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Abstract— This paper introduces an analytical framework for
the study of a generic distribution problem where a group of
heterogeneous agents intend to divide themselves into various
subgroups without any form of global information-sharing
or centralized decision-making. Subgroups are associated to
mathematical functions that capture the marginal utilities of
performing tasks, each satisfying the law of diminishing returns.
We prove that under generic local requirements a stable agent
distribution representing a Nash equilibrium can be achieved,
and show via Monte Carlo simulations how the proposed set of
rules performs under varying constraints on information flow
and degrees of cooperation.

I. INTRODUCTION

The combination of qualities that form an individual’s

distinctive skills underlies the problem of optimal team

formation (i.e., the division of a group into subgroups).

It reflects how individuals behave and interrelate with one

another, akin or not [1]. In companies, for instance, indivi-

duals belonging to a design team creates innovative ideas for

improving customer satisfaction. Members of a management

team devote their efforts towards organizing and distributing

resources (personnel, money, materials and other assets),

while members of an implementation team develop the end

products. To coordinate these different teams, companies

often rely on hierarchical structures with elements of both

central control and divisional autonomy that determine how

individuals with complementary skills interact within and

across interdisciplinary groups [2].

In biology, where integration and coordination of different

types of individuals are key for survival, colonies exhibit

under uncertainty a highly decentralized organizational struc-

ture [3]. Insects divide their labor force into teams which

perform tasks that require different expertise, minimizing the

time required to complete them and withstanding adverse

environmental conditions (e.g., consider how honey bees

search for nest sites [4], wasps store wood [5], or ants collect

food [6]).

All social species have a division of labor. Trying to

imitate some of nature’s remarkable designs, scientists and

engineers devise large-scale technological systems that effi-

ciently exploit coordination between agents of different kinds

(heterogeneous in character or content). Such technological

systems include multiple agents trying, for instance, to

maintain a specified formation to fight fires, survey large

areas, or transfer numerous goods [7]-[9]. While the ability

of homogeneous agents to achieve these objectives is often

limited, if not impossible, the design of processes that control

the dynamics of heterogeneous agents remains -in many

contexts- an open challenge.

In all of the above studies, specialization and distributed

decision-making are key in dealing with agents, particularly

when the total utility designated to the group rests on the

law of diminishing returns [10]. The law of diminishing

returns teaches that the marginal utility of a subgroup starts

to progressively decrease as the number of agents associated

to that subgroup increases. In other words, for a given

task, the addition of an agent (of some type) yields smaller

increments in utility [11]. Under this assumption, an optimal

distribution of the group is reached (i.e., a Nash equilibrium

that maximizes group utility) when all subgroups have the

same marginal utility [12].

Our work here develops an analytical framework that

allows us to describe local requirements which lead to an

optimal distribution of heterogeneous agents. The proposed

framework is generic and may be of interest in different

scenarios in which self-organized behavior emerges among

agents that are associated to predefined tasks (e.g., in social

or technological systems). It explores the trade-off between

the optimal distribution of heterogeneous agents and their

optimal level of cooperation.

The remaining sections are organized as follows: Sec-

tion II states the problem to solve and introduces the model.

Section III presents sufficient conditions for a group of

heterogeneous agents to reach the optimal distribution. Our

analytical results in Section IV extend the work in [11]

by relaxing the information flow constraints among agents.

Section V provides Monte Carlo simulations that explore

the link between cooperation, settling time, and information-

sharing.

II. THE BASIC PROBLEM

Let a node represent an activity, service, task, or subgroup

of agents; nodes belong to a set N , indexed from 1 to n. An

agent represents a resource or unit of supply and may be

of various types; agent types belong to a set M , indexed

from 1 to m. We assume that the amount of agents of each

type is large enough to be appropriately represented by a

continuous variable (as in [11], [13]). Let R = [0,∞)m

be the space of all combinations of available agents and let

ri = [ri1, ..., rim]⊤ ∈ R be the distribution of agents at

node i (e.g., the amount of agents of each type assigned to a

particular activity), where riℓ represents the amount of agents

of type ℓ. Let ∆c ⊂ Rn denote the m(n − 1) dimensional
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simplex defined by the equality constraint
∑n

i=1 ri = c,
where c is a vector [c1, ..., cm]⊤ ∈ R and cℓ denotes the

available amount of agents of type ℓ. The profitability of

having a distribution of agents ri at node i is given by the

utility function fi : R → [0,∞) and the total utility function

is defined by f : Rn → [0,∞), f(r) =
∑n

i=1 fi(ri), where

r = [r⊤1 , ..., r
⊤
n ]

⊤ represent the states of the system. The

objective is to identify local requirements that allow us to

solve the following optimization problem

maximize f(r), subject to r ∈ ∆c. (1)

We require that each utility function fi satisfies the following

three assumptions, common in economic theory [14]. First,

each function fi is continuously differentiable on R. Second,

an increase in utility must satisfy the law of diminishing

returns expressed as

fi(ri + uℓhℓ)− fi(ri)

uℓ

>
fi(ri + wℓhℓ)− fi(ri)

wℓ

(2)

where ri ∈ R, wℓ > uℓ > 0 are some amount of agents

of type ℓ ∈ M , and hℓ ∈ R is a vector with one in the

ℓth row and zeros otherwise. In other words, we assume a

decreasing average returns with respect to (w.r.t.) increasing

magnitudes of agent additions. Third, an increase of agents

at a node must always increase the utility associated to that

node and satisfy the bounds

0 <
fi(ri + vℓhℓ)− fi(ri)

vℓ
< ∞ (3)

where vℓ > 0, ℓ ∈ M .

Note that (2) and (3) consider a particular case of the

law of diminishing returns. Under these assumptions, the

partial derivative of fi w.r.t. agents of type ℓ ∈ M , that

is the marginal utility w.r.t. agents of type ℓ, denoted as siℓ,
satisfies

−aℓ ≤
siℓ(xi)− siℓ(yi)

xiℓ − yiℓ
≤ −bℓ (4)

for any xi, yi ∈ R, xiℓ 6= yiℓ, and some constants 0<bℓ≤aℓ
defined for each type of agent ℓ ∈ M . Because of the

assumptions on fi, the functions siℓ are continuous on R,

strictly decreasing, and non-negative (see Appendix A for

details).

Since each utility function fi is strictly concave, then f is

strictly concave on Rn and the optimal point r⋆ that satisfies

(1) is unique and belongs to a set ∆⋆
c which is equal to

{r∈∆c| ∀j, k∈N, ∀ℓ ∈ M, sjℓ(rj)<skℓ(rk)⇒rjℓ=0} (5)

In other words, when r ∈ ∆⋆
c , it must be the case that if a

node j has a lower marginal utility w.r.t. agents of type ℓ, the

optimal distribution has no agents of type ℓ at that node [15].

III. THE MODEL

The interconnection among nodes is described by a net-

work G = (N,A), where A ⊂ N ×N . If (j, k) ∈ A, agents

at node j can sense information about node k and can move

to k. Let p(j) = {k : (j, k) ∈ A} denote the set of neighbo-

ring nodes of j. We assume that agents move at time index

t = 0, 1, 2, ..., driven by the asynchronous occurrence of

discrete events.

For a node j ∈ N and k ∈ p(j), let ej→k
ujℓ

(t) denote

a movement of an amount ujℓ of agents of type ℓ ∈ M
from node j to node k at time t. Let ej→k

uj
(t) denote

the set of all possible movements (of any type of agent)

from node j to k, where uj = [uj1, ..., ujm]⊤ ∈ R
represents the amount of each type of agent

leaving node j. Let e
j→p(j)
uj (t) denote the set

of all possible simultaneous movements from

node j to its neighboring nodes p(j). Finally, let

E = P({e
j→p(j)
uj (t)}) − {∅} be the set of events of

all simultaneous movements between nodes. An event

e(t) ∈ E is defined as a set where each element represents a

movement of an amount of agents of type ℓ ∈ M between

two neighboring nodes.

If an event e(t) ∈ E occurs at time t, the update of the

state of the system is given by r(t + 1) = g(r(t)). For the

agents of type ℓ ∈ M at node i ∈ N , g(r(t)) is defined as

riℓ(t+ 1) = riℓ(t) −
∑

{k:ei→k
uiℓ

(t)∈e(t)}

uiℓ(t)

+
∑

{j:ej→i
ujℓ

(t)∈e(t)}

ujℓ(t) (6)

To solve (1) we require that the model satisfies the

following three assumptions.

Assumption 1 (on the network): The network G = (N,A) is

i. Undirected: ∀j, k ∈ N , j ∈ p(k) ↔ k ∈ p(j).
ii. Connected: ∀j, k ∈ N there exists a path from node j

to node k.

In other words, the network has only one component

and if agents of any type can sense (or move) from any

node j to k, they can also sense information from node k
to j. Assumption 1 places minimum requirements on the

sensing topology to be considered (as well as on the possible

movement of agents).

Assumption 2 (on the amount of agents): The total amount

of agents of each type ℓ ∈ M , cℓ > c⋆ℓ , is large enough for

nodes to gain some marginal utility w.r.t. each type of agent

when r ∈ ∆⋆
c .

We can calculate the agent threshold c⋆ℓ in terms of the

two constants aℓ and bℓ for ℓ ∈ M . Similar to [13], we can

show that when Assumption 1 and 2 hold, because all nodes

gain some marginal utility w.r.t. each type of agent, ∆⋆
c can

be written as

{r∈∆c| ∀j∈N, ∀k∈p(j), ∀ℓ∈M, sjℓ(rj)=skℓ(rk)} (7)

In other words, when r ∈ ∆⋆
c , it must be the case that all

nodes have the same marginal utility w.r.t. agents of type ℓ.
Assumption 3 (on the agent decision-making): Agents move-

ments are stochastic, but must satisfy the following rules for

e(t)∈E at time t.
If sjℓ(rj(t)) ≥ skℓ(rk(t)) ∀k ∈ p(j), the movement

ej→k
ujℓ

(t) ∈ e(t) has ujℓ(t) = 0, i.e., no amount of agents

of type ℓ ∈ M may leave node j. Otherwise, the movement

of agents of type ℓ from a node j ∈ N satisfy:
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i. If ej→k
ujℓ

(t), ej→k′

ujℓ
(t) ∈ e(t), then k = k′; for agents

of type ℓ ∈ M at node j there is a unique destination

node k, such that

skℓ(rk(t)) ≥ siℓ(ri(t)) > sjℓ(rj(t)), ∀i, k ∈ p(j) (8)

ii. For ej→k
ujℓ

(t) ∈ e(t), the amount of agents of type ℓ
that decide to move to node k

0 < ujℓ(t) = φℓ[skℓ(rk(t))− sjℓ(rj(t))] (9)

where φℓ ∈ (0, 1/2aℓ].

Eq. (8) guarantees that agents try to move to a node that

has higher or equal marginal utility than all other neighboring

nodes of j. The value of φℓ in (9) captures the level of

cooperation between the agents of type ℓ ∈ M . Note that

aℓ, the bound on the marginal utility w.r.t. agents of type ℓ,
limits the degree of cooperation between agents of type ℓ. In

other words, the amount of agents moving from node j to k
is bounded by the fastest change in marginal utilities w.r.t.

agents of type ℓ ∈ M . Assumption 3 restrains the allowable

events in the network and bounds the amount of agents

that can move between nodes. Assumptions 1-3 allow us to

extend the model in [11] by defining local requirements for

distributed decision-making strategies that lead to an optimal

distribution of heterogeneous agents.

IV. RESULTS

Theorem 1: Suppose Assumptions 1-3 hold. The point

r ∈ ∆⋆
c is an equilibrium point of the model and has a

region of asymptotic stability equal to ∆c.

Proof :

Let a Lyapunov candidate function be defined as

V (r) =

m
∑

ℓ=1

(

max
i

{siℓ(ri)} − siℓ(r
⋆
i )
)

(10)

where r⋆ ∈ ∆⋆
c . In Appendix B, we show that for r∈∆c and

the choice of the metric ρ(r,∆⋆
c) defined by 30, there exist

two constants η1, η2 > 0 such that η1ρ(r,∆
⋆
c) ≤ V (r) ≤

η2ρ(r,∆
⋆
c). Here, we show that as t → ∞, V (r(t)) → 0.

Note that when r ∈ ∆⋆
c , ∀j ∈ N , ∀k ∈ p(j), ∀ℓ ∈ M ,

we know that sjℓ(rj) = skℓ(rk). Because of Assump-

tion 3, agents cannot move between nodes and the associated

marginal utilities do not change, i.e., ujℓ = 0.

Let r 6∈ ∆⋆
c . For e(t) ∈ E at time t, if ej→k

ujℓ
(t) ∈

e(t), the agents that move away from (arrive at) node j
increase (decrease, respectively) its marginal utility. Because

Assumption 3 (i) guarantees that the agents of type ℓ ∈ M
at node j can only move to a unique destination node at time

t, the marginal utility at node j at time t+1 is bounded by

sjℓ(rj(t+ 1)) ≤ sjℓ(rj(t)− ujℓ(t)hℓ) (11)

In other words, the marginal utility of node j is bounded by

the amount of agents that leave that node.

Let Kℓ(t) = argmaxi{siℓ(ri(t))} be the set of nodes with

the highest marginal utility w.r.t. agents of type ℓ ∈ M at

time t. We want to show that the maximum marginal utility

is non-increasing (i.e., there is no node that exceeds the

value of marginal utility of the nodes in Kℓ(t)). Consider

the movement ej→k
ujℓ

(t) of some agents from node j to node

k. Using (4) for node k with xk = rk(t) + ujℓ(t)hℓ and

yk = rk(t), yields

skℓ(rk(t))− bℓujℓ(t) ≥ skℓ(rk(t) + ujℓ(t)hℓ)

≥ skℓ(rk(t)) − aℓujℓ(t) (12)

Accordingly to Assumption 3 (ii), when ej→k
ujℓ

(t) ∈ e(t), we

know that

skℓ(rk(t))− aℓujℓ(t) ≥ sjℓ(rj(t)) + aℓujℓ(t) (13)

And using (4) for node j with yj = rj(t) − ujℓ(t)hℓ and

xj = rj(t), yields

sjℓ(rj(t)) + aℓujℓ(t) ≥ sjℓ(rj(t)− ujℓ(t)hℓ) (14)

By combining (12), (13) and (14), we get

skℓ(rk(t))− bℓujℓ(t) ≥ skℓ(rk(t) + ujℓ(t)hℓ)

≥ sjℓ(rj(t)) + aℓujℓ(t)

≥ sjℓ(rj(t)− ujℓ(t)hℓ) (15)

From (11) and (15), we have that

max
i

{siℓ(ri(t))} ≥ skℓ(rk(t))

> skℓ(rk(t))− bℓujℓ(t)

≥ sjℓ(rj(t+ 1)) (16)

Using (16) and replacing the amount of agents ujℓ(t) that

leave the node j (defined in (9)), we know that

max
i

{siℓ(ri(t))}>skℓ(rk(t))−bℓφℓ [skℓ(rk(t))−sjℓ(rj(t))]

≥sjℓ(rj(t+1)) (17)

Finally, since (17) holds for all j 6∈ Kℓ(t), we know that

the values of marginal utility w.r.t. agents of type ℓ ∈ M
in any neighborhood at time t+ 1 do not exceed the actual

maximum marginal utility of the nodes in Kℓ(t).
Furthermore, if j ∈ Kℓ(t), accordingly to Assumption 3,

there can be no agents leaving that node, so ujℓ(t) = 0.

Thus, the maximum marginal utility value is non-increasing

over time.

Next, we show that after certain number of time steps

the maximum marginal utility must decrease. Note that

∀ℓ ∈ M , if |Kℓ(t)| = n then r ∈ ∆⋆
c . If r 6∈ ∆⋆

c ,

accordingly to Assumption 1 (i), there exists some node

k ∈ Kℓ(t) with a neighboring node j ∈ p(k) such that

skℓ(rk(t)) > sjℓ(rj(t)). Accordingly to Assumptions 3,

ej→k
ujℓ

(t) ∈ e(t) with ujℓ(t) > 0 must occur. For convenience,

let wkℓ(t) =
∑

{j:ej→k
ujℓ

(t)∈e(t)} ujℓ(t) be the total amount of

agents of type ℓ that arrive at node k from its neighboring

nodes p(k) at time t. Because of Assumption 3, we know

that ukℓ = 0, and using (6) we have that

skℓ(rk(t+ 1)) = skℓ(rk(t) + wkℓ(t)hℓ)

≤ skℓ(rk(t) + ujℓ(t)hℓ)

< skℓ(rk(t)) (18)
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In other words, the marginal utility of node k must decrease

at time t+ 1 due to the arrival of agents from p(k).
For any ℓ ∈ M , either |Kℓ(t + 1)| ≤ |Kℓ(t)| − 1 or

maxi{siℓ(ri(t))} > maxi{siℓ(ri(t + 1))} (due to (17) and

(18)). Since |Kℓ(t)| < n, after at most n time steps all the

highest nodes have been reached by some agents of type

ℓ ∈ M and maxi{siℓ(ri(t))} > maxi{siℓ(ri(t + n))}, i.e.,

the maximum marginal utility value at time t + n must

decrease.

Next, fix a time t and let k ∈ Kℓ(t). Let t′′ = t+n and

Jℓ(t
′′) = {argmaxi{siℓ(ri(t))} : ∃t′ ∈ [t, t′′], wiℓ(t

′) > 0}∪
{i ∈ K⊂

ℓ (t)}, i.e., the set of all nodes that were in the set

of maxima at time t, where agents arrived between t and

t′′ (causing a decrease in its marginal utility), plus all nodes

that did not belong to the set of maxima Kℓ(t). Note that

the nodes in the set Jℓ(t
′′) have a marginal utility below the

maximum marginal utility of nodes in Kℓ(t), i.e.,

max
i∈Jℓ(t′′)

{siℓ(ri(t
′)) : t ≤ t′ ≤ t′′} < max

k∈Kℓ(t)
{skℓ(rk(t))}

For a node k ∈ Kℓ(t) and j 6∈ Kℓ(t), we know that

skℓ(rk(t))− max
i∈Jℓ(t′′)

{siℓ(ri(t′)) : t ≤ t′ ≤ t′′}

≤ skℓ(rk(t))− sjℓ(rj(t)) (19)

At time t′′, when all the nodes in the set Kℓ(t) have been

reached by some agents of type ℓ ∈ M , (17) and (19) yield

skℓ(rk(t))−bℓφ

[

skℓ(rk(t))− max
i∈Jℓ(t′′)

{siℓ(ri(t
′)) : t≤ t′≤ t′′}

]

(20)≥sjℓ(rj(t
′′))

where φ = minℓ{φℓ} represents the lowest degree of

cooperation between all types of agents. Because (20) is valid

for any node j ∈ N , looking at the maximum marginal utility

at time t′′, we know that

0>−bℓφ

[

skℓ(rk(t))−max
i∈Jℓ(t′′)

{siℓ(ri(t
′)) : t ≤ t′≤ t′′}

]

≥ max
i

{siℓ(ri(t
′′))} −max

i
{siℓ(ri(t))} (21)

Finally, let

∆V (r(t)),V (r(t′′))− V (r(t))

=

m
∑

ℓ=1

(

max
i

{siℓ(ri(t
′′))} − siℓ(r

⋆
i )
)

−
m
∑

ℓ=1

(

max
i

{siℓ(ri(t))} − siℓ(r
⋆
i )
)

=
m
∑

ℓ=1

(

max
i

{siℓ(ri(t
′′))}−max

i
{siℓ(ri(t))}

)

(22)

Using (21) in (22), yields

∆V (r(t))

≤ −
m
∑

ℓ=1

φbℓ

[

max
k
{skℓ(rk(t))}−max

i∈J(t′′)
{siℓ(ri(t

′)) : t≤t′≤t′′}

]

(23)

Eq. (23) shows that V (r(t)) is a non-increasing function

over time and since V is bounded from below there must

exist a scalar q ≥ 0 such that V (r(t)) → q as t → ∞.

Assume q > 0. Because V is continuous, r(t) converges

to an ω-limit set Ω(r(t)) which is a subset of the level

Sq = {r ∈ ∆c : V (r) = q}. Take any point r ∈ Ω(r(t)),
so that V (r) = q > 0. We need to show that there exists a

time index t such that V (r(t)) < 0, which contradicts the

fact that 0 ≤ V (r) for all r ∈ ∆c and thus proves that q = 0
and r(t) → r⋆.

Because r ∈ Ω(r(t)) there exists, by definition, an infinite

sequence of times T ⊂ N such that {r(t)}t∈T → r. Since

all the marginal utility functions are continuous, it is also the

case that

{skℓ(rk(t)) − sjℓ(rj(t))}t∈T → skℓ(rk)− sjℓ(rj) ∈ R (24)

For some agents of type ℓ ∈ M , define the set Aℓ =
arg(k,j){maxk{skℓ(rk)} −maxj{sjℓ(rj) : j 6∈ Kℓ}}, i.e.,

the set of all the node combinations having a positive

difference in their marginal utilities. For convenience, let

αℓ(t
′) represent the pair (k, j) such that k ∈ Kℓ(t),

j = argmaxi∈Jℓ(t′′){siℓ(ri(t
′)) : t ≤ t′ ≤ t′′}, and

t′ = argt′ maxi∈Jℓ(t′′){siℓ(ri(t
′)) : t ≤ t′ ≤ t′′}. As a

consequence of (24), there must exist a time index τ such that

αℓ(t
′) ∈ Aℓ for all t ∈ T ∩ [τ,∞) = T1. Take αℓ∈Aℓ such

that T2={t′∈T1 :αℓ(t
′)=αℓ} is an infinite set (let the indices

k and j be those defined by αℓ). Since r 6= r⋆ and because

the choice of αℓ it is the case that skℓ(rk)−sjℓ(rj)=δℓ>0,

thus {maxk{skℓ(rk(t))} − maxi∈Jℓ(t′′){siℓ(ri(t
′)) : t ≤

t′ ≤ t′′}}t∈T2
→ δ, where δ = minℓ{δℓ}. Accordingly,

∆V(r(t))≤−
m
∑

ℓ=1

φbℓ

[

max
k
{skℓ(rk(t))}−max

i∈J(t′′)
{siℓ(ri(t

′)): t≤t′≤t′′}

]

≤−
m
∑

ℓ=1

φbℓδ < 0 (25)

Since V (r(t)) is non-increasing at each time t, by using (25)

∑

t∈T2

∆V (r(t)) ≤ −
∑

t∈T2

min{bℓ}φδ < 0 (26)

is unbounded. It must be that at some finite time index t,
there will be the case that V (r(t)) < 0. Since V (r) is non-

negative for all r ∈ ∆c, we arrive at a contradiction. Hence,

q = 0 and the system has an optimal point, r(t) → r⋆ which

is asymptotically stable in the region ∆c.

V. SIMULATIONS

This section presents the dynamics of heterogeneous

agents starting from an initial random distribution across

a network of ten nodes. The left plot in Figure 1 shows

how the proposed local decision-making leads to the optimal

distribution defined by (7). All the marginal utilities converge

to a same value. The right plot in Figure 1 shows the dy-

namics in ∆c of both types of agents at a randomly selected

node. Fluctuations represent agents movements going back

and forth before reaching the equilibrium ∆⋆
c .
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Fig. 1. Agent dynamics satisfying the proposed local decision rules.

Figure 2 shows the effect of network density (i.e., the

proportion of edges relative to the total number possible)

on the time needed to reach ∆⋆
c within a 2% margin of

error (the settling time, ts). Employing topologies with high

density does not necessarily affect ts. Note that only for

very low densities, ts increases (for density values greater

than .44, the settling time decreases only slightly). Moreover,

as group cooperation (φℓ) decreases, the mean and the

upper bounds on the standard deviation increase (which is

consistent with (20)), especially in low densities networks

with higher constraints on information flow.

Cooperation 75% Cooperation 100%

Density Density

Fig. 2. Settling time vs. network density

Finally, Figure 3 shows the effect of group cooperation

on ts (for convenience we rescale the cooperation level

according to the bounds on the set of utility functions). Note

that increasing the cooperation level reduces ts. Note also

that for a fixed density (say a density of .55), ts remains

constant for a wide range of group cooperation (from 50%

to 100%).
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Fig. 3. Settling time for different network densities under varying levels
of cooperation between agents.

Figure 3 suggests that increasing the proportion of links

relative to the total number possible (say above .33) may be

a lost effort if we are trying to increase the rate at which

agents reach the optimal point. (Of course, a network with

higher density is more robust in the sense that no particular

link may be crucial for the network to satisfy Assumption 1

and for the agents to reach convergence).

APPENDIX A

Here we prove that (4) is a special case of the law of

diminishing returns expressed in (2). Using (3), we know

that

∞>
fi(ri+uℓhℓ)−fi(ri)

uℓ

−
fi(ri+wℓhℓ)−fi(ri)

wℓ

>0 (27)

where wℓ > uℓ > 0 are the amounts of agents of type ℓ ∈ M .

Since the utility functions fi are continuously differentiable

and (27) is valid for any wℓ > uℓ > 0, if we let both

quantities tend to zero, we have that

∞ > siℓ(ri + uℓhℓ)− siℓ(ri + wℓhℓ) > 0 (28)

where siℓ is the partial derivative of fi w.r.t. agents of type

ℓ ∈ M . Therefore, since wℓ 6= uℓ, for each type of agents

there exist two constants ∞ > aℓ ≥ bℓ > 0, such that

−aℓ(wℓ − uℓ) ≤ siℓ(ri + wℓhℓ)− siℓ(ri + uℓhℓ)

≤ −bℓ(wℓ − uℓ) (29)

Therefore, letting xi = ri + wℓhℓ and yi = ri + uℓhℓ, we

have (4). Thus, if (2) and (3) are satisfied so is (4). (Here,

we consider a special case of the law of diminishing returns,

where the rate of change of the marginal returns is bounded

by constants).

APPENDIX B

Bounds on the Lyapunov Function

Let r⋆ = [r⋆⊤1 , r⋆⊤2 , . . . , r⋆⊤n ]⊤ be the optimal distribu-

tion of agents in each node (when r ∈ ∆⋆
c ), and choose the

metric

ρ(r,∆⋆
c) =

m
∑

ℓ=1

ρℓ(r,∆
⋆
c) (30)

where

ρℓ(r,∆
⋆
c) = max

i
{|riℓ − r⋆iℓ|} (31)

Note that for r ∈ ∆⋆
c it must be the case that ∀ℓ ∈ M ,

∀k ∈ N maxi{siℓ(ri)} = skℓ(r
⋆
k), i.e., there is no node with

higher marginal utility than others and V (r⋆) = 0. Moreover,

accordingly to the definition of the metric, ρ(r⋆,∆⋆
c) = 0.

Thus if r ∈ ∆⋆
c η1ρ(r,∆

⋆
c) ≤ V (r⋆) ≤ η2ρ(r,∆

⋆
c) is

satisfied for any constants η1, η2 > 0.

For r 6∈ ∆⋆
c , there must exists some agents of type ℓ ∈ M

such that riℓ 6= r⋆iℓ and some node j = argmaxi{|riℓ−r⋆iℓ|}.

Applying (4) to node j with xj = rj and yj = r⋆j , yields

bℓρℓ(r,∆
⋆
c) ≤ |sjℓ(rj)−sjℓ(r

⋆
j )| (32)
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One of two cases must be true. First, if sjℓ(rj)−sjℓ(r
⋆
j ) > 0,

we have that

bℓρℓ(r,∆
⋆
c) ≤ sjℓ(rj)−sjℓ(r

⋆
j )

≤ max
i

{siℓ(ri)}−siℓ(r
⋆
i ) (33)

In the second case, if sjℓ(rj)− sjℓ(r
⋆
j ) < 0, we have that

bℓρℓ(r,∆
⋆
c) ≤ sjℓ(r

⋆
j )− sjℓ(rj)

≤ siℓ(r
⋆
i )−min

i
{siℓ(ri)} (34)

Because the total number of agents is constrained, we know

that the amount of agents exceeding the optimal amount at

some nodes is the same amount of agents that other nodes

need. Next, let Aℓ
out be the minimum amount of agents of

type ℓ ∈ M at a node with the minimum marginal utility

that must leave the node

Aℓ
out =

siℓ(r
⋆
i )−mini{siℓ(ri)}

aℓ
(35)

Similarly, let Aℓ
in be the maximal amount of agents of type

ℓ ∈ M that may be needed at some nodes

Aℓ
in = (n− 1)

maxi{siℓ(ri)} − siℓ(r
⋆
i )

bℓ
(36)

For agents of type ℓ ∈ M , we know that

Aℓ
out≤

∑

{i:riℓ>r⋆
iℓ
}

(riℓ − r⋆iℓ)=
∑

{i:riℓ<r⋆
iℓ
}

(r⋆iℓ − riℓ)≤Aℓ
in (37)

Using (35), (36) and (37), we have that

siℓ(r
⋆
i )−mini{siℓ(ri)}

aℓ
≤(n−1)

maxi{siℓ(ri)}−siℓ(r⋆i )

bℓ
(38)

By combining (33), (34) and (38), we know

b2ℓρ(r,∆
⋆
c)

aℓn
≤ max

i
{siℓ(ri)} − siℓ(r

⋆
i ) (39)

Therefore, using (39) in the Lyapunov function expressed

in (10) for everyone of types of agent accordingly to the

definition of ρℓ(r,∆
⋆
c), we have that

V (r)=

m
∑

ℓ=1

max
i

{siℓ(ri)}−siℓ(r
⋆
i ) ≥ ρ(r,∆⋆

c)

m
∑

ℓ=1

b2ℓ
aℓn

(40)

Thus, if we let η1 = minℓ{b2ℓ/aℓn}, V (r) ≥ η1ρ(r,∆
⋆
c).

Finally, we show that for r 6∈ ∆⋆
c , there exist a bound for

the Lyapunov function such that V (r) ≤ η2ρ(r,∆
⋆
c).

If r 6∈ ∆⋆
c , there exist some agents of type ℓ ∈ M such

that riℓ 6= r⋆iℓ. Applying (4) to a node k = argmaxi{siℓ(ri)}
yields

0<

∣

∣

∣

∣

maxi{siℓ(ri)}−skℓ(r
⋆
k)

maxi{|riℓ−r⋆iℓ|}

∣

∣

∣

∣

≤
|maxi{siℓ(ri)}−skℓ(r

⋆
k)|

|rkℓ−r⋆kℓ|
≤ aℓ (41)

Similarly, taking j = argmini{siℓ(ri)} in (4)

0<

∣

∣

∣

∣

sjℓ(r
⋆
j )−mini{siℓ(ri)}

maxi{|riℓ−r⋆iℓ|}

∣

∣

∣

∣

≤
|sjℓ(r

⋆
j )−mini{siℓ(ri)}|

|rjℓ−r⋆jℓ|

≤ aℓ (42)

Adding (41) and (42), we have that

|maxi{siℓ(ri)}−skj(r
⋆
k)|+|sjℓ(r⋆j )−mini{siℓ(ri)}|

maxi{|riℓ−r⋆iℓ|}

≤ 2aℓ (43)

Because at the optimal point r⋆, skℓ(r
⋆
k) = sjℓ(r

⋆
j ), using

the inequality |a− b| ≤ |a− c|+ |c− b| in (43), yields

max
i

{siℓ(ri)} −min
i
{siℓ(ri)} ≤ 2aℓρℓ(r,∆

⋆
c) (44)

Therefore, using (44) and the definition of V (r) and ρ(r,∆⋆
c)

V (r) ≤
m
∑

ℓ=1

(

max
i

{siℓ(ri)} −min
i
{siℓ(ri)}

)

≤ 2ρ(r,∆⋆
c)

m
∑

ℓ=1

aℓ (45)

Thus, if η2 = 2mmaxℓ{aℓ}, V (r) ≤ η2ρ(r,∆
⋆
c).
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