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Abstract— In this paper we deal with the problem of sta-
bilizing linear, time–invariant plants using feedback control
configurations that are subject to sparsity constraints. Recent
results show that given a strongly stabilizable plant, the class
of all stabilizing controllers that satisfy certain given sparsity
constraints admits a convex representation via Zames’s Q–
parametrization. More precisely, if the pre–specified sparsity
constraints imposed on the controller are quadratically invariant
with respect to the plant, then such a convex representation is
guaranteed to exist. The most useful feature of the aforemen-
tioned results is that the sparsity constraints on the controller
can be recast as convex constraints on the Q–parameter, which
makes this approach suitable for optimal controller design (in
the H2 sense) using numerical tools readily available from the
classical, centralized optimal H2 synthesis. All these procedures
rely crucially on the fact that some stabilizing controller that
verifies the imposed sparsity constraints is a priori known,
while design procedures for such a controller to initialize the
aforementioned optimization schemes are not yet available. This
paper provides necessary and sufficient conditions for such
a plant to be stabilizable with a controller having the given
sparsity pattern. These conditions are formulated in terms of
the existence of a doubly coprime factorization of the plant
with additional sparsity constraints on certain factors. We
show that the computation of such a factorization is equivalent
to solving an exact model–matching problem. We also give
the parametrization of the set of all decentralized stabilizing
controllers by imposing additional constraints on the Youla
parameter. These constraints are for the Youla parameter to
lie in the set of all stable transfer function matrices belonging
to a certain linear subspace.

I. INTRODUCTION

In this paper we deal with the problem of stabilization
and optimal synthesis for linear, time–invariant plants using
feedback control configurations that are subject to sparsity
constraints. In general, the sparsity constraints arise from
the layout of the pre–specified information flows, such as
when the overall controller consists of interconnected sub–
controllers that can only act on certain entries of the controls
vector while they only have access to a restricted set of
entries of the measurements vector. For a general linear
time–invariant plant G and a given graph of interconnections
among sub–controllers, there is no theoretical framework
that can provide a systematic analysis of the stabilization
problem, let alone cope with additional optimality criteria.
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In fact, the solutions to particular instances of this problem
have been known for a long time to be from notoriously
difficult [1] to downright intractable [3], [2].

A. Previous Results

The authors of [12], [13], [14], [15], [16] identify certain
specific distributed configurations (such as nested, chained,
hierarchical, symmetric configurations, “funnel” causal sys-
tems, systems with delayed interaction and communication)
that have the distinctive property that the set of all stabilizing
controllers can be characterized via convex constraints on
the Youla parameter Q. For example, in [15] for the case
of plants having a triangular sparsity pattern, the problem
of constraining the stabilizing controller to have itself a
triangular sparsity pattern is recast as the condition on the
Youla parameter Q to be triangular (via a doubly–coprime
factorization in which all the factors are themselves triangu-
lar). Using the key attribute of convexity on the constraints of
Q, a tractable, sequential algorithm is presented that com-
putes the solution to an optimal control problem featuring
a fairly general formulation of the performance cost. At
each step, the algorithm yields a controller that complies
with the sparsity constraints, together with a measure of its
performance with respect to the optimal. In the subsequent
work [17], the discussion is further elaborated taking into
account possible uncertainties in the way sub–controllers are
able to communicate information.

While the pioneering work in [12], [13], [14], [15], [16]
succeeded to achieve convex parametrizations under the con-
dition that the “structures” of the plant and controller must
be invariant to cascade, parallel connections and inversion,
the authors of [10] have showed that a more general class of
configurations are those whose structure is “invariant under
the feedback” transformation of the controller with the plant.
This big leap forward was done in [10] by succeeding to
provide a unifying treatment that encompasses many of the
previously studied distributed structures and outlining the
largest known class of convex problems in decentralized
control. The main result in [10] revolves around a convex
parametrization, whose existence is assured by a necessary
and sufficient, algebraic test (named quadratic invariance)
involving only the sparsity pattern of the plant and the
sparsity constraints to be imposed on the controller. More
precisely, it is shown via Zames’s Q–parametrization, that
assuming the hypothesis of quadratic invariance, given a
strongly stabilizable plant, the class of all stabilizing con-
trollers that satisfy certain given sparsity constraints admits
a convex representation. The most useful feature of the
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aforementioned results is that the sparsity constraints on
the controller can also be recast as convex constraints on
the Q–parameter, which makes this approach suitable for
optimal controller design (in the H2 sense) using numerical
tools readily available from the classical, centralized optimal
H2 synthesis. Later, this method has been extended to the
general (not necessarily strongly stabilizable) case in [11],
[24], via the coordinate–free parametrization of all stabilizing
controllers.

B. Motivation and Scope of Paper

All the available algorithms for optimal synthesis ([10],
[11]) rely crucially on the fact that some stabilizing con-
troller that verifies the imposed sparsity constraints is a
priori known, while synthesis methods for such a con-
troller, (needed to initialize the aforementioned optimization
schemes) are not yet available. This provided the motivation
to the work presented here, as in this paper we develop
necessary and sufficient conditions for such a plant to be
stabilizable with a controller having the pre–selected sparsity
pattern. These conditions are formulated in terms of the exis-
tence of a of doubly coprime factorization of the plant, with
additional sparsity constraints on certain factors. We show
that the computation of such a factorization is equivalent
to solving an exact model–matching problem. We also give
the parametrization of the set of all decentralized stabilizing
controllers by imposing additional constraints on the Youla
parameter. These constraints are for the Youla parameter to
lie in the set of all stable transfer function matrices belonging
to a certain linear subspace.

These results, were the missing link that prevented the full
exploitation of the powerful tools from [10]. They allow us
to initialize the tractable formulations of the optimal distur-
bance attenuation problem ([10]) and the optimal mixed sen-
sitivity problem with sparsity constrained controllers ([11],
[24]).

C. Outline of the Document

This paper is organized as follows: after the introductive
section we follow with a preliminaries section, introducing
the feedback control stabilization problem and a short primer
on coprime factorizations of LTI systems. The third section
contains mostly notation and introduces the notion of sparsity
constraints for linear systems along with a summary of
the main results on quadratic invariance from [10]. The
fourth section contains the main results of this paper. We
provide a necessary and sufficient condition for a plant to
be stabilizable with a controller satisfying a pre–selected
sparsity pattern that is quadratically invariant with respect
to the plant. These conditions are formulated in terms of
the existence of a doubly coprime factorization of the plant
with additional sparsity constraints on certain factors. We
prove that the computation of this particular doubly coprime
factorization (when it does exist) is equivalent to solving an
exact model–mathing problem. Along the way we obtain the
set of all decentralized stabilizing controllers, characterized
via the Youla parametrization. The sparsity constraints on the
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Fig. 1. Standard unity feedback interconnection

controller are recast as a linear subspace type of constraint
on the Youla parameter.

II. PRELIMINARIES

Throughout this paper we make the leading assumptions
that all systems are linear and time invariant (LTI), finite
dimensional, proper, with either continuous or discrete–time.
We deal with the frequency domain input/output opera-
tors of LTI systems. These operators are transfer function
matrices (TFM), meaning matrices with all entries real–
rational functions. By R(λ) we denote the set of all real–
rational functions and by R(λ)ny×nu the set of ny × nu
matrices having all entries in R(λ). The undeterminate λ is
either s for continuous–time systems or z for discrete–time
systems, respectively. Almost everywhere in the sequel, the
λ argument following a TFM is omitted if it is clear from
the context.

This paper gives a unified treatment for both the continu-
ous and discrete-time cases. Henceforth, we will denote by
Ω the open left half complex plane or the open unit disk,
according to the type of system: continuous or discrete–time,
respectively. The standard interpretation of Ω in systems
theory is related to the stability domain of linear systems.
We qualify a TFM G(λ) as stable if all its poles are in Ω.

A. The Control Problem

In Fig.1 we depict the standard feedback interconnec-
tion between a plant and a controller, with the plant G
belonging to R(λ)ny×nu and the controller K in the set
R(λ)nu×ny . Here, ν1 and ν2 are the disturbances and sensor
noise, respectively. In addition, u is the control and y
are the measurements. The integers nu and ny denote the
dimensions of u and y respectively. Denote by H(G,K) ∈
R(λ)(nu+ny)×(nu+ny) the TFM from [νT1 νT2 ]T to
[yT uT ]T (provided that the feedback loop is well–posed,
i.e. (I + KG) is invertible as a TFM). For the complete
expressions of H(G,K) in terms of G and K, we refer the
reader to [4, Ch. 5.1, (7)]. If the transfer matrix H(G,K)
is stable we say that K is a stabilizing controller of G or
equivalently that K stabilizes G. If a stabilizing controller
of G exists, we say that G is stabilizable.

B. Coprime and Doubly Coprime Factorization for LTI
Systems

Let G(λ) be an arbitrary ny×nu TFM and Ω the stability
domain in the complex plane. A right coprime factorization
(RCF) of G over Ω is a fractional representation of the form
G = NM−1, with N and M having poles only in Ω, and
for which YM + XN = I holds for certain TFMs X and
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Y with poles in Ω ([4, Ch. 4, Corollary 17]). Analogously, a
left coprime factorization (LCF) of G (over Ω) is defined by
G = M̃−1Ñ , where Ñ and M̃ are TFMs having poles only
in Ω and satisfying M̃Ỹ + ÑX̃ = I for certain TFMs X̃
and Ỹ with all poles in Ω. Due to the natural interpretation
of the coprime factorizations as fractional representations,
the invertible M̃ and M factors are sometimes called the
“denominator” TFMs of the coprime factorization.

Definition 2.1: [4, Ch.4, Remark pp. 79] A collection
of eight TFMs

(
M(λ), N(λ), M̃(λ), Ñ(λ), X(λ), Y (λ),

X̃(λ), Ỹ (λ)
)

having all poles in Ω is called a doubly coprime
factorization (DCF) of G(λ) over Ω if the “denominator”
TFMs M̃(λ) and M(λ) are invertible and satisfy G(λ) =
M̃(λ)−1Ñ(λ)= N(λ)M(λ)−1 and[

Y (λ) X(λ)
−Ñ(λ) M̃(λ)

][
M(λ) −X̃(λ)
N(λ) Ỹ (λ)

]
= Iny+nu

. (1)

To avoid excessive terminology throughout this paper, we
will simply refer to doubly coprime factorizations over Ω
simply as doubly coprime factorizations (DCFs).

C. The Youla Parametrization of All Stabilizing Controllers

The following theorem is a central result in linear systems
theory. We state it next, as it stands at the core of our main
result.

Theorem 2.2: (Youla) [4, Ch.5, Theorem 1] Given a plant
with the TFM G ∈ R(λ)ny×nu , and any of its DCF (1),
the set of all controllers K stabilizing G (in the standard
feedback configuration from Figure 1) is given by

K =
(
X̃ +MQ

)(
Ỹ −NQ

)−1

=
(
Y −QÑ

)−1(
X +QM̃

) (2)

with Q any stable TFM in the set Rnu×ny (λ).
Definition 2.3: Given the plant G and a certain DCF (1)

of G, when taking the Youla–parameter Q equal to zero in
(2) we get K = X̃ Ỹ −1 = Y −1X , which is called the central
controller (associated with the corresponding DCF (1)).

III. FEEDBACK CONTROL CONFIGURATIONS WITH
SPARSITY CONSTRAINTS

Throughout this paper, the information constraints that are
to be imposed on the controller are modeled via sparsity
constraints ([10, pp. 283]). The precise formulation of the
sparsity constrained stabilization problem is achieved by
imposing a certain pre–selected sparsity pattern on the set of
admissible stabilizing controllers. The notation we introduce
next is entirely concordant with the one used in [9], [10].

A. Conformal Block Partitioning

For p ≥ 1, we denote the set of integers from 1 to p as 1, p.
Throughout the sequel we consider that the transfer function
matrix G(λ) ∈ R(λ)ny×nu is partitioned in p block–rows
and m block–columns. The i-th block–row has niy rows,
while the j-th block–column has nju columns. Obviously,∑p
i=1 n

i
y = ny and

∑m
j=1 n

j
u = nu. For every pair (i, j) in

the set 1, p × 1,m, we denote by [G]ij ∈ Rn
i
y×n

j
u(λ) the

niy × nju TFM at the intersection of the i-th block–row and
j-th block–column of G(λ). Accordingly,

G(λ) =

 [G]11 . . . [G]1m
...

...
[G]p1 . . . [G]pm

 , [G]ij ∈ Rn
i
y×n

j
u(λ).

(3)
Henceforth, we shall use this square bracketed notation for
block indexing of transfer function matrices.

Analogously, the controller’s transfer function matrix
K(λ) ∈ Rnu×ny (λ) is partitioned in m block–rows and
p block–columns, where the j-th block–row has nju rows
and the i-th block–column has niy columns. Correspondingly,
[K]ji is the notation for the nju×niy TFM at the intersection
of the j-th block–row and i-th block–column of K(λ).

B. Sparsity Constraints

For the boolean algebra, the operations (+, ·) are defined
as usual: 0+0 = 0 ·1 = 1 ·0 = 0 ·0 = 0 and 1+0 = 0+1 =
1+1 = 1·1 = 1. By a binary matrix we mean a matrix whose
entries belong to the set

{
0, 1
}

. With the usual extension of
notation,

{
0, 1
}m×p

stands for the set of all binary matrices
with m rows and p columns. The addition and multiplication
of binary matrices is carried out in the usual way, keeping
in mind that the binary operations (+, ·) follow the boolean
algebra.

Binary matrices are denoted by capital letters with the
“bin” superscript, in order to be distinguished from transfer
function matrices over R(λ), which are represented in the
sequel by plain capital letters. Henceforth, we adopt the
convention that the transfer function matrices are indexed by
blocks while binary matrices are indexed by each individual
entry.

Furthermore, for binary matrices only, having the same
dimensions, the notation Abin ≤ Bbin means that aij ≤ bij
for all i and j.

With the conformable block partitioning for K introduced
in Subsection III-A, for any K ∈ R(λ)nu×ny , define
Pattern(K) ∈

{
0, 1
}m×p

to be the binary matrix

Pattern(K)ij
def
=
{

0 if the block [K]ij = 0;
1 otherwise . (4)

Conversely, for any binary matrix with m rows and p

columns, Kbin ∈
{

0, 1
}m×p

, we can define the following
linear subspace of R(λ)nu×ny :

Sparse(Kbin)
def
=
{
K ∈ R(λ)nu×ny

∣∣ Pattern(K) = Kbin
}

(5)
Hence Sparse(Kbin) is the set of all controllers K in the
set R(λ)nu×ny for which [K]ij = 0 whenever Kbin

ij = 0.
Accordingly, the binary value of Pattern(K)kl determines
whether controller k may read the block-row l of the output
of the plant G.

Let Kbin ∈
{

0, 1
}m×p

be the pre-specified sparsity
pattern to be imposed on the controller. Define the linear

2461



subspace S of R(λ)nu×ny as:

S def
=
{
K ∈ R(λ)nu×ny

∣∣∣ Pattern(K) ≤ K bin
}
, (6)

that is, the set of controllers whose transfer function matrices
satisfy the imposed sparsity structure. With the terminology
from [10], the linear space S (of admissible, sparsity con-
strained, causal controllers) will be called the information
constraint.

The following matrix G bin in the set
{

0, 1
}p×m

is the
sparsity pattern of the plant which is defined as:

G bin def
= Pattern(G) (7)

Finally, from the matrix multiplication of matrices over
R(λ) we note that for any K ∈ R(λ)nu×ny and any G ∈
R(λ)ny×nu with arbitrary sparsity patterns

Pattern(K G) ≤ Pattern(K) Pattern(G). (8)

C. Quadratic Invariance

Assumption 1. From this point on we make the assumption
on the plant G to be strictly proper, i.e. for any of the
entries of the transfer function matrix G (which is a rational
function) the degree of the denominator is strictly greater
than the degree of the numerator.

Definition 3.1: [10, Definition 13] Given the plant G ∈
R(λ)ny×nu and the subset S of R(λ)nu×ny , we call S inert
with respect to G if it satisfies the definition in [10, Definition
13].

Remark 3.2: [10] Throughout this section, both for
continuous–time and discrete–time systems, the constraint
set S is always inert with respect to the plant G, since G is
assumed strictly proper and S is a subset of the set of proper
LTI systems. Note also, that S is a closed set since it is a
linear subspace (6).

Definition 3.3: [10, Definition 2] Given the plant G ∈
R(λ)ny×nu and the set S ⊂ R(λ)nu×ny , the set S is called
quadratically invariant under the plant G if

KGK ∈ S for all K ∈ S. (9)
Definition 3.4: Define the feedback transformation of G

with K, as the following function from R(λ)nu×ny to
R(λ)nu×ny

hG(K)
def
= K

(
I +GK

)−1
. (10)

Proposition 3.5: The feedback transformation hG(·) from
(10) is an invertible function from R(λ)nu×ny to R(λ)nu×ny

and its inverse is given by

h−1
G (K)

def
= K

(
I −GK

)−1
. (11)

Proof: First note that hG(·) from (10) is indeed a well–
posed function from R(λ)nu×ny to R(λ)nu×ny , due to fact
that the inverse of

(
I+GK

)
exists for any K in R(λ)nu×ny .

This is guaranteed by the fact that K is proper and G is
strictly proper (Assumption 1). The rest of the proof follows
by direct algebraic computations and is omitted for brevity.

We restate next, for ease of reference, the main result from
[9], [10], frequently invoked throughout the next section.

Theorem 3.6: [10, Theorem 14] Given the plant G ∈
R(λ)ny×nu , the set S ⊆ R(λ)nu×ny closed, inert with
respect to G and quadratically invariant under G, then

S is quadratically invariant under G⇐⇒ hK(S) = S.
(12)

Assumption 2. Throughout this entire paper, we assume that
the set S that defines the sparsity constraints to be imposed
on the controller is quadratically invariant under the plant G.

IV. MAIN RESULT

In this section we develop a necessary and sufficient condi-
tion for a plant to be stabilizable with a controller satisfying
a pre–selected sparsity pattern that is quadratically invariant
with respect to the plant. These conditions are formulated in
terms of the existence of a doubly coprime factorization of
the plant featuring additional sparsity constraints on certain
factors. This result has an especially important computational
value, as it turns out that such a factorization (when it exists)
is equivalent to solving for the Youla parameter a TFM linear
equation (an exact model matching problem) .

The following preparatory result will be needed.
Proposition 4.1: Given any DCF (1) of the plant G denote

by K = X̃ Ỹ −1 = Y −1X the “central” controller (from
Definition 2.3). Then the following identities hold

MX =
(
I +KG

)−1
K,

X̃M̃ = K
(
I +GK

)−1
.

(13)
Proof: For the proof we refer to [24].

The next Theorem makes out for the main result of this
paper.

Theorem 4.2: Given a plant G in the set R(λ)ny×nu then
G is stabilizable with a sparsity constrained controller K
belonging to the set S if and only if there exists a DCF (1)
of G such that

Pattern(X̃M̃) ≤ Kbin or Pattern(MX) ≤ Kbin.
(14)

Proof: Throughout the proofs, we shall make use of
the following identities (that hold true in any ring, provided
the inverses involved exist).

(I +AB)−1
A = A(I +BA)−1

, (15)

(I +AB)−1 = I −A(I +BA)−1
B. (16)

“Necessity”. Suppose that there exists a stabilizing controller
K in the set S. Then as a consequence of Youla’s Theo-
rem 2.2, there exists a DCF (1) of the plant G for which K
is the central controller. According to Proposition 4.1 we get
from (13) that

X̃M̃ = K
(
I +GK

)−1
. (17)

We apply the Pattern operator (4) on both sides of equation
(17) and using Definition 3.4 get that Pattern(X̃M̃) =
Pattern(hG(K)). But hG(K) belongs to S because of
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Assumption 2 and Theorem 3.6 and so Pattern(hG(K)) ≤
Kbin.

For Pattern(MX) we employ (13) and identity (15) to get
that Pattern(MX) = Pattern(hG(K)). Then by the same
arguments as before we also get that Pattern(MX) ≤ Kbin.

“Sufficiency”. Suppose that Pattern(X̃M̃) ≤ Kbin holds,
hence X̃M̃ belongs to the set S. Take each side of (17) as
an argument for h−1

G (·) in order to get via Definition 3.4
that h−1

G (X̃M̃) = h−1
G (hG(K)) and equivalently that K =

h−1
G (X̃M̃). Furthermore, via Proposition 3.5, Assumption 2

and Theorem 3.6 we get that h−1
G (S) = S which in turn

implies that h−1
G (X̃M̃) belongs to the set S. This means

that K = h−1
G (X̃M̃) is also in S.

The sufficiency of the second condition (Pattern(MX) ≤
Kbin) follows by a similar line of reasoning and so is omitted
for brevity.

Kronecker Products and Linear Matrix Equations([7,
Chapter 13]) Given two matrices P ∈ R(λ)a×b and S ∈
R(λ)c×d let the Kronecker product of P and S be denoted
by P ⊗ S and belonging to the set R(λ)ac×bd. Given the
matrix P , we write P in terms of its columns as

P =
[
p1 p2 . . . pa

]
and then associate a column vector vec(P ) ∈ R(λ)ab defined
as

vec(P )
def
=

 p1

...
pa

 . (18)

All the presented results related to matrix vectorization
and Kronecker products do not depend in any way on the
ring of matrices involved, therefore they are valid for the ring
of TFMs (matrices over the field of real–rational functions).

Proposition 4.3: [7, Theorem 13.26] Let P ∈ R(λ)a×b,
R ∈ R(λ)b×c and S ∈ R(λ)c×d. Then

vec(PRS) = (ST ⊗ P )vec(R) (19)

A. Outline of the Sparse Controller Synthesis Algorithm
In this subsection, given the plant G we provide a numer-

ically tractable algorithm (based on Theorem 4.2 above) for
the computation of a sparse, stabilizing controller, belonging
to the set S (when such a controller exists). We start with
any DCF (1) of the plant, which can be computed using
the standard state–space techniques from [6]. If this DCF
satisfies relations (14) then according to Theorem 4.2 its
associated central controller will be in the set S.

Suppose now that this DCF we start with does not satisfy
(14), which is generically speaking the case. An immediate
consequence of Youla’s Theorem 2.2 states that for any Youla
parameter Q, the following identity represents another DCF
of the plant G[

(Y −QÑ) (X +QM̃)
−Ñ M̃

][
M −(X̃ +MQ)
N (Ỹ −NQ)

]
= I.

(20)

We want to find that particular Youla parameter Q, for
which the factors of the newly obtained DCF (20) statisfy
the relations (14), namely that

Pattern
(

(X̃ +MQ)M̃
)
≤ Kbin or

Pattern
(
M(X +QM̃)

)
≤ Kbin

or equivalently

Pattern
(
MQM̃ + X̃M̃

)
≤ Kbin or

Pattern
(
MQM̃ +MX

)
≤ Kbin. (21)

Corollary 4.4: Given a plant G in the set R(λ)ny×nu then
G is stabilizable with a sparsity constrained controller K
belonging to the set S if and only if, starting from any DCF
(1) of G, there exists a Youla parameter Q (stable TFM,
belonging to the set R(λ)nu×ny ) such that (21) holds.

Proof: “Sufficiency” If there exists a Youla parameter
Q, such that (21) holds, then exactly as in the “Sufficiency”
part of the proof of Theorem 4.2, the controller (depending
on Q) K = h−1

G

(
(X̃ +MQ)M̃

)
will belong to the set S.

“Necessity” Suppose that a stabilizing controller K of G,
belonging to the set S does exist and we consider K fixed.
Then, a direct consequence of Youla’s Theorem 2.2 states
that for any DCF (1), there exist a (unique) Youla parameter
Q (depending on the DCF), such that K =

(
X̃+MQ

)(
Ỹ −

NQ
)−1

(is the central controller associated with the DCF
(20) of G). Then exactly as in the “Necessity” part of the
proof of Theorem 4.2, it follows that (20) must satisfy (21).

Remark 4.5: We will provide our further argumentation
only for the first relation from (21), since all the needed
results for the second relation from (21) follow by a similar
line of reasoning.

B. Sparse Controller Synthesis as An Exact Model–Matching
Problem

For the remaining part of this section only, we briefly re-
visit the assumptions made in Subsection III-A. Specifically,
we make the assumption that all the blocks in the conformal
partition (3) of the plant G have the size 1×1, meaning that
∀i ∈ 1, p and ∀j ∈ 1,m it holds that niy = nju = 1. This
hypothesis does not imply any loss of generality whatsoever,
since all the vectorization and matrix Kronecker product
results can be naturally adapted when the factors involved
are conformally block–partitioned. However, this hypothesis
does considerably simplify the notation while outlining all
the essential ideas needed for the proof of the general case
(for any conformal block–partition (3) of G).

As a consequence of the assumption made at the beginning
of the current subsection we get (see Subsection III-A) that
G ∈ R(λ)p×m, K ∈ R(λ)m×p and consequently Kbin ∈{

0, 1
}m×p

. Define nG as the number of the zero entries
in the Kbin binary matrix (and also in the vec(Kbin) ∈{

0, 1
}mp×1

binary vector). (It follows that the number of
one entries in Kbin is equal to (mp− nG).)
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We define the (mp×mp) binary matrix diag(Kbin) to be
the diagonal matrix, which has the Kbin

ij entry on its (i+ j)
diagonal entry. Note that diag(Kbin) has exactly (mp−nG)
non–zero entries. Define next

Φ
def
= Imp − diag(Kbin) (22)

meaning that Φ has exactly nG non–zero diagonal entries
and since Φvec(Kbin) = 0mp×1 we observe that Φ “selects”
only the nG zero rows of vec(Kbin).

Theorem 4.6: Given a plant G in the set R(λ)p×m, we
assume without any loss of generality that all the blocks
in the conformal partition (3) of the plant G have the size
1 × 1, meaning that ∀i ∈ 1, p and ∀j ∈ 1,m it holds that
niy = nju = 1. Th plant G is stabilizable with a sparsity
constrained controller K belonging to the set S if and only
if, starting from any DCF (1) of G, there exists a Youla
parameter Q (stable TFM, belonging to the set R(λ)m×p)
such that vec(Q) is a stable solution to the linear system of
TFM equations

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃M̃

)
, (23)

where Φ is the matrix defined in (22).
Proof:

First, note that out of the set of (mp) linear equations in
vec(Q) from (22), only nG are nontrivial, while the rest are
identities of the zero row vector.

We also remind here that the vec(·) operator (18) is linear.
Also note that the vec(·) operator and the Pattern(·) operator
(4) are commutative.

We prove next that the existence of a Youla parameter
(stable TFM, belonging to the set R(λ)m×p) to satisfy the
first relation in (21) (see also Remark 4.5) is equivalent with
vec(Q) being a stable solution to (23). The rest of the proof
will follow via Corollary 4.4.

Pattern
(
X̃M̃ +MQM̃

)
≤ Kbin ⇐⇒

vec
(

Pattern
(
X̃M̃ +MQM̃

))
≤ vec(Kbin)⇐⇒

Pattern
(

vec
(
X̃M̃ +MQM̃

))
≤ vec(Kbin)

(18)⇐⇒

Pattern
(

vec
(
X̃M̃

)
+ vec

(
MQM̃

))
≤ vec(Kbin)

Prop. 4.3⇐⇒

Pattern
(

vec
(
X̃M̃

)
+
(
MT ⊗ M̃

)
vec(Q)

)
≤ vec(Kbin)⇐⇒

Pattern
(

Φ
(

vec
(
X̃M̃

)
+
(
MT ⊗ M̃

)
vec(Q)

))
≤ Φ vec(Kbin)⇐⇒

Pattern
(

Φ vec
(
X̃M̃

)
+ Φ

(
MT ⊗ M̃

)
vec(Q)

))
≤ 0mp×1 ⇐⇒

Φ
(
MT ⊗ M̃

)
vec(Q) = −Φ vec

(
X̃M̃

)
(24)

Remark 4.7: Problems of type (23) were formulated and
proposed for the first time by Wolovich ([19]) who also
coined the terminology exact model–matching problem in
the early 70’s. Exact model–matching has a particular signif-
icance and importance in the control of LTI systems. When
the additional constraint of stability on the solution vec(Q)
is added, the problem becomes an exact model–matching
problem with stability (see [20]). Reliable and efficient,
state–space algorithms for solving (23) are available in the
literature, see for example the most recent reference [21].

Remark 4.8: We remark here, that it can happen that the
exact model–matching problem with stability from (23) does
not have a solution. A reliable, computational method to
detect this situation is also given in [21]. If this is the case,
then the plant G is not stabilizable with a sparse controller
belonging to the set S.

Remark 4.9: Once a sparse, stabilizing controller (if one
exists) is computed by solving the exact model–matching
problem (23), one can use the results from [11], [24] to ob-
tain the parametrization of all sparse, stabilizing controllers.
The attractive feature of the main results from [11], [24]
is that it recasts the sparsity constraints on the controller
as sparsity constraints on the Q parameter. Also, since the
aforementioned parametrization is affine in Q, it brings
along the tractable computation (via [10]) of the optimal,
sparse controller for both the disturbance attenuation and the
mixed–sensitivity H2 problems.

C. A Numerical Example

Suppose we are given as input data the plant G and Kbin,
as

G(λ) =
[

1
λ− 1

1
λ+ 2

0
]
, Kbin =

[
1 0 1

]T
(25)

where all blocks in the partition (3) of G are 1 × 1 and
both Assumptions 1 and 2 are met. We can start up our
synthesis algorithm with any DCF (1) of the plant which
can be computed for instance via the classical state–space
formulas from [6]:

M(λ) =

 λ−1
λ+5

λ−1
λ+6 0

0 λ+2
λ+6 1

0 0 1

 , −X̃(λ) =

 40
λ+5

− 8
3

1
λ+6

0

 ,
N(λ) =

[
1

λ+5
2

λ+6
1

λ+2

]
,

Ỹ (λ) =
λ2 + 17λ+ 66 + 2/3

(λ+ 5)(λ+ 6)
(26)

and also

−Ñ(λ) =
[

λ+2
(λ+3)(λ+4)

λ−1
(λ+3)(λ+4) 0

]
,

M̃(λ) =
(λ− 1)(λ+ 2)
(λ+ 3)(λ+ 4)

. (27)

The remaining factors X and Y that complete the DCF
(1) of G are not needed in view of Remark 4.5. By looking
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at (26) we can see that Pattern(X̃M̃) =
[

1 1 0
]T

. We
need to find a Youla parameter Q, such that

(
MQM̃+X̃M̃

)
has a zero in the second row entry. This is necessary and
sufficient such as to make Pattern

(
MQM̃+X̃M̃

)
≤ Kbin.

We discuss next the exact model–matching problem
MQM̃ = −X̃M̃ . Linear matrix equations of this type
(also named Sylvester matrix equations) can be solved for
Q via Proposition (4.3), by solving for vec(Q) the following
equivalent linear system of TFM equations.:

(M̃T ⊗M)vec(Q) = vec(−X̃M̃) (28)

(For this particular example, it happens that vec(Q) = Q
and also vec(Kbin) = Kbin, but this does not change
the mechanic of the algorithm for the general case.) One
can compute the Φ matrix from (22) in order to get that
Φ = diag({0, 1, 0}). So we must solve only the second
linear equation from (28), composed precisely from the rows
identified by the zero entries in the vec(Kbin) binary matrix.
(The only zero in vec(Kbin) is in the second row, hence we
must solve only the equation in the second row of (28)):

M̃T (λ)
[

0 λ+2
λ+6 1

]
Q(λ) = −8

3
1

λ+ 6
M̃(λ) (29)

We choose a solution Q for (29)

Q =
(λ+ 6 + 8/3)

(λ+ 2)(λ+ 6)

»
(λ+ 5) (λ+ 6)

(λ+ 2)(λ+ 6)

(λ+ 6 + 8/3)

–T
yielding the following controller K =

(
X̃ + MQ

)(
Ỹ −

NQ
)−1

K =
1

λ3 + 19λ2 + (103 + 1/3)λ+ (146 + 2/3)
×

×

24 −40(λ+ 2)(λ+ 6)
0

(λ+ 2)(λ+ 5)(λ+ 6)

35 (30)

which has the desired sparsity pattern.

D. Parametrization of All Sparse, Stabilizing Controllers

In this subsection we present a particularly important
corollary of Theorems 4.2 and 4.6. Given the plant G in
the set R(λ)p×m, suppose G stabilizable with a sparsity
constrained controller K belonging to the set S. We provide
next the parametrization of all stabilizing controllers of G,
belonging to the set S. We achieve this parametrization,
starting from a DCF (1) of G satisfying (21) and imposing
additional constraints on the Youla parameter, constraints that
guarantee that the resulted controller will belong to S. The
constraints are for the Youla parameter to lie in the set of
all stable TFMs belonging to a certain linear subspace. Here
comes the precise statement.

Corollary 4.10: Given a plant G in the set R(λ)p×m

stabilizable with a sparsity constrained controller K be-
longing to the set S, and consequently a DCF (1) of G
satisfying the first relation in (21), the set of all stabilizing
controllers of G belonging to the set S is given by K =

(
X̃ + MQ

)(
Ỹ − NQ

)−1
where the Youla parameter Q

(stable TFM, belonging to the set R(λ)m×p) is such that

vec(Q) ∈ Null
(

Φ
(
MT ⊗ M̃

))
, (31)

where Φ is the matrix defined in (22). We make here the
elementary observation that Q is stable if and only if vec(Q)
is stable.

Proof: The DCF we start with satisfies the first re-
lation (21), meaning Pattern(X̃M̃) ≤ Kbin and equiv-
alently vec(Pattern(X̃M̃)) ≤ vec(Kbin). Then for any
Youla parameter Q, we get via Theorem 4.6 that K =(
X̃ + MQ

)(
Ỹ − NQ

)−1
belongs to the set S if and only

if Φ(MT ⊗ M̃)vec(Q) = −Φ vec(X̃M̃). Now, because
vec(Pattern(X̃M̃)) ≤ vec(Kbin), due to the way the Φ ma-
trix is defined in (22) and finally we get that Φ vec(X̃M̃) =
0nG×(mp), hence the proof.

Remark 4.11: For an introduction to linear subspaces for
TFMs and vector bases of such subspaces we refer to [22].
For a reliable, state–space algorithm capable of actually
computing a basis of the null space of Φ

(
MT ⊗ M̃

)
, we

refer to [23]. Note that main result from [23] allows for the
computation of a basis having only stable poles, by perform-
ing a column compression of the normal rank of Φ

(
MT⊗M̃

)
by post–multiplication with a unimodular matrix, (for more
details see [23] and the following subsection).

E. Numerical Example – Continued

In this subsection we will illustrate numerically the result
of Corollary 4.10. We start with the same data from Subsec-
tion IV-C but with a different DCF of the plant. The factors
M̃ , Ñ will still be as in (27) and M , N will be as in (26)
but X̃ and Ỹ will be given by

X̃ =
[
− 40

(λ+ 5)
0 1

]T
,

Ỹ =
λ3 + 19λ2 + (103 + 1/3)λ+ (146 + 2/3)

(λ+ 2)(λ+ 5)(λ+ 6)
.

which is the DCF satisfying the first relation in (21) since it
is the DCF for which the sparse controller given in (30) is
the central controller. For the argument stated in Remark 4.5,
the remaining factors X and Y of the DCF are not needed.

For this example (as well as for what is presented in
Subsection IV-C), the Φ matrix defined in (22) is given by
Φ =

[
0 1 0

]
. We compute an unimodular matrix ∆

(using for instance the state–space techniques from [23])

∆(λ) =

 0 1 0
0 0 1
1 0 −λ+6

λ+2

 (32)

that by post multiplying
(
Φ(MT ⊗ M̃)

)
will perform a

column normal–rank compression, such that

(
Φ(MT ⊗ M̃)

)
∆ =

(λ− 1)(λ+ 2)
(λ+ 3)(λ+ 4)

[
1 0 0

]
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It can be seen now that the two last columns of ∆ make
out for a stable basis of the Null

(
Φ
(
MT ⊗ M̃

))
subspace,

hence we define the set Q as

Q def
=
n
Q ∈ R(λ)3×1

˛̨̨
vec
`
Q(λ)

´
=

24 1 0
0 1
0 −λ+6

λ+2

35» α(λ)
β(λ)

–
with α(λ), β(λ) stable, real− rational functions

o
(33)

The set of all stabilizing controllers of G, belonging to
the set S is given by K =

(
X̃ + MQ

)(
Ỹ −NQ

)−1
, with

Q ∈ Q.

V. A MEANINGFUL, PARTICULAR CASE

In this section we provide a reference to the solution of the
same problem (stabilization via sparse controllers), under the
scenario that the given plant G satisfies a particular criteria.
Specifically, we look at the case when the plant G admits
both a left coprime factorization G = M̃−1Ñ over Ω and a
right coprime factorization G = NM−1 (see Subsection II-
B) such that both “denominators” M̃ and M are block–
diagonal. As it turns out such a factorization is guaranteed
to exist for almost all plants, meaning that it is a generic
property. Furthermore, for any given plant it is quite easy to
check if such a factorization exists and if this is the case, it is
also easy to compute. Since we are not aware of any existing
references we have dubbed this an Input/Output Decoupled
DCF.

It is proved in detail in [24] that the advantages the
Input/Output Decoupled DCF brings are important. Firstly
it makes all the equivalent results presented in the previous
section far less complicated, since now vectorization is not
needed. Secondly, it makes possible to characterize the set
of all decentralized stabilizing controllers via the Youla
parametrization such that the sparsity constraints on the
controller are recast as sparsity constraints on the Youla
parameter.

VI. CONCLUSIONS

In this paper we have provided necessary and sufficient
conditions for the stabilizability of a given plant, with a
controller satisfying sparsity constraints that are quadratically
invariant with respect to the plant. These conditions are
formulated in terms of the existence of a specific doubly co-
prime factorization of the plant featuring additional sparsity
constraints on certain factors . Along the way have obtained
the set of all decentralized stabilizing controllers, character-
ized via the Youla parametrization. The sparsity constraints
on the controller are recast as convex constraints on the Youla
parameter. In order to achieve this, it is noteworthy that the
constraints on the Youla parameter become linear subspace
constraints on the Youla parameter, only from the particular
coprime factorization having special sparsity constraints on
certain factors. Solving the stabilization problem provides
the missing link for fully exploiting the powerful optimal
synthesis methods for sparse controllers from [10].
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