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Abstract— The article main focus is on the identification
of a graphical model from time series data associated with
different interconnected entities. The time series are modeled
as realizations of stochastic processes (representing nodes of a
graph) linked together via transfer functions (representing the
edges of the graph). Both the cases of non-causal and causal
links are considered. By using only the measurements of the
node outputs and without assuming any prior knowledge of
the network topology, a method is provided to estimate the
graph connectivity. In particular, it is proven that the method
determines links to be present only between a node and its
“kins”, where kins of a node consist of parents, children and
co-parents (other parents of all of its children) in the graph.
With the additional hypothesis of strictly casual links, a similar
method is provided that allows one to exactly reconstruct the
original graph. Main tools for determining the network topology
are based on Wiener, Wiener-Hopf and Granger filtering.
Analogies with the problem of Compressing Sensing are drawn
and two greedy algorithms to address the problem of reducing
the complexity of the network structure are also suggested.

I. INTRODUCTION

In many diverse areas, determining cause-effect relation-
ships among various entities in a network is of significant
interest. Interconnections of simple systems are used to
understand the emergence of complicated phenomena (see,
for example, [1]) and have provided novel modeling ap-
proaches in many fields, such as Economics (see e.g. [2]),
Biology (see e.g. [3]), Cognitive Sciences (see e.g. [4]),
Ecology (see e.g. [5]) and Geology (see e.g. [6]), especially
when the investigated phenomena are characterized by spatial
distributions where a multivariate analysis is involved.

Given the widespread interest in the problem of unraveling
the interconnectedness of complex networks, the necessity
for general tools has been rapidly increasing (see [7] and
[8] and the bibliography therein for recent results). Indeed,
even though there is considerable work in this area (see
[7], [8], [9], [10]), deriving information about a network
topology remains a formidable task and such a goal poses
many theoretical and practical challenges [11].

Most techniques offer methods to identify a network struc-
ture that rely only on heuristic considerations. Theoretical
guarantees about the correctness of the reconstruction are
usually not provided. For example, in [7] different techniques
for quantifying and evaluating the modular structure of a
network are compared and a new one is proposed trying to
combine both the topological and dynamic information of
the complex system. However, the network topology is only
qualitatively estimated.

In this paper we address the problem of reconstructing a
network of dynamical systems using only passive observa-
tions. Since we are also aiming to obtain precise theoretical
guarantees and characterizations about the reconstructed net-
work, it will be necessary to define a class of network models
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from which the data have been generated (a generative class
of models). The class of models that we will consider (Linear
Dynamic Graphs) is quite general since it takes into account
the presence of loops and of multiple signals influencing the
same one. Conditions derived for the detection of links are
based on “sparsity” and “local” properties of the estimators
defined on the network signals. Indeed, from a different
perspective, another important contribution of the paper is
given by providing conditions for a local and distributed
implementation of the mean square estimators. The results
obtained bear a striking similarity to the ones developed in
the area of machine learning for Bayesian Networks (BNs)
[12] where the topology of a network of nodes that represent
random variables is sought. The main result obtained in the
BNs literature (see [13]) is that the probability distribution
of a random variable conditioned on the rest of the ran-
dom variables of the network is equal to the probability
distribution of the random variable conditioned only on the
random variables within the kin set of the random variable.
It is, though, assumed that the network has no loops. The
problem considered in this article is for a network of random
processes and is not restricted to random variables as is
the case for BNs. Evidently, issues concerning causality and
stability do not arise for BNs which have to be addressed
for a network of random processes. The paper is organized
as follows. We start introducing a specific class of networks
named Linear Dynamic Graphs and recalling basic notions
of mean least square estimation. Then, we state the main
objective of the paper: determining the relations between the
topology of a Linear Dynamic Graph and the algebraic struc-
ture of mean least estimators defined on such a network. In
Section III we show that these relations translate in precisely
characterized properties of locality and sparsity of variations
of the Wiener filter. In Section IV the locality and sparsity
properties are used to define an algorithm capable of inferring
(and in some case exactly determining) the connectivity
structure of an unknown network. The sparsity of the mean
least square estimators motivates the discussion developed in
Section V where we draw a comparison between the problem
of reconstructing a network and the problem of Compressive
Sensing. The formal analogies between the two problems can
be exploited in order to use Compressive Sensing techniques
in the identification of the structure of a network. While
we consider only two greedy technique, we stress that the
analogies of the two problem are a promising starting point
for establishing deeper connections.

NOTATION

• E[·]: expectation operator
• Z{·}: z-transform operator
• Φxy(z): cross power spectral density of two jointly

stationary stochastic vectors
Φxy(z) := Z{E[x(0)yT (τ)]}

• Φx(z) := Φxx(z)
• bj := (0, 0...0, 1, 0, ..., 0)T , vector with j-th element

equal to 1 and others equal to zero.
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• Hji: entry (j, i) of the matrix H
• Hj∗: j-th row of the matrix H
• H∗i: i-th column of the matrix H

II. PRELIMINARY DEFINITIONS AND NOTIONS

In this section we intend to provide the basic intuition
behind the underlying generative class of models that we will
study and at the same time to recall fundamental results in
linear estimation. We begin with definitions about operators
described by rational transfer functions.

Definition 1: The set F is defined as the set of real-
rational single-input single-output (SISO) transfer functions
that are analytic on the unit circle {z ∈ C| |z| = 1}.
What follows is a standard notion of causality.

Definition 2: Given a SISO transfer function H(z) ∈ F ,
represented as H(z) =

∑∞
k=−∞ hkz

−k, the causal trunca-
tion operator is defined as

{H(z)}C :=

∞∑
k=0

hkz
−k. (1)

A transfer function H(z) is causal if {H(z)}C = H(z).
The set F+ is defined as the set of causal real-rational SISO
transfer functions in F .
The following definition provides us with two vector spaces
of jointly stationary stochastic processes.

Definition 3: For a finite number of wide-sense jointly
stationary processes x1, ..., xn, their tfspan is defined as

tfspan{x1, ..., xm} :=

{
x =

m∑
i=1

αi(z)xi | αi(z) ∈ F

}
.

Analogously, their ctfspan is defined as

ctfspan{x1, ..., xm} :=

{
x =

m∑
i=1

αi(z)xi | αi(z) ∈ F+

}
.

An inner product can be defined for tfspan{x1, ..., xm} (and
ctfspan{x1, ..., xm}).

Definition 4: For two elements a, b ∈ tfspan{x1, ..., xm},
we define the operation < a, b >= E[a(0)b(0)].
We leave to the reader to prove that < ·, · > is actually
an inner product on the vector space tfspan{x1, ..., xm},
making it a pre-Hilbert space (with the technical assumption
that two processes are the same if they are equal almost
always). Also observe that ctfspanx1, ..., xn is pre-Hilbert
space as well, since it is a subspace of tfspan{x1, ..., xm}.

Definition 5: We define the norm induced by the inner
product in tfspan{x1, ..., xm} as ‖a‖ :=< a, a >.

The generative class of models: Linear Dynamic Graphs
In order to obtain theoretical guarantees about the recon-

struction of a network of agents, we are going to define a
class of models for the network. We provide the motiva-
tions behind our assumptions. In many applications data are
collected in the form of time series where each time series
represents a distinct agent. We consider a network where
each of these agents is observed through a scalar output that
is modeled as the realization of a stochastic process xj , for
j = 1, ..., n. In the absence of the processes xi, i 6= j, the
processes xj is assumed to have an “independent behavior”.
This “independent behavior is described by the stochastic
process ej . At the same time, xj can also be linearly and
additively “influenced” by none, one or more of the processes
xi, i 6= j. By this we mean that, by removing from xj
its “independent behavior” ej , we find a superposition of

influences determined by the processes xi, i 6= j, through
some dynamical transfer functions Hji(z), with i 6= j,

xj = ej +
∑
i6=j

Hji(z)xi. (2)

A block diagram representation of Equation (2) is reported
in Figure 1. This basic intuition leads to a more formal

xj

ej

xi Hji(z) +

x1 Hj1(z)

...
...

...

xn

...

Hjn(z)

Fig. 1. A block diagram representation of Equation 2.

definition for Linear Dynamic Graph (LDG).
Definition 6: Consider a vector of n zero-mean, time-

discrete, wide sense jointly stationary processes e =
(e1, ..., en)T with diagonal power spectral density Φe(z) that
is strictly positive on the unit circle |z| = 1. Let H(z) ∈
Fn×n be a rational transfer matrix, with Hjj(z) = 0, for j =
1, ..., n. The pair G = (H(z), e) is a Linear Dynamic Graph
(LDG). The vector process x = (x1, ..., xn)T satisfying the
dynamic relation

x = e+H(z)x (3)

is the LDG observation or output. The LDG is well-posed if
the operator (I−H(z))−1 is invertible, making the definition
of the LDG observation x meaningful. A LDG is causal if
each entry of H(z) and each entry of (I−H(z))−1 is causal.

Observe that Equation (3) is an equivalent vector notation
for Equation (2) describing the dynamics of all the processes
xj , j = 1, ..., n, in a compact manner.

Given a LDG it is possible to associate a graph G to it
in the following way. Let G = (V,E) be a graph where
V is the set of nodes and E is the set edges. Define
V := {x1, ..., xn} and E := {(xi, xj)|Hji(z) 6= 0}. Thus,
each observation process xj is a node in this graphical
model, while a link connection (xi, xj) is determined by
a non-identically zero transfer function Hji(z). Observe that
the matrix H(z) plays the role of an adjacency matrix,
where entries are not limited to be just either 0 or 1, but
can be rational transfer functions. The following definition
establishes “kinship relations” among the nodes of a LDG.

Definition 7: Given a LDG (H(z), e) with observation
x1, ..., xn, we say that
• xi is a parent of xj if Hji(z) 6= 0
• xi is a child of xj if Hij(z) 6= 0
• xi and xj are co-parents if they have a common child

Furthermore, in each of these cases, we say that xi and xj
are kins.

Estimation for jointly stationary processes
In this section we recall basic notion of linear estimation

for wide-sense jointly stationary processes with specific
attention to Wiener filtering.

Definition 8: Let x = (x1, ..., xn)T be a vector of wide-
sense jointly stationary processes with Φx(z) real-rational
and positive definite on |z| = 1. Consider the problem

x̂j = arg min
q∈Xj

‖xj − q‖2. (4)
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where Xj is a vector space of stochastic processes that are
wide-sense jointly stationary processes with xj . According
to different choices for Xj we have the following definitions
• Xj = tfspan{xi}i 6=j

Let x̂j :=
∑

i6=j Wji(z)xi. The transfer functions
Wji(z) are the entries of the non-causal Wiener filter
estimating xj from {xi}i 6=j

• Xj = ctfspan{xi}i 6=j

Let x̂j :=
∑

i 6=j W
(c)
ji (z)xi. The transfer functions

W
(c)
ji (z) are the entries of the causal Wiener filter

estimating xj from {xi}i 6=j

• Xj = ctfspan{z−1xi}
Let x̂j :=

∑
i 6=j W

(g)
ji (z)xi. The transfer functions

W
(g)
ji (z) are the entries of the one-step predictor (or

Granger filter) estimating xj from {xi}i=1,...,n

In each case of the previous definition, it can be proven
that if {x1, ..., xn} are the output of a LDG, the solution to
(4) exists and is unique.

III. ESTIMATORS IN LINEAR DYNAMIC GRAPHS

Given a LDG (H(z), e) the structure of which is unknown,
we intend to investigate what properties of its topology can
be inferred just by observing its output signal.

In this section we describe certain properties that hold for
mean least square estimators on the observation of an LDG.
This properties are directly connected to the structure of the
graph associated with the LDG, thus they can be used in
order to infer the underlying connectivity of the network.
Indeed, all the estimators that we have introduced can be
computed just by the knowledge of second order statistics
of the LDG output x1, ..., xn.

Wiener filtering
First we prove that, for a LDG, the Wiener filter estimating

xj using the other signals {xi}i 6=j only requires the signals
that are kins of xj .

The definition of conditional non-causal Wiener-
uncorrelation is given.

Definition 9: Let x1, ..., xn be wide-sense jointly station-
ary processes. Define Xj := tf-span{xk}k 6=j . The process
xj is conditionally non-causally Wiener-uncorrelated with xi
given the processes {xk}k 6=i,j if the estimate

x̂j = arg min
q∈Xj

‖xj − q‖ =
∑
k 6=j

Wjk(z)xk (5)

does not depend on xi, that is Wji(z) = 0.
The following lemma provides an immediate relationship

between non-causal Wiener-uncorrelation and the inverse of
the cross-spectral density matrix. This result presents strong
similarities with the property of the inverse of the covariance
matrix for jointly Gaussian random-variables. Indeed, it is
well-known that the entry (i, j) of inverse of the covariance
matrix of n random variables a1, ..., an is zero if and only
if ai and aj are conditionally independent given the other
variables.

Lemma 10: Let x = (x1, ..., xn)T be a vector of wide-
sense jointly stationary processes. Assume that Φx(z) has
full normal rank. The process xj is non-causally Wiener-
uncorrelated with xi given the processes {xk}k 6=i,j , if and
only if the entry (i, j), or equivalently the entry (j, i), of
Φ−1x (z) is zero, that is, for i 6= j, bTj Φ−1x bi = bTi Φ−1x bj = 0.

Proof: Without any loss of generality, let j = n
and define xn := (x1, ..., xn−1)T . Suppose the non-causal
Wiener filter estimating xn from xn is Wnn. Then

xn = εn +Wnn(z)xn (6)

where, from the Hilbert projection theorem [14], the error εn
has the property that Φεnxn(z) = 0. Define r := (xTn , εn)T

and observe that

r =

(
I 0

−Wnn(z) 1

)
x⇒ x =

(
I 0

Wnn(z) 1

)
r.

It follows that

Φ
−1
x =

(
I Wnn(z)∗
0 1

) Φ−1
xn

0

0 Φ−1
εn

( I 0
Wnn(z) 1

)
=

=

 Φxn
+

W∗nnWnn
Φεn

W∗nnΦ−1
εn

Φ−1
εn

Wnn Φ−1
εn

 .

The assertion is proven by premultiplying by bTn and post-
multiplying by bi

The following theorem provides a sufficient condition to
determine if two nodes in a LDG are kins.

Theorem 11: Consider a well-posed LDG (H(z), e). Let
x = (x1, ..., xn)T be its output. Define the space Xj =
tf-span{xi}i 6=j . Consider the problem of approximating the
signal xj with an element x̂j ∈ Xj , as defined below

x̂j = arg min
q∈Xj

‖xj − q‖2 . (7)

Then, the optimal solution x̂j exists, is unique and x̂j =∑
i 6=j Wji(z)xi, where Wji(z) 6= 0 implies {xi, xj} ∈

kin(G).
Proof: The LDG dynamics is given by x = (I −

H(z))−1e implying that Φ−1x = (I − H)∗Φ−1e (I − H).
Consider the j-th row of Φ−1x . We have bTj Φ−1x = (bTj −
H∗∗j)Φ

−1
e (I − H). The k−th row element of the vector

(bTj − H∗∗j) is zero if k 6= j and xk is not a parent of xj .
Since Φe is diagonal the i-th column of Φ−1e (I − H) has
zero entries for any k 6= i that is not a parent of i. Given
i 6= j, if i is not a parent of j and i is not a child of j and i
and j have no common children (they are not co-parents), it
follows that the entry (j, i) of Φ−1xx (z) is zero. Using Lemma
(10) the assertion is proven.

Causal Wiener filtering (Wiener-Hopf filtering)
The same property of sparsity of the Wiener filter in a

LDG provided by Theorem 11 holds for the causal Wiener
filter as well. The proof is not as straightforward. We first
need to introduce a lemma.

Lemma 12: Consider a well-posed LDG G = (H(z), e)
with associated graph G and output x = (x1, ..., xn)T . Fix
j ∈ {1, ..., n} and define the set

C := {c|xc ∈ CG(xj)} = {c1, ...cnc
}

containing the indexes of the nc children of xj . Then, for
i 6= j,

xi ∈ tf-span


{⋃
k∈C

(ek +Hkj(z)ej)

}
∪

 ⋃
k/∈C∪{j}

{ek}


 .

Furthermore, if G is causal,

xi ∈ ctfspan


{⋃
k∈C

(ek +Hkj(z)ej)

}
∪

 ⋃
k/∈C∪{j}

{ek}


 .
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Proof: Define

εj := 0

εk := ek +Hkj(z)ej if k ∈ C
εk := ek if k /∈ {C} ∪ {j} (8)

ξk :=
∑

Hki(z)xi if k = j

ξk := xk if k 6= j

and, by inspection, observe that [I −H(z)]ξ = ε. Since G is well
posed, [I−H(z)] is invertible implying that the signals {ξi}i=1,...,n

are a linear transformation of the signals {εi}i=1,...,n. For i 6= j,
we have xi = ξi ∈ tf-span{εk}k=1,...,n = tf-span{εk}k 6=j . where
the first equality follows from (8) and the last one follows from
the fact that εj = 0. The causality of G also implies that xi =
ctfspan{εk}k 6=j . This proves the assertion.
The following theorem proves the sparsity of the causal
Wiener filter stating that the causal Wiener filter estimating
xj from the signals xi, i 6= j, has non-zero entries corre-
sponding to the kin signals of xj .

Theorem 13: Consider a well-posed and causal LDG with
observation x = (x1, ..., xn)T Define Xj = ctfspan{xi}i 6=j .
Consider the problem of approximating the signal xj with
an element x̂j ∈ Xj , as defined below

min
x̂j∈Xj

‖xj − x̂j‖2 .

Then the optimal solution x̂j is x̂j =
∑
i6=jW

(c)
ji (z)xi, where

W
(c)
ji (z) 6= 0 implies (xi, xj) ∈ kin(G).

Proof: For any i 6= j, define εi as in (8) and observe
that εi can be represented as

εi = ei +Hij(z)ej . (9)

Also note that

ej := xj −
∑
i

Hji(z)xi. (10)

Consider êj defined as

êj := arg min
q∈ctfspan{εi}i6=j

‖ej − q‖ =
∑
i6=j

C
(c)
ji (z)εi

where the transfer functions C(c)
ji (z) are given by the causal Wiener

filter estimating ej from {εi}i6=j . Notice that, by (9), C(c)
ji (z) is

equal to zero if xi is not a child of xj . Now, let us consider the
optimization problem

x̂j := arg min
q∈ctfspan{xi}i6=j

‖xj − q‖ =
∑
i 6=j

Wji(z)xi

where Wji(z) are the entries of the associated causal Wiener filter.
Its solution x̂j satisfies

x̂j =
∑
i6=j

Hji(z)xi + arg min
q∈ctfspan{xi}i6=j

‖ej − q‖ =

=
∑
i

Hji(z)xi + arg min
q∈ctfspan{εi}i6=j

‖ej − q‖

where the first equality derives from (10) and the last one is obtained
by using Lemma 12. Thus we have

x̂j =
∑
i 6=j

Wjixi =
∑
i

Hji(z)xi +
∑
i 6=j

Cjiεi.

Substituting the expression of εi, i 6= j, as a function of xi, i 6= j,
the assertion is proven.

One-step predictor (or Granger-causality)
The following theorem proves the sparsity of the one-

step predictor (or Granger operator) [15]. If the stronger
hypothesis of strictly causal transfer functions Hji(z) is met,
the one-step predictor provides an exact reconstruction of
parent-child links in a LDG.

Theorem 14: Consider a well-posed, causal detectable
LDG (H(z), e) with output (x1, ..., xn)T . Assume that
each entry of H(z) is strictly causal. Define Xj =
ctfspan{x1, ..., xn}. Consider the problem of approximating
the signal zxj with an element x̂j ∈ Xj , as defined below

min
x̂j∈Xj

‖zxj − x̂j‖2 .

Then the optimal solution x̂j is

x̂j =

n∑
i=1

W
(g)
ji (z)xi

where W (g)
ji (z) 6= 0 implies i = j or xi is a parent of xj .

Proof: For any i 6= j, define εi as in (8) and observe
that εi can be represented as in (9). Also define εj := ej .
Note that

ej := xj −
∑
i

Hji(z)xi. (11)

Consider the minimization problem

êj := arg min
q∈ctfspan{εi}i

‖zej − q‖ =
∑
i 6=j

C
(g)
ji (z)εi

where the transfer functions C(g)
ji (z) are elements of F+. We have

that C(g)
ji (z) = 0 for any i 6= j. Indeed, since Φeiej (eiω) = 0 for

i 6= j, it holds that

arg min
q∈ctfspan{εi}ni=1

‖zej − q‖ =

= arg min
q∈ctfspan{ei}ni=1

‖zej − q‖ =

= arg min
q∈ctfspan{ej}

‖zej − q‖.

Conversely, from the expression of the causal Wiener filter [16], we
find C

(g)
jj (z) = {zSj(z)}Cz−1Sj(z) where Sj(z) is the spectral

factor of ej . Now, let us consider the problem

arg min
q∈ctfspan{xi}i6=j

‖zxj − q‖.

Its solution x̂j is

x̂j =
∑
k

zHjk(z)xk + arg min
q∈ctfspan{xi}i

‖zej − q‖ =

= C
(g)
jj (z)xj +

∑
k 6=j

[zHjk(z)− C(g)
jj (z)Hjk(z)]xk.

This proves the assertion.

IV. A RECONSTRUCTION ALGORITHM

The results of the previous section can be briefly summa-
rized in three main points
• for a LDG, the standard Wiener filter estimating a signal
xj from the other signals {xi}i 6=j only requires the
signals that are kins of xj

• for a causal LDG the analogous property holds also for
the causal implementation of the Wiener filter (making
it possible, for example, to track slow varying networks
in real-time)

• if the LDG is defined by strictly causal links, the
Granger filter that estimates xj only requires its parents.
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Since all these three mean least estimators can be computed
just by using second order statistics in the form of (cross)-
power spectral densities (see [16], [17]), an algorithm to infer
the structure of an unknown network is now suggested.

Reconstruction algorithm

0. Initialize the set of edges A = {}
1. Determine the Power Spectral Density Φx(z) from the

realization of {x1, ..., xn}
2. For any signal xj
3. Determine the optimal filter entries W (opt)

ji (z)
(non-causal Wiener, causal Wiener or one-step predic-
tor) from the Power Spectral Densities

4. For any W (opt)
ji (z) � 0

5. add {Ni, Nj} to A
6. end
7. end
8. return A
If Wji(z)

(opt) is given by the Wiener filter of the Wiener-
Hopf filter, we can not guarantee an exact reconstruction
of the network, but only the reconstruction of the so-called
Markov Blanket of the network (that is the network defined
by the links between kins of the original network) [13].
Furthermore, the link orientation can not be detected. In
the case of the one-step predictor (and if the links are
strictly causal), the network is reconstructed exactly and
the link orientation is determined, as well. The situation is
represented by an example in Figure 2
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Fig. 2. Original generative network of 24 nodes (a); the reconstructed topol-
ogy using non-causal and causal Wiener filters (b); and the reconstructed
topology using the one-step predictor (c). In (b) every single link in the
original network is detected, but the topology also contains the additional
links between the “kins”. In (c) the reconstruction is exact (with detection
of the link orientation) but this technique can be successfully applied only
when the dynamic links of the network are strictly causal.

V. CONNECTIONS WITH COMPRESSIVE SENSING

In the previous sections we have highlighted certain spar-
sity properties of linear least square estimators in LDGs.
These sparsity properties hold for the solution of least square
optimization problems where a sparse solution would not be
expected. It is possible to use them in order to infer structural
characteristics of the LDG introducing a simple algorithm
that checks non-zero entries of a suitable transfer vector. This
observation constitutes the main motivation of this section:
since in a LDG the connectivity structure is associated with
the sparsity of a certain transfer vector, given an intricate
network, the most important connections can be inferred by
forcing a certain degree of sparsity in the computation of a
least square estimator.

In the recent few years, sparsity problems have attracted
the attention of researchers in the area of Signal Processing.
Applications are numerous, ranging from data-compression
to high-resolution interpolation, and noise filtering [18], [19].

There are many formalizations of the problem, but one of the
most common is to cast it as

min
w
‖x0 −Ψw‖2 subject to ‖w‖0 ≤ m , (12)

where n < p, x0 ∈ Rp, Ψ ∈ Rp×n is a matrix, whose columns
represent a redundant base employed to approximate x0 and the
“zero-norm” (that is not actually a norm)

‖w‖0 := |{i ∈ N|wi 6= 0}| (13)

is defined by the number of non-zero entries of a vector w. It can be
said that w is a “simple” way to express x0 as a linear combination
of the columns of Ψ, where the concept of “simplicity” is given by
a constraint on the number of non-zero entries of w.

For each j = 1, ..., n define the following sets

W(j) = {W (z) ∈ F1×n|Wj(z) = 0} , (14)

where Wj(z) denotes the j-th component of W (z). For any W ∈
W(j), define the “zero-norm” as

‖W‖0 = {# of entries such that ∃ z ∈ C,Wi(z) 6= 0}.
Then, for example a Wiener filtering problem with sparsity enforced
by a node-dependent parameter mj can be formally cast as

min
W∈Wj

‖xj −Wx‖2 subject to ‖W‖0 ≤ mj (15)

which is, from a formal point of view, equivalent to the standard
l0 problem as defined in (12).

This formal equivalence shows how the problem of determining
a suitable simplified topology can immediately inherit a set of
practical tools already developed in the area of compressing sensing.
Here we present, as illustrative examples, modifications of algo-
rithms and strategies, well-known in the Signal Processing com-
munity, which can be adopted to obtain suboptimal solutions to the
problem of modeling the network interconnections.
While formally identical to (12), the problem of a topology re-
construction cast as in (15) still has its own characteristics. The
significant difference between (12) and (15) is that in (15) we are
looking for the sparsity of a transfer vector instead of real vector.
Since the projection procedure in (15) is given by the estimation
of a transfer vector, it is computationally more expensive than a
standard projection in the space of vectors of real numbers. For
this reason greedy algorithms offer a good approach to tackle such
a problem where speed could become a relevant factor. Moreover,
since the complexity of the network model is here one of final
goal, greedy algorithms are a suitable solution, since they allow
one to specify explicitly the connection degree mj of every node
xj . This feature is in general not provided by other algorithms. As
an alternative approach to greedy algorithms we also describe a
strategy based on iterated reweighed optimizations as described in
[20].

A modified Orthogonal Least Squares (Cycling OLS)
Orthogonal Least Squares (OLS) is a greedy algorithm proposed

for the first time in [21] and in many ways it resembles the algorithm
of Matching Pursuit developed in [22]. It basically consists of iter-
ated orthogonal projections on elements of a (possibly redundant)
base to approximate a given vector. For the details of this algorithm
we remand the reader to [21]. For the sake of clarity, we simply
reformulate in the terms our problem. Given the node signal xj ,
we intend to approximate it with at most mj signals chosen from
{xi}i6=j . At the l−th iteration Γ(l) is the set of the chosen signals.
The initialization occurs defining Γ(0) = ∅. At the l−th iteration
step, a new element from {xi}i6=j is added to Γ(l) with respect to
Γ(l−1) in order to achieve the largest reduction of the cost function

Γ(l) = Γ(l−1) ∪
{

arg min
xi 6=xj

[
min

q∈tfspan{Γ(l−1)∪xi}
‖xj − q‖

]}
.

The standard OLS goes on at every step introducing a new vector
until a stopping condition is met (usually if a degree of approxi-
mation for xj is achieved or on the number of iterations).
We propose an algorithm which derives directly from OLS but it
doesn’t increase the number of vectors approximating xj above
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mj . Our variation of OLS, named Cycling OLS (COLS), is very
simple. At any iteration, given the set of vectors Γ(l−1), if it already
contains mj vectors, the algorithm chooses a vector in Γ(l−1) to
be removed and tries to replace it with another vector in order to
improve the quality of the approximation and updates it. If such an
improvement is not possible by removing any of the vectors in the
current selection, the algorithm stops. The implementation can be
described using the following pseudo-code.
Cycling Orthogonal Least Squares:

0. define x0 := 0 (null time series) and c = 0.
1. initialize the mj-tuple S = (x0, x0..., x0) and k = 1
2. while c ≤ mj

2a. for i = 1, ..., n, i 6= j
define Si as the mj-tuple where xi replaces the k-th
element of S and
define x̂

(i)
j as the best approximation of xj using the

signals in Si
2b. α = arg mini ‖xj − x̂(i)

j ‖
2c. if xα = S[k] then c = c+ 1
2d. else S[k] = xα, c = 1,
2d. k = k mod mj , k = k + 1

3. return S
The reason of our modification is simple. COLS implements a
coordinate descent guaranteeing that the number of non-zero com-
ponents of the solution does not exceed mj . Once such a limit has
been reached, it tries to improve the quality of the approximation
without reducing the sparsity of the current solution.

Reweighted least squares
Another possible approach to “encourage” sparse solutions is

provided by reweighed minimization algorithms as proposed in [20]
and [18]. A comparison between reweighed norm-1 and norm-2
methods is performed in [19]. We consider only reweighed least
squares, because such an algorithm is easier to implement, but the
intuition behind the two techniques is basically the same.
Consider the optimization problem

min
W∈Wj

‖xj −Wx‖2 subject to ‖W‖2µ ≤ 1 (16)

where, for a vector µ = (µ1, ..., µn), we define

‖W‖2µ :=

n∑
1

∫ π

−π
µkW

∗
j,k(ω)Wj,k(ω)dω ≤ mj .

Let us pretend that the non-zero entries αj,k’s of the optimal Wαj,k

solving (15) are known. We could set

µl :=

(∫ π

−π
W ∗l (ω)Wl(ω)dω

)−1

, (17)

if l = αj,k for some k = 1, ...,mj and µl = +∞ otherwise. With
such a choice of weights, the two problems (15) and (16) would be
equivalent since they would provide the same solutions. However,
Problem (16) has the advantage of being convex. Of course, the
values αj,k are not a-priori known, thus it is not possible to
evaluate (17). An iterative approach to estimate the weights (17)
has been proposed in [18].

Reweighted Least Squares:
0. For all xj
1. initialize the weight vector µ := 0
2. while a stop criterion is met

2a. solve the convex problem

min
W∈Wj

‖xj −Wx‖2 subject to ‖Wj‖2µ ≤ 1

2b. compute the new weights

µk =
1

mj

∫ π

−π
‖Wj(ω)‖dω

3. return all the Wj’s.
At any iteration the convex relaxation of the problem is solved
and new weights are computed as a functions of the current

solution. When a stopping criterion is met (usually on the number
of iterations), the final solution can be obtained by selecting the
mj largest entries of each Wj .

VI. CONCLUSIONS
In this paper we have introduced a class of models, Linear

Dynamic Graphs, that is apt to describe a network of linear inter-
connected systems. Least mean estimators such as Wiener, Wiener-
Hopf, and Granger filters have locality and sparsity properties that
are directly connected to the topology of Linear Dynamic Graphs.
Such properties are used to develop algorithms capable of inferring
the underlying connectivity structure of a Linear Dynamic Graphs.
The main advantage is that only second order statistics only are
required for the estimate. The sparsity properties of the transfer
vectors defining the least mean estimators considered in the article
allow to draw analogies and comparisons between Compressive
Sensing and the problem of reconstructing a network.
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