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Abstract— This paper addresses a problem in control relevant
model reduction. More specifically, a model reduction scheme is
proposed that preserves the disturbance decoupling property of
the to-be-reduced plant. It is shown that optimal feedback laws
designed for the reduced system will actually be optimal for
the non-reduced system. Moreover, a characterization is given
for the minimal reduction order for which this property can
be established. This can be extended to the design of observers
for complex systems. The results are illustrated by a simulation
example.

I. INTRODUCTION

One of the most compelling applications of model reduc-

tion is to facilitate the synthesis of model based controllers

for plants of high complexity. The most common strategies

to achieve this are illustrated in Fig. 1, and can be referred to

as an “optimize-then-reduce” and a “reduce-then-optimize”

strategy. In the first approach a controller is synthesized for

the full order system, where its complexity is subsequently

reduced by approximating the controller by a simpler one.

The second approach amounts to simplifying the to-be-

controlled system by a model reduction technique followed

by the subsequent synthesis of a controller on the basis of

the simplified model. Often, in both approaches the model

reduction is carried out in a manner that does not take the

control objective into account. Consequently, there may be

a considerable mismatch between control relevant properties

of the full order model versus control relevant properties of

the reduced order model. As noticed by many authors, this

may be the case even when the reduced order model is a

good approximation of the uncontrolled full order system.

Control relevant model reduction deals with the question

of model approximation in which closed-loop performance

criteria determine the quality of reduced order models. Model

reduction strategies for control have been part of many earlier

investigations [2], [3], [4], [7] and [10]. It is a general fact

that model reduction of a to-be-controlled-plant generally

degrades optimal achievable performance of the controlled

system when the controller inferred from the reduced order

model is implemented on the full order system. Usually,

this performance degradation is justified and compensated by

quantifying the robustness properties of the control system.

It is the purpose of this paper to investigate under what

conditions optimal achievable performance can be left invari-

ant in a model reduction scheme. More precisely, we address

the general problem of disturbance decoupling for a linear
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time invariant system and propose a model reduction scheme

in which optimal controllers of the reduced order system

remain optimal for the full order system while, conversely,

optimal controllers for the reduced order system also prove

optimal for the full order system. In this manner, a model

reduction scheme is developed that is specifically geared to

leave disturbance decoupling properties of the (full order)

plant invariant.

We provide a complete solution to this problem and char-

acterize the minimal reduction degree for which disturbance

decoupling of a full order plant can be maintained in the

reduction procedure.

The paper is organized as follows. In Section II, the

main problem will be formulated. Section III shows the

main results of the approximation strategies for different

controller and observer design problems. In Section IV, we

will illustrate the results using a simulation example and con-

clusions are drawn in Section V. Notation and background

information on geometric control theory is collected in the

Appendix.

II. PROBLEM FORMULATION

The problem that will be addressed in this paper amounts

to developing a reduction strategy for a full order LTI system

such that the disturbance decoupling properties of the system

are preserved in the reduction procedure. Hence, in the

context of this paper an optimal controller will be a controller

that achieves a complete decoupling of a distinguished output

variable from a disturbance that enters the system. With

the proposed reduction strategy, the “reduce-then-optimize”

approach of Fig. 1 will yield a controller (or observer) of

low complexity, that after interconnection with the original

full order system results in an optimal closed-loop behavior.
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Controller (n ≈ 10
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2)
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Fig. 1. Strategies for controller design for large-scale systems.
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The setting will be the following. Given is the system

ΣP :











ẋ = Ax+Bu+Gd,

y = Cx,

z = Hx+Du,

(1)

where x(t) ∈ R
n := X , u(t) ∈ R

u := U , d(t) ∈ R
d := D,

y(t) ∈ R
y := Y and z(t) ∈ R

z := Z denote the state, control

input, disturbance input, measured output and controlled

output variable, respectively. We assume that there is not

always a direct feed through from the control and disturbance

inputs to the outputs in (1).

For the first class of control problems, it is assumed that

the state variable is measured. That is, first suppose that

C = I and consider the following control problems:

Definition 2.1 (Disturbance Decoupling Problem):

The disturbance decoupling problem (DDP) is said to be

solvable for (1) if there exists F : Y → U such that the

feedback law u = Fx achieves a controlled system ẋ =
(A + BF )x + Gd, z = Hx, where the output z does not

depend on the disturbance d. �

Hence, if DDP is solvable, the transfer function

T (s) = H(sI − A − BF )−1G + D = 0 for some

feedback F . We will say that such a feedback achieves

disturbance decoupling. Some variations on this problem

include the possibility to assign the spectrum of the closed-

loop state evolution matrix:

Definition 2.2 (DDP with Stability):

The disturbance decoupling problem with stability (DDPS) is

said to be solvable for (1) if DDP is solvable with a feedback

F : Y → U that is stabilizing in the sense that λ(A+BF ) ⊂
C−. �

Definition 2.3 (DDP with Pole Placement):

The disturbance decoupling problem with pole placement

(DDPPP) is said to be solvable for (1) if DDP is solvable

with a feedback F : Y → U such that the eigenvalues

λ(A+BF ) can be located at arbitrary points in the complex

plane. �

The second class of problems involves the synthesis of

observers that achieve disturbance decoupling. To formalize

these problems, it is assumed that B and D are zero,

implying that the influence of the control input u is

neglected.

Definition 2.4 (DDEP):

The disturbance decoupled estimation problem (DDEP) is

said to be solvable if there exists an observer

ΣO :

{

˙̃x = Ax̃+ L(y − Cx̃),

z̃ = Hx̃,
(2)

with an observer gain L : Y → X such that the estimation

error ǫ(t) = z(t)− z̃(t) does not depend on the disturbance

input d. �

It is easily verified that the estimation error dynamics satisfies

ė = (A − LC)e + Gd, ǫ = He. If DDEP is solvable then

the corresponding observer is said to achieve disturbance

decoupling. The observer design problem can be extended

so as to include additional properties of stability or pole

placement on the spectrum λ(A−LC) of the error dynamics.

We refer to these problems with the acronyms DDEPS and

DDEPPP, respectively.

Problem formulation:

Given ΣP as in (1), find a reduced order system

Σ̂P :











˙̂x = Âx̂+ B̂u+ Ĝd,

y = Ĉx̂,

z = Ĥx̂+ D̂u+ Êd,

such that:

DDP (or DDPS, DDPPP, DDEP) is solvable for ΣP

if and only if

DDP (or DDPS, DDPPP, DDEP) is solvable for Σ̂P .

In addition, the obtained feedback (or observer) that achieves

disturbance decoupling for Σ̂P also achieves disturbance

decoupling for ΣP , and visa versa. �

Obviously, a model order reduction scheme may or may

not exhibit invariance of disturbance decoupling properties.

Moreover, if a reduction scheme exhibits invariance of dis-

turbance decoupling properties by reduction to order r < n,

then this property may cease to exist by reduction orders

r′ < r.

For the introduced disturbance decoupling problems, we

assume that the complete state vector is available as input

for the to-be-designed controller (since C is assumed to be

the identity matrix). Obviously, this is not possible in most

practical cases. The problem where only partial state mea-

surement is available for feedback is, in geometric control

theory known as the disturbance decoupling problem with

partial measurements (DDPM), is not dealt with in this paper

(see e.g. [5], [6], [8]).

III. MAIN RESULTS

In this section, we first present the results for control

relevant model reduction for the problems stated in Definition

2.1, 2.2 and 2.3. Afterwards, in Section III.B, reduction

strategies are proposed that keep the property of disturbance

decoupled estimation invariant.

A. Reduction for controller design

The interconnection structure that is used for the various

types of disturbance decoupling problems is illustrated in

the block scheme in Fig. 2. Here, ΣP denotes the full order

ΣP

d z

yu

ΣC

Fig. 2. Interconnection structure used in disturbance decoupling problems.

7177



model of the plant and ΣC is the to-be-designed controller.

The disturbances acting on the system are given by d, u are

the inputs that can be manipulated by the controller, y are

the measurable outputs and z are the to-be-controlled outputs

of the system.

For the different types of disturbance decoupling problems

addressed, we want to construct a (static) feedback controller

ΣC such that the influence of the disturbance d is not visible

on the outputs z in the controlled system. We start with DDP,

where no additional stability or pole placement requirements

are imposed. This problem is solved as follows [1], [9]:

Lemma 3.1 (Disturbance decoupling problem):

Let V∗ = V∗(A,B,H,D) be associated with the system in

(1). Then DDP is solvable for ΣP if and only if imG ⊂ V∗.

�

For background information on the used notation and on

controlled invariant subspaces, we refer to the Appendix. If

DDP is solvable, then there exists a static feedback controller

ΣC defined by u = Fy, with F ∈ R
y×u that achieved

decoupling of d from z. The class of all such feedback

matrices is denoted F(ΣP ).

We are interested in developing a reduction strategy to

obtain a lower order approximate model Σ̂P for the system

in (1), such that the DDP property is preserved in the model

reduction procedure. In addition, we require that the class of

controllers F(ΣP ) that solve DDP for ΣP is invariant in the

reduction.

Let V∗ = V∗(A,B,H,D) be the controlled invariant sub-

space for ΣP as defined in the Appendix. Consider the

following reduced order model of order dim(V∗) ≤ n

Σ̂P :=











˙̂x = Âx̂+ B̂u+ Ĝd,

y = Ĉx̂,

z = Ĥx̂+ D̂u+ Êd,

(3)

where we have the state space matrices:

Â = ΠV∗A|V∗ , B̂ = ΠV∗B, Ĉ = C|V∗ ,

Ĝ = ΠV∗G, Ĥ = HA|V∗ , D̂ = HB +D,

and Ê = ‖ΠLG‖ Izd.

Here, ΠI and |I are the canonical projections and restrictions

on a subspace I ⊂ X applied to the system matrices of the

high-order model in (1), ‖·‖ denotes the matrix norm, which

is the maximal singular value of the matrix, and L is any

subspace of X such that X = V∗ ⊕ L.

The matrix Izd ∈ R
z×d equals [ I

0
], [I 0] or I when the

dimension of z is larger, smaller or equal to the dimension

of d, respectively.

From this state space representation, one can observe that

the dimension of x̂ is equal to dim(V∗), since we have

projected the original state vector onto V∗. This has been

illustrated in Fig. 3. The dimension of the reduced system

in (3) is therefore dimV∗ ≤ n, and results in the following

theorem:

X

V∗

x(t)

x̂(t)

Fig. 3. Projection used in reduction for DDP from X onto V∗.

Theorem 3.1 (Reduction for DDP):

The following statements are equivalent:

1) DDP solvable for ΣP in (1)

2) DDP solvable for Σ̂P in (3)

Moreover, if u = F̂ x̂ solves DDP for Σ̂P , then u = Fx,

with F |V∗ = F̂ solves DDP for ΣP . Conversely, if u = Fx

solves DDP for ΣP , then u = F̂ x̂, with F̂ = F |V∗ , solves

DDP for Σ̂P . �

To prove this theorem, consider the following lemma:

Lemma 3.2:

The system ẋ = Ax + Bd, z = Cx + Dd has transfer

function T (s) = C(sI − A)−1B + D = 0 if and only

if there exists an A invariant subspace L ⊂ X such that

imB ⊂ L ⊂ kerC and D = 0. �

Proof: (1 ⇒ 2) DDP solvable for ΣP implies ∃F such that

(A + BF )V∗ ⊂ V∗ ⊂ ker(H + DF ) and imG ⊂ V∗. Set

F̂ = F |V∗ . Then, Ĥ + D̂F̂ = HA|V∗ + (HB + D)F̂ =
H(A|V∗ +BF |V∗)+DF |V∗ = H(A+BF )|V∗ +DF |V∗ ⊂
HV∗ + DFV∗ = (H + DF )V∗ = 0, where we have used

imH(A+BF )V∗ ⊂ HV∗ = 0. Then, the feedback u = F̂ x̂

establishes that z = (Ĥ + D̂F̂ )x̂ = 0. Since im Ĝ ⊂ imG,

DDP is solvable for Σ̂P .

(2 ⇒ 1) Suppose DDP is solvable for Σ̂p. Let V̂∗ be

the largest controlled invariant subspace in Σ̂p such that

(Â + B̂F̂ )V̂∗ ⊂ V̂∗ ⊂ ker(Ĥ + D̂F̂ ) and im Ĝ ⊂ V̂∗ for

some F̂ . From Lemma 3.2 we know that Ê = 0. Redefine

F̂ := F |V∗ with F ∈ F(ΣP ), so we observe that Ĥ+D̂F̂ =
H(A + BF )|V∗ + DF |V∗ ⊂ H(A + BF )V∗ + DFV∗ ⊂
(H +DF )V∗ = 0, where the last equality follows from the

definition of V∗ and the fact that F ∈ F(ΣP ). Conclude

that F̂ = F |V∗ solves DPP for Σ̂P . To prove that DDP is

solvable for ΣP observe that, by the previous construction,

(A + BF )V∗ ⊂ V∗ ⊂ ker(H + DF ) and since Ê = 0
we have σmax(ΠLG) = 0 and so ΠLG = 0 implying that

imG ⊂ V∗. By Lemma 3.1 we then have that DDP is

solvable in ΣP .

The following remarks pertain to Theorem 3.1:

• The proposed reduction strategy results in an approxi-

mation of order dim(V∗). This model order is less or

equal to the order of the full model, and preserves the

desired closed-loop optimal performance.

7178



• As depicted in Fig. 3, the projection onto V∗ is used. In

general, the dimension of V∗ is not the lowest reduction

order for which the DDP property remains invariant.

The lowest achievable order is characterized as follows:

Theorem 3.2: The minimal achievable order of reduction

possible, such that DDP solvability is preserved, is given by

the smallest V subspace fulfilling the conditions:

rmin = min
V

dim{V | ∃F such that imG ⊂ V and

(A+BF )V ⊂ V ⊂ ker(H +DF )}. �

• From the previous remark, we can conclude that there

is a guaranteed performance degradation for all reduced

order models of order r < rmin.

To make the results presented in (3) more accessible, we

give the following example:

Example 3.1: Assume that we can apply an appropriate

state transformation on the system in (1) such that x = [ x1

x2
],

where x ∈ X = L ⊕ V∗, x2 ∈ V∗ and x1 ∈ L. We then

have:

ΣP :











[

ẋ1

ẋ2

]

=
[

A11 A12

A21 A22

]

[ x1

x2
] +

[

B1

B2

]

u+
[

G1

G2

]

d,

z = [H1 H2 ] [ x1

x2
] +Du,

y = [ x1

x2
] .

Then, the reduced order system leaving the DDP property

invariant is given by:

Σ̂P :











˙̂x = A22x̂+B2u+G2d,

z = [H1 H2 ]
[

A12

A22

]

x̂+
(

[H1 H2 ]
[

B1

B2

]

+D
)

u,

y = x̂,

and has an order dim(V∗) ≤ n. �

Now consider the problems formulated in Definition 2.2

and Definition 2.3. The solvability conditions for these

problem are as follows [1], [9]:

Lemma 3.3 (DDPS):

Let V∗
g = V∗

g (A,B,H,D) associated with the system ΣP

in (1) if and only if imG ⊂ V∗
g and the pair (A,B) is

stabilizable. �

If DDPS is solvable, there exists a static feedback con-

troller ΣC such that u = Fy with F ∈ Fg(ΣP ). Consider

the reduced order system (3), but now with the state space

matrices:

Â = ΠV∗

g
A|V∗

g
, B̂ = ΠV∗

g
B, Ĉ = C|V∗

g
,

Ĝ = ΠV∗

g
G, Ĥ = HA|V∗

g
, D̂ = HB +D,

and Ê = ‖ΠLg
G‖ Izd,

Here, Lg is any subspace of the X such that X = V∗
g ⊕ Lg

and Izd is defined in a similar manner as before.

This reduced order system has complexity dim(V∗
g ) and

yields the following result:

Theorem 3.3 (Reduction for DDPS):

Assume ΣP is stabilizable. Then, equivalent are:

1) DDPS is solvable for ΣP in (1)

2) DDPS is solvable for Σ̂P in (3)

Moreover, if u = F̂ x̂ solves DDPS for Σ̂P , then u = Fx,

with F |V∗

g
= F̂ and F |Lg

= Fs|Lg
, with Fs any stabilizing

feedback such that σ(A + BFs) ⊂ C−, solves DDPS for

ΣP . Conversely, if u = Fx solves DDPS for ΣP , then

u = F̂ x̂, with F̂ = F |V∗

g
, solves DDPS for Σ̂P . �

The proof of this theorem is similar to the one in Theo-

rem 3.1.

We also address the problem of disturbance decoupling

with closed-loop pole placement, known as DDPPP. In this

problem, we want to ensure that the closed-loop poles are

located at arbitrary places in the complex plane. Known

solvability conditions are given as follows:

Lemma 3.4 (DDPPP):

Let R∗ = R∗(A,B,H,D) be a subspace of V∗(A,B,H,D)
associated with ΣP . Then, DDPPP is solvable for ΣP if and

only if imG ⊂ R∗ and (A,B) is controllable. �

Here, the class of controllers ΣC is given by Fpp(ΣP ).
Consider the reduced order model (3) with the state space

matrices:

Â = ΠR∗A|R∗ , B̂ = ΠR∗B, Ĉ = C|R∗ ,

Ĝ = ΠR∗G, Ĥ = HA|R∗ , D̂ = HB +D,

and Ê = ‖ΠLpp
G‖ Izd,

with X = R∗ ⊕Lpp. Without technical difficulties, we then

obtain the following result:

Theorem 3.4 (Reduction for DDPPP):

Assume ΣP is controllable. Then, equivalent are:

1) DDPPP is solvable for ΣP in (1)

2) DDPPP is solvable for Σ̂P in (3)

Moreover, if u = F̂ x̂ solves DDPPP for Σ̂P at pole location

π̂ ⊂ C, then u = Fx, with F |R∗ = F̂ solves DDPPP for

ΣP at pole locations π ⊃ π̂. Conversely, if u = Fx solves

DDPPP for ΣP at pole location π ⊂ C, then u = F̂ x̂, with

F̂ = F |R∗ , solves DDPPP for Σ̂P at pole location π̂ ⊂ π.

�

The proof goes in a similar manner as for DDP and DDPS,

and is therefore omitted in this paper. Obviously, the number

of poles that can be placed in ΣP is larger than in Σ̂P . For

this full order system, the poles placed due to F |R∗ = F̂ are

the same as the placed ones in Σ̂P (namely π̂). Note that the

actual pole locations π and π̂ can be chosen arbitrary due to

the definition of DDPPP.

ΣO

ΣP

d

u

z

y

z̃

ǫ

Fig. 4. Disturbance Decoupling Estimation Problem (DDEP).
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B. Reduction for observer design

Not only the problem of model reduction for the design

of controllers needs to be answered, but also the use of

observers is crucial for large-scale systems. Here, we also

do not want to lose information during the approximation

step of the “reduce-then-optimize” strategy (see Fig. 1), that

is relevant for the design of the observer.

The discussed observer design problem is depicted in

Fig. 4, where ΣP is the same large-scale system as in (1)

and ΣO is the low order to-be-designed observer as in (2). In

contrast to the results in the previous subsection, this will not

be a static system but will be dynamic. With this observer, we

want to get an optimal estimate ẑ for the original state z such

that the influence of the input u as well as the disturbance d is

not visible on the error ǫ. It is therefore called a Disturbance

Decoupling Estimation Problem (DDEP). This problem is

discussed extensively in geometric control theory (e.g. [8]),

and is solvable if the following condition holds:

Lemma 3.5 (DDEP):

Given S∗ = S∗(A,G,C, 0) containing imG for the system

ΣP in (1). Then, DDEP is solvable for ΣP if and only if

S∗ ∩ kerC ⊂ kerH . �

For this observer design problem, we consider to use a

reduced order model for the large-scale ΣP as in (3) with

the state space matrices:

Â = ΠS∗A|S∗ , Ĉ = C|S∗ , Ĝ = ΠS∗G,

Ĥ = ΠS∗H, Ê = ‖ΠLO
G‖ Izd

with X = S∗⊕LO. In this case, we reduced the complexity

of the original system from n towards dim(S∗) ≤ n. In

contrast to the case for DDP(S/PP), it is not possible to

find a projection towards a lower dimensional conditioned

invariant subspace, since the applied projection onto S∗ is

the smallest one. The chosen values for the matrices result

in the following:

Theorem 3.5 (Reduction for DDEP):

The following statements are equivalent:

1) DDEP is solvable for ΣP in (1)

2) DDEP is solvable for Σ̂P in (3)

Moreover, if the observer gain L̂ solves DDEP for Σ̂P , then

L, with ΠS∗L = L̂ solves DDEP for ΣP . Conversely, if L

solves DDEP for ΣP , then L̂, with L̂ = ΠS∗L, solves DDEP

for Σ̂P . �

The proof of this result can be obtained in a similar

manner as done for the disturbance decoupling problems in

the previous subsection. The results for DDEP can also be

extended to the problems of DDEPS and DDEPPP [8], where

the error spectrum of ǫ should be stable or should have poles

within a certain subset of the complex plane, respectively.

IV. SIMULATION EXAMPLE

To illustrate that the proposed reduction techniques indeed

keep the desired closed-loop performance invariant, we apply

the proposed strategy for DDP, discussed in Theorem 3.1, on

a simulation example. The dynamical system ΣP , that needs

d 7→ z
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Fig. 5. Bode plots of open loop behavior for reduced order systems
used to solve DDP. (Original system, Hankel approximation, Proposed
approximation)

to be reduced as in (1), is chosen to have randomly generated

state space matrices, one disturbance d acting on the system,

two control inputs u and one measured output z. The “large-

scale” system has a complexity of dim(X ) = 5, which we

want to reduce to an approximation of order 4. The open-loop

bode plot for the large-scale system has been illustrated in

blue in Fig. 5. To make comparisons between our proposed

reduction scheme and classical reduction methods, we also

applied optimal Hankel norm approximation resulting in the

4th order approximant Σ̂P,good in green. It is still possible

to solve the DDP using this approximation, however due to

the reduction method it is not possible to extend the found

state feedback such that it can be connected to the original

system. The reduced system Σ̂P,proposed in (3) results in the
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open-loop bode plot in red, which does not contain similar

dynamics as the original and, using Hankel approximation

obtained, reduced order models. It does however leave the

DDP solvability property invariant, so after reduction we are

still able to find a ΣC that can be interconnected with the

original system and yields DDP for ΣP .

V. CONCLUSIONS

The design of controllers for large-scale systems often

results in strategies consisting of disjoint steps, namely,

approximation, obtaining a reduced order approximation,

and optimization, resulting in the controller, which does not

always guarantee that the desired closed-loop performance

can be obtained. In this paper, we therefore focus on a model

reduction scheme that keeps optimal performance invariant

after the reduction. More precisely, we have been focusing

on disturbance decoupling problems, with or without require-

ments on pole placement of closed-loop stability. We have

presented reduction strategies that keep DDP solvability in-

variant, such that the design of controllers can be done using

low order approximations, which can be interconnected with

the original large-scale system. In the proposed reduction

strategy, the system complexity has been decreased from

the original order n towards the dimension of the largest

controlled invariant subspace of the system, which is strictly

smaller than n. Also a condition for the minimal order that

can be obtained such that DDP solvability can be preserved is

presented in this paper. The problem of design of observers

for large-scale systems is also addressed, where we have

provided a reduction strategy such that DDEP solvability is

kept invariant.

The results presented in this paper are proving that the

principle of control relevant reduction strategies, using the

addressed problems in geometric control theory, indeed

works. With the first extensions to observer or estimation

problems, we try to get a good understanding such that model

reduction schemes for systems with partial measurements

(DDPM) can be researched. This extends the possible re-

duction strategies towards models for real physical systems

where we can not feedback the complete state space.

APPENDIX

This appendix consists of notation and required background

on geometric control theory. Consider the following system:

Σ : ẋ = Ax+Bu, y = Cx+Du, (4)

with x ∈ X , u ∈ U and y ∈ Y . Let x(t;x0, u) denote the

state trajectory of (4) evaluated at time t corresponding to

initial condition x(0) = x0 and input u.

Controlled invariant subspaces are defined as:

Definition A.1: Call V ⊂ X controlled invariant if ∀x0 ∈ V ,

∃u such that x(t;x0, u) ∈ V for all t ≥ 0. �

This results in the following equivalent conditions:

1) V is a controlled invariant subspace

2) AV ⊂ V + imB

3) ∃F such that (A+BF )V ⊂ V

It is well known that V = V1 + V2 is controlled invariant

whenever V1 and V2 are controlled invariant. That is, the

property of controlled invariance is closed under addition.

For the system (4) we define V∗ = V∗(A,B,C,D) as the

largest subspace V ⊂ X for which there exists F : X → U
such that

(A+BF )V ⊂ V ⊂ ker(C +DF ).

This subspace is well defined [6], [9] in the sense that is

only depends on (A,B,C,D).

Controlled invariant subspaces that are also stable are

denoted by Vg and have the property that (A+BF )V ⊂ V
with λ((A+BF )|V) ⊂ C−.

Definition A.2: A subspace R ⊂ X is said to be a con-

trollability subspace of Σ if for all x0, x1 ∈ R there exists

T > 0 and u : T → U such that the state trajectory x(t)
of (4) with input u satisfies x(0) = x0, x(T ) = x1 and

x(t) ∈ R for all t ∈ T. �

The largest controllability subspace of Σ is denoted by

R∗(A,B,C,D). Conditioned invariant subspaces are dual

to controlled invariant subspaces:

Definition A.3: A subspace S ⊂ X is called conditioned

invariant if A(S ∩ kerC) ⊂ S . For the system (4) we define

S∗ = S∗(A,B,C,D) as the smallest subspace S ⊂ X for

which there exists L : Y → X such that

(A+ LC)S ⊂ S and im(B + LD) ⊂ S. �

Well known is that when S1 and S2 are conditioned invariant,

also the intersection S1 ∩ S2 is conditioned invariant.
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