimental validation using detailed time-series data.

We hope to conduct such experiments in the future. An
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Parameter Description Estimate

sN Supply rate of naı̈ve CD4+ T cells 0.0024k/µL day−1

dE Helper CD4+ cell death rate 0.23/day
dN Naı̈ve CD4+ cell death rate 0.03/day
a(t), a0 Antigen stimulation rate, steady state value a0 = 4%/day
dTc Effector CD8+ cell death rate 0.35/day

sNc Supply rate of naı̈ve CD8+ T cells 0.0016k/µL day−1

dNc Naı̈ve CD8+ cell death rate .03/day

rE Helper CD4+ growth rate upon interacting with positive growth signal 0.33(k/µL)−1 day−1

rp Positive signal secretion rate by helper CD4+ cells 100/day
dp Positive growth signal decay rate 5.5/day
dR Treg death rate 0.23/day
rR Relative stimulation rate of Treg cells to antigen 1
rRE Suppression rate of helper cells by Treg cells 20 interactions
rRiE Suppression rate of helper cells by iTreg cells 40 interactions
rEa Clonal expansion rate of stimulated helper cells .35/day
rEc Clonal expansion rate of recruited cytotoxicT cells 1/day

νR Differentiation rate of iTreg cells 0.3(k/µL)−1 day−1

dRi Death rate of iTreg cells .03/day
τ Treg maturation delay 1 day

TABLE VIII.1

PARAMETERS FOR THE COMBINED MODEL [11]. CONCENTRATIONS ARE IN UNITS OF K/µL, AND TIME IS MEASURED IN DAYS.

important unresolved question is the mechanics of T cell

memory. We would like to create a model of how the immune

system responds to a previously identified threat without

triggering a full immune response. For answer, we will look

at the dynamics of other known helper and regulatory T

cells. Another area of research is to deduce values of the

system parameters based by considering the optimal control

of simple models of infection. Since the immune system is

highly optimized by an evolutionary process, these values

of the parameters should correspond with the ones found in

nature.
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