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Abstract— This paper considers optimal full state feedback
tracking control of unknown nonlinear systems. To deal with the
unknown nonlinearities in the system, small learning regions are
assigned online along the system trajectory in a manner dictated
by a Lyapunov based self-organization method. In each of
these regions, a local affine approximation is developed. A state
observer-based approach adapts the approximator parameters.
With the aid of this state observer, analytic optimal controllers
are proposed by solving corresponding linear quadratic control
problems in each learning region. To show the effectiveness of
the proposed controllers, a numerical example is included.

I. INTRODUCTION

Optimal control is an important branch of control theo-
ry research and has been applied extensively in practical
applications. Originated from the seminal works of R. E.
Bellman [4] and L. S. Pontryagin [30] during the late 1950s,
the basic theory of optimal control includes Pontryagin’s
minimum principle, which leads to necessary conditions
for the existence of optimal trajectories, as well as the
concept of dynamic programming introduced by Bellman.
Dynamic programming led to the celebrated Hamilton-Jacobi
Bellman (HJB) partial differential equation, which provides
a sufficient condition for optimality.

It is well known that for the Linear Quadratic Regulator
(LQR) problem [1], the corresponding HJB equation be-
comes a Riccati differential equation, which can be solved
very efficiently. For a plant with unknown parameters, a
linear quadratic (LQ) controller can be derived by Adap-
tive Linear Quadratic Control (ALQC), where a parameter
adaptation is used [19]. Based on the Certainty Equivalence
Principle, by replacing unknown parameters with estimated
ones in the original Riccati equation, a control law can be
derived by solving this new linear quadratic control problem
at each time t.

However, as discussed in [13, 14], when it comes to
general nonlinear systems, or even the systems with uncertain
nonlinearities, it is extremely difficult to obtain the optimal
controllers. In [13, 14], a locally weighted learning observer
(LWLO) is used to estimate the unknown nonlinear system
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and then the original problem is transformed into a point-
wise min-norm form. Many forms of on-line approximation
based control have been suggested for unknown nonlinear
systems [3, 7, 8, 10–12, 15–18, 20, 22–29, 31–35]. For the on-
line approximation, the distribution of the learning regions
can be preassigned, or be allocated automatically during the
operation, i.e., be self-organized [16, 35]. A survey of on-
line approximation based control and self-organization can
be found in [11].

In this paper, we consider the optimal tracking control of
uncertain nonlinear systems. A self-organized locally linear
optimal tracking control method is proposed, without solving
the Hamilton-Jacobi-Bellman equation explicitly. While the
learning regions are preassigned in the methods proposed
by [13, 14], the main contribution of this paper is that self-
organizing on-line approximation is used to solve the optimal
tracking control problem for unknown nonlinear systems.
Following the idea proposed in [11, 16, 35], the structure self-
organization is derived within the Lyapunov context which
provides a theoretical basis for a performance-based self-
organization approach. In this approach, along the system
operation trajectory small learning regions are only added
if necessary to achieve the performance objective. In each
of these small regions, a local affine approximation is used
for the unknown nonlinearity. Thus, this control problem
is transformed into solving linear system optimal control
problems in each local region. To show effectiveness of the
proposed optimal controller, a numeric example is presented.

II. PROBLEM STATEMENT

Consider the system

ẋi = xi+1, 1 ≤ i ≤ n− 1 (1)
ẋn = f(x) + u, (2)

where x(t) = [x1(t), . . . , xn(t)]
⊤ : R+ 7→ Rn is the system

state vector which is assumed to be measured and available,
and u ∈ R is the control signal. The function f : Rn 7→ R is
unknown, nonlinear and assumed Lipschitz continuous with
respect to x. Eqns. (1-2) can be written as

ẋ = Ax+B
(
u+ f(x)

)
, (3)

where (A,B) is in controllable canonical form [9].
There is a desired bounded trajectory xd(t) =

[xd
1(t), x

d
2(t), . . . , x

d
n(t)]

⊤ : R+ 7→ Rn which satisfies

ẋd
1 = xd

2, ẋd
2 = xd

3, · · · , ẋd
n−1 = xd

n. (4)

Furthermore, xd(t) and the derivative ẋd
n(t) are always

available during the control process.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5401



Control Objective: The control objective is to design an
optimal controller to ensure that the following cost function

J(u) =
1

2

∫ ∞

0

[
e⊤Qe+

u2

R

]
dt (5)

achieves its minimum. where

e(t) = x(t)− xd(t) : R+ 7→ Rn, (6)
Q ≥ 0 is an n× n matrix, and R ∈ R+.

The optimal control problem can be stated as: minimize
the function J(u) in eqn. (5) by choosing the optimal control
policy u∗, subject to the constraint defined by eqn. (3).

Equivalently, a standard dynamic programming argument
could reduce this optimization problem to finding the value
function J∗ solving the Hamilton-Jacobi-Bellman (HJB)
partial differential equation [6],

J∗
xfe −

(
J∗
xBB⊤J∗

x
⊤
)
+ e⊤Qe = 0 (7)

where J∗
x denotes ∂J∗

∂x , fe = [x2, x3, · · · , xn, f(x)]
⊤. If

there exists a continuously differentiable positive definite
solution to eqn. (7), then the optimal controller is

u∗ = −RB⊤J∗
x
⊤.

However, it is extremely difficult to solve the HJB equation
for a nonlinear optimal control problem, even when the
nonlinearity f(x) is known. In this paper, we proposed a
Locally Linear Optimal Control (LLOC) approach to derive
an approximately optimal controller for the unknown non-
linear system, without solving the Hamilton-Jacobi-Bellman
equation explicitly.

III. LLOC DESIGN

The main concept of the LLOC method is straightforward.
By detecting the effect of the nonlinearity, small learning
regions Sk ⊂ Rn are assigned on-line along the system
operation trajectory where they are necessary to satisfy the
performance requirement. In each of these small zones, an
affine approximation is used to approximate the unknown
function through parameter adaption. Thus, on each Sk, we
solve the corresponding linear quadratic control problem, to
get an optimal control law.

First, herein we introduce some useful notation:

D ⊂ Rn = the system compact operational region;
N (t) = the total number of regions Sk at time t;

AN (t) ⊂ Rn =
∪

1≤k≤N (t)

Sk, the learning region;

D −AN (t) = the operational region without learning.

From eqn. (3) and (6), it follows that

ė = Ae+B
(
u+ h(x, ẋd

n)
)
, (8)

where h(x, ẋd
n) = f(x) − ẋd

n is the unknown function with
the nonlinearity f(x).

Let us first consider an ideal situation that the unknown
function h(x, ẋd

n) equals zero (i.e. there is no nonlinearity).

Then the system (8) can be treated as a Linear Time-Invariant
(LTI) system and consequently this control problem becomes
a Linear Quadratic Regulation (LQR) problem, of which the
solution is well known [2, 5, 21]. Since Linear Quadratic
Regulator is very robust [36], the following controller is
derived.

A. Analysis for |h(x, ẋd
n)| ≤ ϵ∗

If |h(x, ẋd
n)| ≤ ϵ∗, where ϵ∗ > 0 is a criterion selected

by designer, then the system (8) can be treated as a linear
time-invariant (LTI) system with a small disturbance d(t) =
h
(
x(t), ẋd

n(t)
)

having magnitude less than ϵ∗. Consider the
cost function defined in eqn. (5). Since (A,B) is controllable,
a control policy can be derived by solving the following
optimal control problem

Problem 1:

min
u

1

2

∫ ∞

t0

[
e(t)⊤Qe(t) +

u2(t)

R

]
dt,

s.t. ė(t) = Ae(t) +B
(
u(t) + d(t)

)
, and |d(t)| ≤ ϵ∗.

This LQR problem has the solution [2]

u∗
0(t) = −RB⊤Pe(t). (9)

where P is a (constant) n×n positive definite matrix which
is the solution of the algebraic Riccati equation,

PA+A⊤P +Q−RPBB⊤P = 0.

In this case, the optimal trajectory is the solution of the linear
time-invariant homogeneous system

ė(t) = Ge(t) +Bd(t), (10)

where G = A − BRB⊤P and e(t0) = x(t0) − xd(t0).
Regarding the stability of the closed-loop system (10), we
have the following lemma.

Lemma 1: If G = A−BRB⊤P , then the eigenvalues of
G will have negative real parts; therefore the stability of the
corresponding closed-loop system is guaranteed.

Proof: This result is proved as Lemma 9-8 in [2].
Remark 1: For |h(x, ẋd

n)| ≤ ϵ∗, with d(t) =
h(x(t), ẋd

n(t)) treated as a small disturbance, the closed-loop
system (10) is BIBO stable. △

B. Structure Adaptation

In this part, we consider when and how to assign new
learning regions Sk along the system trajectory.

The controller is initiated with the assumption that
|h(x, ẋd

n)| ≤ ϵ∗ and N (0) = 0; therefore, the set A0 is
initially empty.

When x ∈ D −AN (t), the control law (9) is used. Then,
from eqns. (3) and (9), it follows that

ẋ = Gx+B
(
RB⊤Pxd + f(x)

)
. (11)

A state estimator is defined as

˙̂x = Gx̂+B
(
RB⊤Pxd + ẋd

n

)
. (12)

From eqn. (11) and (12), it follows that

˙̃x = Gx̃−Bh(x, ẋd
n), (13)
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where x̃ = x̂− x.
Consider the Lyapunov function V0(t) = x̃⊤Nx̃, where

N = N⊤ > 0 is the solution of the algebraic Lyapunov
equation G⊤N + NG = −M and M > 0 is selected by
the designer. The time derivative of V0(t) along solutions of
(13) is

V̇0 = −x̃⊤Mx̃− 2x̃⊤NBh(x, ẋd
n). (14)

For all x such that |h(x, ẋd
n)| ≤ ϵ∗, when x̃⊤(t)Mx̃(t) >

2|B⊤Nx̃(t)|ϵ∗, it will be ensured that V̇0 ≤ 0.
If V0 increases while x̃⊤(t)Mx̃(t) > |2B⊤Nx̃(t)|ϵ∗, then

it must be true that |h(x, ẋd
n)| > ϵ∗. Therefore, the Lyapunov

function V0 provides a mechanism to detect those locations
along the trajectory where |h(x, ẋd

n)| > ϵ∗.
We define the following criteria for adding a new local

learning region Sk to the approximation structure. A local
approximator f̂k is added and N (t) is increased by one:

1) if the present operating point x(t) is not in any of the
existing local learning regions; and

2) V̇0(t) ≥ 0 while x̃⊤(t)Mx̃(t) > |2B⊤Nx̃(t)|ϵ∗.
With the above criteria, N (t) is non-decreasing. The distri-
bution of regions Sk and the region AN (t) change as N(t)
increases.

For k ≥ 1, we denote the time at which the k-th
local learning region is added as tk (i.e., N (tk) = k and
limϵ→0 N (tk − ϵ) = k − 1). With this notation, N (t) is
constant with value k for t ∈ [tk, tk+1). It is possible that
for some k, the approximator has sufficient approximation
capability, in which case tk+1 = ∞. The center location of
the new local approximator is denoted as ck. At t = tk,
when the k-th node is added, it is the case that x(t) ̸∈ Si

for i = 1, ...,N (tk)− 1. The center location ck ∈ D should
be selected such that x(tk) ∈ Sk, ck ̸∈ Si and ci ̸∈ Sk, for
1 ≤ i < N (tk). Furthermore, the size of Sk can be specified
by the radius r = [r1, ..., rn] ∈ Rn such that

|xi − cki| ≤ ri, i = 1, . . . , n, for all x ∈ Sk.

Remark 2: Usually, the Lyapunov function is used only
for stability analysis. Herein, V0 is computed and used on-
line for structure self-organizing. In practical applications
of the method proposed here, the value of the Lyapunov
function V0 would be computed at every sample time, when
x ∈ D−AN (t). If it is increasing in consecutive time instants,
then it implies that V0(t) ≥ 0. △

C. For x(t) ∈ AN (t)

When x(t) ∈ AN(t), it is the case that x(t) ∈ Sk’s,
for at least one k ∈ [1, N(t)]. Self-organized function
approximation is proposed to deal with the effect of the
uncertainty. Based on the assumption about the Lipschitz
continuity of f(x) and definition of h(x, ẋd

n), on each of the
learning regions, there exists a local affine approximation

hk(x, ẋ
d
n) = θ⊤k ϕk(x)− ẋd

n, (15)

such that h(x, ẋd
n) = hk(x, ẋ

d
n) + δhk

(x, ẋd
n). Herein we

assume that the radius of Sk is small enough such that the

inherent appoximation error |δhk
(x, ẋd

n)| ≤ ϵ∗ for all x ∈ Sk

and ẋd
n.

In eqn. (15), θk = [θk1 , θk2 , · · · , θkn+1 ]
⊤ ∈ Rn+1 are the

weights and ϕk(x) = [x − ck, 1]⊤ ∈ Rn+1 is the basis for
the function approximation, where ck ∈ Rn is the center of
the region Sk.

To realize locally weighted learning, we introduce a
continuous, non-negative and locally supported weighting
function ω̄k(x), which is specified in [11, 16, 35], for the
k-th local approximator, with k ∈ 1, . . . , N(t).

Then, we have the ideal locally weighted approximation

h(x, ẋd
n) =

∑
k

ω̄khk(x, ẋ
d
n) + δh(x, ẋ

d
n),

where |δh(x, ẋd
n)| ≤ ϵ∗ for all x ∈ AN (t). Thus, in AN (t),

the system dynamics becomes

ẋ = Ax+B
(
u+

∑
k

ω̄kθ
⊤
k ϕk + δh

)
. (16)

To approximate h(x, ẋd
n) in AN (t), we introduce the follow-

ing state estimator,

˙̂x = Ax̂+B
(
u+

∑
k

ω̄kθ̂
⊤
k ϕk − v

)
, (17)

where θ̂k is the estimated value of θk and v is the estimation
error stabilizing signal defined later. From eqn. (16) and (17),
we have

˙̃x = Ax̃+B
(∑

k

ω̄kθ̃
⊤
k ϕk − δh − v

)
, (18)

where x̃ = x̂− x and θ̃k = θ̂k − θk.
Let z(t) = L⊤x̃(t), where

L = [l1, l2, . . . , ln−1, ln]
⊤

= [λn−1, C1
n−1λ

n−2, . . . , Cn−2
n−1λ, 1]

⊤, (19)

λ is a positive constant, and Cm
n = n!

m!(n−m)! for 1 ≤ m ≤
n − 2. This definition ensures the stability analysis in the
proof of Lemma 3.

Lemma 2: ([35]) If limt→∞ |z(t)| ≤ µe, then
limt→∞ |x̃i| ≤ 2i−1

λn−iµe for 1 ≤ i ≤ n, where µe is a
positive constant. Furthermore, if limt→∞ z(t) = 0, then
limt→∞ x̃i = 0 for 1 ≤ i ≤ n.

Note that x̂ asymptotically converging to x is equivalent
to that x̃ converging to zero. By Lemma 2, x̃ will converge
to zero if z(t) converges to zero; therefore, it is sufficient to
choose v and f̂k to ensure that z(t) converges to zero.

With the notation above, the adaptive law is defined as

˙̂
θk =

{
−zΓϕk(x), if x ∈ Sk

0, otherwise (20)

where Γ is a symmetric positive definite adaptive gain matrix.
This definition ensures the stability analysis in the proof of
Lemma 3.

The stabilizing signal v is chosen as [13, 14]

v = l1x̃2 + ...+ ln−1x̃n + Fz + ϵ∗sign(z), (21)
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where L is defined in eqn. (19) and F is a positive constant.
Then we have the following lemma.

Remark 3: For implementation, it is impractical to apply
the stabilizing signal (21) with the sign(·) term. Instead, in
application, that term can be replaced by a sat(·) term or just
neglected by the designer. The analysis for these alternative
solutions is trivial, but for this paper, the space is too limited
to show it. △

Lemma 3: For system (17) with the adaptive law (20) and
the stabilizing signal (21), we have that

lim
t→∞

(x̂− x) = 0.

Proof: This lemma can be proved by following the
same logic in the proof of Lemma 2 of [14].

With the aid of Lemma 3, optimal controllers can be de-
rived for the system dynamics (17) to solve the corresponding
optimal tracking problems. Since x̂ converges asymptotically
to x, x will converge to zero when x̂ does.

For convenience of later analysis, we introduce some
useful notation here. With θ̂k, it follows that

ĥ(x, ẋd
n) =

∑
k

ω̄kĥk(x, ẋ
d
n) =

∑
k

ω̄kθ̂
⊤
k ϕk(x)− ẋd

n

= Θ⊤x+
∑
k

ω̄kθ̂
⊤
k

[
−ck
1

]
− ẋd

n (22)

where

Θ =
∑
k

ω̄kθ̄k = [Θ1, · · · ,Θn],

θ̄k = [θ̂k1, θ̂k2, · · · , θ̂kn]⊤, and

θ̂k = [θ̂k1, θ̂k2, · · · , θ̂kn, θ̂k(n+1)]
⊤.

From eqns. (17) and (22), with ê(t) = x̂− xd, it follows
that

˙̂e = Aê+B
(
u+Θ⊤x+

∑
k

ω̄kθ̂
⊤
k

[
−ck
1

]
− ẋd

n − v
)

=
(
A+BΘ⊤)ê+B

(
u+Θ⊤xd −Θ⊤x̃

+
∑
k

ω̄kθ̂
⊤
k

[
−ck
1

]
− ẋd

n − v
)

(23)

Based on eqn. (23), a control policy can be derived by
solving the following optimal control problem,

Problem 2:

min
u

1

2

∫ ∞

t̄

[
ê(t)⊤Qê(t) +

u2(t)

R

]
dt,

s.t. ˙̂e(t) = Ā(t)ê(t) +B
(
u(t) + ζ(t)

)
. (24)

where

ê = x̂− xd,

t̄ is the current sample time,
Ā = A+BΘ⊤, (25)

ζ = Θ⊤xd −Θ⊤x̃+
∑
k

ω̄kθ̂
⊤
k

[
−ck
1

]
− ẋd

n − v.

To solve the optimal regulation problem above, we first
consider the controllability of the system. From eqn. (25), it
follows that

Ā =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
Θ1 Θ2 Θ3 . . . Θn

 , B =


0
...
0
1

 ,

which is in controllable canonical form at every time t.
From Theorem 6.12 in [9] for time-varying systems, the
controllability is always ensured.

To solve this problem, based on the ALQC idea and the
Certainty Equivalence Principle [19], we have the following
remark on solving Problem 2.

Remark 4: At every time t̄, θ̂k is updated by the adaptive
law (20) before solving Problem 2. Then, the parameters Ā
and ζ are both considered as constant when solving Problem
2. Because this is the best knowledge of the local affine
approximation to the unknown nonlinearity f(x) that the
controller could have at every time t. △

When the parameters Ā and ζ are all treated as constants,
a control policy can be derived for this infinite horizon
problem by following the same logic provided in Section
9-10, Chapter 9 of [2] about the solution of optimal tracking
control of linear systems.

Through minimizing the Hamiltonian of Problem 2

H =
1

2
ê⊤Qê+

u2

2R
+ λ⊤Āê+ λ⊤B(u+ ζ),

we have that the control law for the learning region is

ū = RB⊤
(
(Ḡ⊤)−1P̄Bζ − P̄ ê

)
, (26)

where Ḡ = Ā − BRB⊤P̄ and P̄ is the positive definite
solution of the algebraic Riccati equation

P̄ Ā+ Ā⊤P̄ +Q−RP̄BB⊤P̄ = 0. (27)

Thus, the closed-loop system is

˙̂e = Ḡê+B
(
RB⊤(Ḡ⊤)−1P̄Bζ + ζ

)
. (28)

From Lemma 1, it follows that system (28) is stable and
then (Ḡ⊤)−1 always exists.

D. Analysis

Based on the solution of Problem 1 and 2, the control
policy for system (3) is concluded as,

u(t) =

{
−RB⊤Pe(t), x ∈ D −AN (t)

ū, x ∈ AN (t).
(29)

with the state observer

˙̂x(t) =

{
Gx̂+B

(
RB⊤Pxd + ẋd

n

)
, x ∈ D −AN (t)

Ax̂+B
(
u+

∑
k ω̄kθ̂

⊤
k ϕk − v

)
. x ∈ AN (t),

In eqn. (29), ū is defined by eqn. (26).
With all the analysis above, we have the following result.
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Theorem 1: For system (3) with the state estimator (17)
and the adaptive law (20), the optimal control (29) solves
Problem 1 and Problem 2, and makes x track xd while the
number of allocated learning regions N(t) is finite ∀t ≥ 0.

Proof: For x ∈ D − AN (t), with Lemma 3 and the
analysis in Subsection III-A, the control law (29) solves
Problem 1 and makes x track xd.

For x ∈ Sk, from the analysis in Subsection III-C, the
control law (29) solves Problem 2, i.e. makes x̂ track xd.
Then with Lemma 3, it is proved that x also tracks xd.

The proof of that N(t) is finite can follow the same idea
of the proof of Theorem 1 in [11].

IV. NUMERIC EXAMPLE

In this section, a numerical simulation is presented to il-
lustrate the control method proposed in the previous sections.
Consider the following nonlinear system

ẋ = Ax+B
(
u+ 0.5|x1|

)
,

where
A =

[
0 1
0 0

]
, B =

[
0
1

]
.

We used two desired trajectories : (1) xd
1 is a square wave,

with magnitude 1.5 and a 14-second period while xd
2 = 0;

(2) xd
1 ∈ [−2, 2] is a uniform random number while xd

2 = 0.
The control objective is to design a self-organized locally
linear optimal controller proposed in this paper to realize
the optimal tracking, i.e., the tracking error e(t) converges
to zero asymptotically while minimizing the cost function

J(u) =
1

2

∫ ∞

0

[
e⊤Qe+

u2

R

]
dt,

where we choose

Q =

[
1 0
0 1

]
, R = 10.

For the function approximation, we use the learning re-
gions Sk without any overlap between them. The weighting
function is defined as

ω̄k(x) =

{
1, x ∈ Sk

0, otherwise.

And we specify that

the adaptation gain Γ = 10× I3×3,

the approximation accuracy ϵ∗ = 0.05,

the radius of local learning regions r = 0.1.

The function approximation is initialized with N(0) =
0 and θ̂k = 0. In this problem the unknown nonlinear
function is h(x, ẋd

n) = 0.5|x1(t)|. Therefore, the self-
organized approximator should not allocate centers in the
region −0.1 ≤ x1 ≤ 0.1, since the prespecified accuracy
requirement ϵ∗ = 0.05 is satisfied in this region, even without
any function approximation.

The simulation results are shown in Fig. 1-3. In Fig. 1,
it can be observed that the curve in the second period is

Fig. 1. Performance of Self-organized Locally Linear Optimal Tracking
Controller for t ∈ [0, 35]s when xd

1(t) is the square wave: xd
1(t) (blue,

dashed), xd
2(t) (brown, dashed), x1(t) (black, solid), x2(t) (red, solid),

x̂2(t) (green, solid). Initial state is (0,0).

Fig. 2. Performance of Self-organized Locally Linear Optimal Tracking
Controller for t ∈ [0, 49]s when xd

1(t) is the square wave: ∥x̃(t)∥ (blue,
solid), which is filtered by a moving average filter.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

State, x
1

S
ta

te
, x

2

Fig. 3. Phase plane plot of x1 versus x2 for t ∈ [0, 35]s: blue for that
xd
1(t) is the square wave while red for the uniform random number. The

×′s indicate the assigned center locations and the small square around each
center location represents the associated region of support. Initial states are
(0,0).
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smoother than that in the first one, since the accuracy of
local affine approximations is improved through learning.
Fig. 2 presents the time history of estimation error ∥x̃∥ for
t ∈ [0, 49]s when the square wave is desired. To analyze the
result more efficiently, ∥x̃∥ is filtered by a moving average
filter. It can be observed that after steps occur at every half-
period, during the first several seconds x̃ keeps increasing
until touches each peak. On one hand, it is because that at
the beginning the trajectory crosses learning regions very fast
and then in each Sk the controller has limited time to improve
the function approximation. On the other hand, when the
trajectory comes around the zone where |f(x)| < ϵ∗, the
criteria for structure adaptation are not satisfied until ∥x̃∥
becomes large enough and Sk is activated. Then, with the
function approximation in the learning region, x̃ decreases
rapidly and converges to zero. Compare the curves in three
periods [7, 21)s, [21, 35)s and [35, 49)s, it is shown that
the heights of the peaks in same interval of each period
become smaller and smaller, which means that the accuracy
of function approximation is improved through learning. By
Fig. 3, it is demonstrated that small local learning regions
were assigned along the trajectory. The controller does not
allocate any centers between x1 = −0.1 and x1 = 0.1, where
|h(x, ẋd

n)| < ϵ∗. This zone was unknown to the controller
before the control process.

V. CONCLUSION AND FUTURE WORK

This paper considers optimal control of uncertain nonlin-
ear systems using a self-organizing locally linear method.
Small learning regions are self-organized online along the
system trajectory. With locally weighted learning, a state
estimator is introduced to estimate the parameters for local
approximators. Optimal controllers are proposed for the esti-
mated piecewise linear models and the stability is guaranteed.
Numerical simulations show the efficiency of this approach.
Future work may extend this approach to more general affine
models like ẋn = f(x) + g(x)u. In this paper, only the
situation where g(x) = 1 has been considered.
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