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Abstract— In various applications of formal power series,
their evaluations on linear operators (acting on an infinite-
dimensional Hilbert space) or on square matrices (of any size
or of size large enough) play an important role and allow
one to develop a noncommutative analog of analytic function
theory. On the other hand, functions defined on square matrices
of any size which respect direct sums and similarities and
satisfy a local boundedness condition behave in many ways
as analytic functions and have power series expansions — a
noncommutative analogue of Taylor series. We will discuss
convergence of noncommutative power series and analyticity
of noncommutative functions.

I. INTRODUCTION
Noncommutative polynomials or, more generally, non-

commutative formal power series appear in many areas
of mathematics: in enumerative combinatorics, probability,
formal languages, theory of polynomial or rational identities
in rings, theory of Lie algebras, just to mention a few. A
noncommutative formal power series in d indeterminates
z = (z1, . . . , zd) with the coefficients in a vector space V
over a field K has the form

f =
∑

w∈Fd

fwzw, (1)

where Fd denotes the free semigroup on d generators g1, . . . ,
gd (letters) with the identity element ∅ (the empty word), and
we use the noncommutative power notation: zw = zi1 · · · zi`

for a word w = gi1 · · · gi`
. We will also assume that Fd is

ordered, and the order respects the word length.
Rational noncommutative formal power series with scalar

or matrix coefficients are those series of the form (1) which
are obtained by applying a finite number of successive
operations of summation, multiplication, and inversion to the
indeterminates z1, . . . , zd, where the inversion is defined for a
series (1) with f∅ an invertible matrix. They first appeared in
a system theoretical context in the theory of formal languages
and finite automata; see Kleene [1], Schützenberger [2], [3],
and Fliess [4], [5], [6]. (The work of Fliess was motivated
also by applications to certain classes of nonlinear systems.)
By the Kleene–Schützenberger–Fliess theorem, the series of
the form (1) with coefficients in Kp×q is rational if and
only if the infinite Hankel matrix Hf = [fvw]v,w∈Fd

has
a finite rank m if and only if the series is recognizable, i.e.,
there exist matrices A1, . . . , Ad ∈ Km×m, B ∈ Km×q, and
C ∈ Kp×m such that

fw = CAwB, w ∈ Fd, (2)
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where A = (A1, . . . , Ad). Alternatively, one can write (2) as

f = C(I −A1z1 − · · · −Adzd)−1B, (3)

which is a typical realization formula. A similar noncom-
mutative realization formula was obtained in Fornasini–
Marchesini [7] and then used to obtain a d-dimensional
system realization of a given matrix-valued rational func-
tion in d commuting variables. The noncommutative formal
power series and the realization formulae in these works were
formal algebraic objects and were not viewed as functions.

More recently, realizations of rational expressions in
Hilbert space operators (modelling structured, possibly time
varying, uncertainty) appeared in work on robust control of
linear systems, see Beck [8], Beck–Doyle–Glover [9], Lu–
Zhou–Doyle [10]. For a series of the form (1) and a d-tuple of
bounded linear operators X = (X1, . . . , Xd) on a common
Hilbert spaceH, the tensor substitutions were used as follows
(of course, the operator norms should be small enough to
guarantee the convergence of the series):

f(X) =
∑

w∈Fd

Xw ⊗ fw.

Similarly, matrix-valued noncommutative rational expres-
sions can be evaluated on appropriate d-tuples of operators,
e.g., for (3) we have

f(X) = (IH⊗C)(IH⊗Im−X1⊗A1−· · ·−Xd⊗Ad)−1

· (IH ⊗B).

Understanding noncommutative formal power series or ratio-
nal expressions as functions on d-tuples of (not necessarily
commuting) operators makes realization theory work better.
In the works of Ball–Groenewald–Malakorn [11], [12], [13],
a theory of structured noncommutative multidimensional
systems with Fd as a “time domain” was developed, which
provides various state-space models for systems with struc-
tured uncertainties (which include, in particular, noncommu-
tative versions of Fornasini–Marchesini or Givone–Roesser
systems); a noncommutative version of the Bounded Real
Lemma has been obtained; a noncommutative analogue of
the Schur–Agler class of contractive (in the sense of operator
substitutions) analytic functions on the unit polydisk and its
system realizations were described. This realization theory
involves therefore not necessarily rational noncommutative
formal power series and, possibly, infinite dimensional state-
space realizations. We also mention that in Ball–Kaliuzhnyi-
Verbovetskyi [14] an even more general form of noncommu-
tative multidimensional systems was introduced and studied.
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Noncommutative formal power series converging on cer-
tain sets of d-tuples of operators (matrices) as a noncommu-
tative analog of analytic functions on a neighborhood of zero
in Cd appear also in a number of works; see, e.g., Popescu
[15], [16], [17], [18], Ball–Vinnikov [19], Helton et al.
[20], [21], Kaliuzhnyi-Verbovetskyi [22], Alpay–Kaliuzhnyi-
Verbovetskyi [23], [24], Kaliuzhnyi-Verbovetskyi–Vinnikov
[25], [26], where various realization formulas are used as
well, with or without transfer function interpretation.

Another set-up where matrix substitutions are used is
noncommutative rational expressions. An important area
where this set-up is natural is Linear Matrix Inequalities
(LMIs); see, e.g., Nesterov–Nemirovski [27], Nemirovski
[28], Skelton–Iwasaki–Grigoriadis [29]. As it turns out, most
optimization problems appearing in systems and control have
matrices as the natural variables, and the problem involves ra-
tional expressions in these matrix variables which have there-
fore the same form independent of matrix sizes; see Helton
[30], Helton–McCullough–Putinar–Vinnikov [31]. Realiza-
tions of rational functions in noncommuting indeterminates
are used in Helton–McCullough–Vinnikov [32] to convert
(numerically unmanageable) rational matrix inequalities into
(highly manageable) LMIs. Rational functions, scalar or
matrix valued, are understood in [32] as classes of equiva-
lence of matrix-valued noncommutative rational expressions
(two such expressions are equivalent if they coincide on the
intersection of their domains of regularity).

The concept of noncommutative rational functions (not
necessarily regular at zero) was developed further in
Kaliuzhnyi-Verbovetskyi–Vinnikov [26], [33]. In [26], the
left and right shifts were defined for noncommutative ra-
tional functions regular at zero in terms of evaluations on
matrices. These shift operators were used to show that the
singularity set of a matrix-valued noncommutative rational
function coincides with the singularity set of the resolvent
in a minimal noncommutative Fornasini–Marchesini system
realization. Moreover, the commutative analog of this result
was obtained as a consequence of the noncommutative one
via “lifting” to the noncommutative setting. In [33], the
difference-differential calculus was developed for matrix-
valued noncommutative rational functions. The shifts are
a special case of difference-differential operators when the
latter ones are applied at zero.

In fact, the difference-differential calculus can be devel-
oped in a more general setting of noncommutative functions.
In our current joint project with Victor Vinnikov [34], the
foundations of the theory of noncommutative functions, in
particular analytic ones, are laid out. In what follows, we
present a (necessarily) brief overview of this theory.

II. NONCOMMUTATIVE FUNCTIONS, THEIR
DIFFERENCE-DIFFERENTIAL CALCULUS, AND

TAYLOR–TAYLOR SERIES

A. The definition of noncommutative functions

For a vector space V over a field K, we define the
noncommutative (nc) space over V ,

Vnc =
∞∐

n=1

Vn×n.

For X ∈ Vn×n and Y ∈ Vm×m we define their direct sum,

X ⊕ Y =
[
X 0
0 Y

]
∈ V(n+m)×(n+m).

Notice that matrices over K act from the right and from
the left on matrices over V by the standard rules of matrix
multiplication: if X ∈ Vp×q and T ∈ Kr×p, S ∈ Kq×s, then

TX ∈ Vr×q, XS ∈ Vp×s.

A subset Ω ⊆ Vnc is called a nc set if it is closed under
direct sums; explicitly, denoting Ωn = Ω ∩ Vn×n, we have
X ⊕ Y ∈ Ωn+m for all X ∈ Ωn, Y ∈ Ωm. In the case
of V = Kd we identify matrices over V with d-tuples of
matrices over K: (

Kd
)p×q ∼=

(
Kp×q

)d
.

Under this identification, for d-tuples X = (X1, . . . , Xd) ∈
(Kn×n)d and Y = (Y1, . . . , Yd) ∈ (Km×m)d,

X ⊕ Y =
([

X1 0
0 Y1

]
, . . . ,

[
Xd 0
0 Yd

])
∈
(
K(n+m)×(n+m)

)d

;

and for a d-tuple X = (X1, . . . , Xd) ∈ (Kp×q)d and
matrices T ∈ Kr×p, S ∈ Kq×s,

TX = (TX1, . . . , TXd) ∈
(
Kr×q

)d
,

XS = (X1S, . . . ,XdS) ∈
(
Kp×s

)d
.

Let V and W be vector spaces over K, and let Ω ⊆ Vnc

be a nc set. A mapping f : Ω →Wnc with f(Ωn) ⊆ Wn×n

is called a nc function if f satisfies the following two
conditions:
• f respects direct sums:

f(X ⊕ Y ) = f(X)⊕ f(Y ), X, Y ∈ Ω. (4)

• f respects similarities: if X ∈ Ωn and S ∈ Kn×n is
invertible with SXS−1 ∈ Ωn, then

f(SXS−1) = Sf(X)S−1. (5)

Proposition 1: A mapping f : Ω → Wnc with f(Ωn) ⊆
Wn×n respects direct sums and similarities, i.e., (4) and (5)
hold, if and only if f respects intertwinings: for any X ∈ Ωn,
Y ∈ Ωm, and T ∈ Kn×m such that XT = TY ,

f(X)T = Tf(Y ). (6)
We note that the condition (6) has appeared first in

J.L. Taylor [35], [36] in the case where V = Cd and an
additional assumption of analyticity of f(X) as a function of
matrix entries (Xi)jk, i = 1, . . . , d, j, k = 1, . . . , n, for every
n ∈ N is used. The name of J.L. Taylor is well known mainly
due to his most general definition of the joint spectrum of a
d-tuple of commuting bounded linear operators on a Banach
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space, and the corresponding analytic functional calculus;
see [37], [38]. His attempt in [35], [36] to extend these to
d-tuples of noncommuting bounded linear operators are less
known. Though the latter works did not achieve their ultimate
goals, a machinery of nc functions has been developed. We
use some of Taylor’s ideas, however in a more general setting
and with milder assumptions on nc functions. We also note
that these ideas have found applications in free probability;
see Voiculescu [39].

The following result, though looking technical at the
first glance, provides us with the definition of the right nc
difference-differential operator ∆R.

Theorem 2: Let f : Ω → Wnc be a nc function on a nc
set Ω. Let X ∈ Ωn, Y ∈ Ωm, and Z ∈ Vn×m be such that
[ X Z

0 Y ] ∈ Ωn+m. Then

f

([
X Z
0 Y

])
=
[
f(X) ∆Rf(X, Y )(Z)

0 f(Y )

]
,

where the off-diagonal block entry ∆Rf(X, Y )(Z) is deter-
mined uniquely and is linear in Z.

In fact, ∆Rf(X, Y )(Z) can be extended by linearity to all
Z ∈ Vn×m. As a consequence of Theorem 2, the following
formula of finite differences holds:

f(X)−f(Y ) = ∆Rf(Y,X)(X−Y ), n ∈ N, X, Y ∈ Ωn.

The linear mapping ∆f(Y, Y )(·) plays the role of a nc
differential at Y . If K = R or C, setting X = Y + tZ
with t ∈ R (t ∈ C), we obtain

f(Y + tZ)− f(Y ) = t∆Rf(Y, Y + tZ)(Z).

Under appropriate continuity conditions, it follows that
∆Rf(Y, Y )(Z) is the directional derivative of f at Y in the
direction Z. In the case where V = Kd, the finite difference
formula turns into

f(X)− f(Y ) =
N∑

i=1

∆R,if(Y, X)(Xi − Yi), X, Y ∈ Ωn,

with the right partial difference-differential operators ∆R,i:

∆R,if(Y, X)(C) := ∆Rf(Y, X)(0, . . . , 0, C︸︷︷︸
ith place

, 0, . . . , 0).

The linear mapping ∆R,if(Y, Y )(·) plays the role of a right
nc i-th partial differential at the point Y .

Example 3: Let V = W = C, f(X) = X2. Then

∆Rf(X, Y )(Z) =

([
X Z
0 Y

]2)
12

= XZ + ZY.

In particular, if n = 1 and X = Y , then ∆Rf(X, X)(Z) =
2XZ, i.e., ∆Rf(X, X) coincides with the usual (commuta-
tive) differential.

The left nc full and partial difference-differential operators
∆L, ∆L,i, i = 1, . . . , d, are defined analogously, via evalu-
ations of nc functions on lower block-triangular matrices.

The nc difference-differential operators obey natural cal-
culus rules: linearity, the product rule, the chain rule, etc. On
the other hand, as a function of X and Y , ∆Rf(X, Y )(·)

respects direct sums and similarities, or equivalently, respects
intertwinings in the following sense: if X ∈ Ωn, Y ∈ Ωm,
X̃ ∈ Ωñ, Ỹ ∈ Ωm̃, and T ∈ Kñ×n, S ∈ Km̃×m are such
that

TX = X̃T, SY = Ỹ S,

then

T∆Rf(X, Y )(ZS) = ∆Rf(X̃, Ỹ )(TZ)S.

Thus, ∆Rf can be viewed as a higher order nc function.
Example 4: For f(X) = X2, we have ∆Rf(X, Y )(Z) =

XZ + ZY (see Example 3) and

T∆Rf(X, Y )(ZS) = T (XZS + ZSY )

= (X̃TZ + TZỸ )S = ∆Rf(X̃, Ỹ )(TZ)S.

B. Higher order nc functions

More generally, we define the class of nc functions of
order k,

T k = T k(Ω;W0,nc,W1,nc, . . . ,Wk,nc)

as a class of functions on Ωk+1, where Ω ⊆ Vnc is a nc set,
whose values on Ωn0 × · · · × Ωnk

are k-linear forms

W1
n0×n1 × · · · ×Wk

nk−1×nk →W0
n0×nk ,

and which respect direct sums and similarities, or equiva-
lently, respect intertwinings: if TjX

j = X̃jTj , j = 0, . . . , k,
then

T0f
(
X0, . . . , Xk

) (
Z1T1, . . . , Z

kTk

)
= f

(
X̃0, . . . , X̃k

) (
T0Z

1, . . . , Tk−1Z
k
)
Tk

for nj , ñj ∈ N, Xj ∈ Ωnj
, X̃j ∈ Ωñj

, Tj ∈ Kñj×nj , j = 0,
. . . , k, and for Zj ∈ Wj

nj−1×ñj , j = 1, . . . , k. The class
T 0 = T 0(Ω;Wnc) is the class of nc functions f : Ω →Wnc.
If f ∈ T 0(Ω;Wnc), then ∆Rf ∈ T 1(Ω;Wnc,Vnc).

Proposition 5: Let f ∈ T k(Ω;W0,nc, . . . ,Wk,nc). Let
X0 ∈ Ωn0 , . . . , Xk−1 ∈ Ωnk−1 , Xk′ ∈ Ωn′k

, Xk′′ ∈ Ωn′′k
,

Z1 ∈ W1
n0×n1 , . . . , Zk−1 ∈ (Wk−1)

nk−2×nk−1 , Zk′ ∈
Wk

nk−1×n′k , Zk′′ ∈ Wk
nk−1×n′′k . Let Z ∈ Vn′k×n′′k be such

that
[
Xk′ Z
0 Xk′′

]
∈ Ωn′k+n′′k

. Then

f

(
X0, . . . , Xk−1,

[
Xk′ Z
0 Xk′′

])
(
Z1, . . . , Zk−1, row

[
Zk′, Zk′′])

= row
[
f
(
X0, . . . , Xk−1, Xk′) (Z1, . . . , Zk−1, Zk′) ,

∆Rf
(
X0, . . . , Xk−1, Xk′, Xk′′) (Z1, . . . , Zk−1, Zk′, Z

)
+f
(
X0, . . . , Xk−1, Xk′′) (Z1, . . . , Zk−1, Zk′′)] .

Here

∆Rf
(
X0, . . . , Xk−1, Xk′, Xk′′) (Z1, . . . , Zk−1, Zk′, Z

)
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is determined uniquely, and is linear in Z. Moreover, this
extended right nc difference-differential operator ∆R is a
mapping of the classes:

∆R : T k(Ω;W0,nc, . . . ,Wk,nc)

→ T k+1(Ω;W0,nc, . . . ,Wk,nc,Vnc).
Iterating ` times the operator ∆R, we obtain the following

result (which is clearly true for ` = 1 by Theorem 2).
Theorem 6: Let f ∈ T 0(Ω;Wnc). Then

∆`
Rf(X0, . . . , X`)(Z1, . . . , Z`)

= f





X0 Z1 0 · · · 0

0 X1 . . . . . .
...

...
. . . . . . . . . 0

...
. . . X`−1 Z`

0 · · · · · · 0 X`




1,`+1

∈ T `(Ω;Wnc, . . . ,Wnc︸ ︷︷ ︸
` times

,Vnc)

C. The Taylor–Taylor formula
We use the calculus of higher order nc difference-

differential operators to derive a nc analogue of the classical
(Brook) Taylor formula, which we call the Taylor–Taylor
(TT) expansion in honor of Brook Taylor [40] and of Joseph
L. Taylor [36].

Theorem 7: Let f ∈ T 0(Ω;Wnc) with Ω ⊆ Vnc a nc set,
n ∈ N, and Y ∈ Ωn. Then for each N ∈ N and arbitrary
X ∈ Ωn,

f(X) =
N∑

`=0

∆`
Rf(Y, . . . , Y︸ ︷︷ ︸

`+1 times

)(X − Y, . . . ,X − Y︸ ︷︷ ︸
` times

)

+ ∆N+1
R f(Y, . . . , Y︸ ︷︷ ︸

N+1 times

, X)(X − Y, . . . ,X − Y︸ ︷︷ ︸
N+1 times

).

In the case where V = Kd, we obtain

f(X) =
N∑

`=0

∑
w=gi1 ···gi`

∆w>

R f(Y, . . . , Y︸ ︷︷ ︸
`+1 times

)

(Xi1 − Yi1 , . . . , Xi`
− Yi`

)

+
∑

w=gi1 ···giN+1

∆w>

R f(Y, . . . , Y︸ ︷︷ ︸
N+1 times

, X)

(Xi1 − Yi1 , . . . , XiN+1 − YiN+1),

where for a word w = gi1 · · · gi`
,

∆w>

R := ∆R,i`
· · ·∆R,i1 .

If Y = (Inµ1, . . . , Inµd), this is a genuine nc power
expansion

f(X) =
N∑

`=0

∑
|w|=`

(X − Inµ)w ∆w>

R f(µ, . . . , µ︸ ︷︷ ︸
`+1 times

)

+
∑

|w|=N+1

(X − Inµ)w ∆w>

R f( µ, . . . , µ︸ ︷︷ ︸
N+1 times

, X).

In the cases where K = R or K = C, and the spaces V
and W are Banach spaces, we study the convergence of TT
series in the sense that the remainder, that is the second sum
in these formulas, converges to 0. Here we consider the case
where K = C, and V and W are operator spaces, which is
most relevant in free probability and is a natural set-up for
studying uniform convergence of nc power series.

Recall that a Banach space W over C is called an operator
space (see, e.g., Paulsen [41]) if a sequence of norms ‖ · ‖n

on Wn×n, n = 1, 2, . . ., is defined so that the following two
conditions hold:
• For every n, m ∈ N, X ∈ Wn×n and Y ∈ Wm×m,

‖X ⊕ Y ‖n+m = max{‖X‖n, ‖Y ‖m}.

• For every n ∈ N, X ∈ Wn×n and S, T ∈ Cn×n,

‖SXT‖n ≤ ‖S‖ ‖X‖n‖T‖,

where ‖ · ‖ denotes the operator norm of Cn×n with
respect to the standard Euclidean norm of Cn.

Let W be an operator space. For Y ∈ Ws×s and r > 0,
define a nc ball centered at Y of radius r as

Bnc(Y, r)

=
∞∐

m=1

{
X ∈ Wms×ms :

∥∥∥∥∥X −
m⊕

α=1

Y

∥∥∥∥∥
ms

< r

}
.

NC balls form a basis for a topology on Wnc. Open sets in
this topology will be called uniformly open.

Let V,W be operator spaces, and let Ω ⊆ Vnc be a
uniformly open nc set. A nc function f : Ω → Wnc is called
uniformly locally bounded if for any s ∈ N and Y ∈ Ωs

there exists a nc ball Bnc(Y, r) ⊆ Ω such that f is bounded
on Bnc(Y, r). A nc function f : Ω →Wnc is called Gâteaux
(G-) differentiable if for every n ∈ N the function f |Ωn

is
G-differentiable, i.e., for every X ∈ Ωn and Z ∈ Vn×n the
G-derivative of f at X in direction Z,

lim
t→0

f(X + tZ)− f(X)
t

=
d

dt
f(X + tZ)

∣∣∣
t=0

,

exists. A nc function is called uniformly analytic if f is
uniformly locally bounded and G-differentiable. We note that
this is a stronger notion than just analyticity of f |Ωn for each
n ∈ N. We address the reader to the classical book of Hille
and Phillips [42] and to a more recent source, Mujica [43],
for the theory of analytic functions on Banach spaces.

Theorem 8: Let a nc function f : Ω →Wnc be uniformly
locally bounded. For s ∈ N, Y ∈ Ωs, let δ := sup{r >
0: f is bounded on Bnc(Y, r)}. Then

f(X) =
∞∑

`=0

∆`
Rf
( m⊕

α=1

Y, . . . ,
m⊕

α=1

Y︸ ︷︷ ︸
`+1 times

)

(
X −

m⊕
α=1

Y, . . . ,X −
m⊕

α=1

Y︸ ︷︷ ︸
` times

)
(7)
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holds, with the TT series converging absolutely and uni-
formly on every open nc ball Bnc(Y, r) with r < δ.

Corollary 9: Let Ω ⊆ Vnc be a uniformly open nc set.
Then a nc function f : Ω → Wnc is uniformly locally
bounded if and only if f is continuous with respect to the
uniformly-open topologies on Vnc and Wnc if and only if f
is uniformly analytic.

In the case where V = Cd, we also study the convergence
of the TT series along Fd.

Theorem 10: Let a nc function f : Ω →Wnc be uniformly
locally bounded. For every s ∈ N, Y ∈ Ωs, let δ := sup{r >
0: f is bounded on Bnc(Y, r)}. Then

f(X) =
∞∑

`=0

∑
w=gi1 ···gi`

∈Fd

∆w>

R f
( m⊕

α=1

Y, . . . ,
m⊕

α=1

Y︸ ︷︷ ︸
`+1 times

)

(
Xi1 −

m⊕
α=1

Yi1 , . . . , Xi`
−

m⊕
α=1

Yi`

)
(8)

holds, with the series converging absolutely and uniformly
on every open nc diamond about Y ,

♦nc(Y, r) :=
∞∐

m=1

{X ∈ Ωsm :

d∑
j=1

‖ej‖1
∥∥∥Xj −

m⊕
α=1

Yj

∥∥∥ < r


with r < δ. Here ej ∈ Cd are the standard basis vectors.

III. CONVERGENCE OF NC POWER SERIES

Let V be a K-vector space and let s, `, m0, . . . , m` ∈ N.
For Z1 ∈ Vsm0×sm1 , . . . , Z` ∈ Vsm`−1×sm` , we define

Z1 �s · · · �s Z` ∈
((
Vs×s

)⊗`
)m0×m`

as follows:

(Z1 �s · · · �s Z`)α,β

=
∑

α0=α,αj=1,...,mj ,α`=β

Z1α0,α1 ⊗ · · · ⊗ Z`α`−1,α` ,

where α = 1, . . . , m0, β = 1, . . . , m`, and Zj =
[Zjγ,δ]γ=1,...,mj−1,δ=1,...,mj . This is nothing but the product
of matrices over the tensor algebra T(Vs×s). We write

Z�s` = Z �s · · · �s Z︸ ︷︷ ︸
` times

in the case where m0 = . . . = m` = m and Z1 = . . . =
Z` = Z. We study the convergence of power series

∞∑
`=0

Z�s`f`, (9)

where Z ∈ Vsm×sm, m = 1, 2, . . ., V and W are operators
spaces, f` : (Vs×s)` → Ws×s, ` = 0, 1, . . ., is a given
sequence of `-linear mappings, i.e., a given linear mapping
T(Vs×s) →Ws×s. The mappings f` are naturally extended

to matrices over Vs×s by their action on matrix entries
and assumed to be completely bounded (in the sense of
Christensen and Sinclair; see, e.g., [41, Chapter 17]), i.e.,

‖f`‖L`
cb

:= sup
‖Z1‖=···=‖Z`‖=1

‖(Z1 �s · · · �s Z`)f`‖m0,m`

is finite, where Z1 ∈ Vsm0×sm1 , . . . , Z` ∈ Vsm`−1×sm` ,
mj = 1, . . . , ∞, j = 0, . . . , `. Here ‖ · ‖p,q is the uniquely
determined norm for p × q matrices over Ws×s (which is
itself an operator space) such that the “bullet” conditions
in Section II-C hold for rectangular matrices in the place of
square matrices; see [41, p. 185, Exercise 13.2]. We consider
here, without loss of generality, the power series centered at
0sm×sm, for every m = 1, 2, . . .. Clearly, the results can
be extended to power series centered at

⊕m
α=1 Y , for every

m = 1, 2, . . ., with Y ∈ Vs×s, i.e., the series with powers
of (Z−

⊕m
α=1 Y ) in the place of Z. Notice that interpreting

the values of ∆`
Rf(X0, . . . , X`) as `-linear mappings, we

can write the right-hand side of (7) as a power series:

f(X) =
∞∑

`=0

(
X −

m⊕
α=1

Y
)�s`

∆`
Rf
( m⊕

α=1

Y, . . . ,

m⊕
α=1

Y︸ ︷︷ ︸
`+1 times

)
.

Thus, the results in this section can be considered as the
converse of the results in section II-C.

Theorem 11: The series (9) converges uniformly on every
nc ball Bnc(0s×s, δ) with

δ < ρcb :=
(

lim sup
`→∞

√̀
‖f`‖L`

cb

)−1

,

moreover
∞∑

`=0

sup
W∈Bnc(0s×s,δ)

‖W�s`f`‖ < ∞.

The series (9) fails to converge uniformly on every nc ball
Bnc(0s×s, δ) with δ > ρcb.

In the case where V = Cd, we also consider noncommu-
tative power series ∑

w∈Fd

Z�swfw, (10)

where Z = (Z1, . . . , Zd) ∈ (Csm×sm)d, m = 1, 2, . . .,

Z�sw = Zi1 �s · · · �s Zi`

for w = gi1 · · · gi`
, and for a given sequence of `-linear

mappings fw : (Cs×s)` → Ws×s, w ∈ Fd, ` = |w|. Notice
that interpreting the values of ∆w>

R f(X0, . . . , X`) as `-linear
mappings, we can write the right-hand side of (8) as a power
series:

f(X) =
∑

w∈Fd

(
X −

m⊕
α=1

Y
)�sw

∆w>

R f
( m⊕

α=1

Y, . . . ,
m⊕

α=1

Y︸ ︷︷ ︸
`+1 times

)
.

There is also an analog of Theorem 11 for the convergence
of the series (10).
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IV. CONCLUSIONS

We have demonstrated that the evaluations of noncommu-
tative formal power series on square matrices of all sizes
(so that the series become “not so formal”) are important
in various applications and allow one to think of them as
of functions on the corresponding domains of convergence.
We have obtained certain results on the uniform convergence
of such series. On the other hand, functions defined on
square matrices of any size which respect direct sums and
similarities (we call them noncommutative functions) and
satisfy a local boundedness condition behave in many ways
as analytic functions and have power series expansions
— a noncommutative analogue of Taylor series. We have
shown this via developing the difference-differential calculus
of noncommutative functions. The main conclusion is that
analytic noncommutative functions and convergent noncom-
mutative power series are essentially the same object, as it
is in the classical (commutative) case.
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