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Abstract— In this paper we characterise geodesically acces-
sible mechanical control systems under state and mechanical
state equivalence. To this end, we consider two families of
structure functions which are equivariants for the mechanical
state equivalence (and, more generally, for the state equivalence)
of two mechanical control systems satisfying the geodesic
accessibility property. Those structure functions, constructed
with the help of symmetric product and Lie product, encode
in a geometric way all invariant information about mechanical
control systems.

I. INTRODUCTION

Mechanical control systems form an important and rich
class of control systems whose study has attracted the
attention of many researchers, mainly during the last three
decades. Indeed, this class of control systems has many
applications in real life, thus being a very engaging subject
of study and, also, it offers very interesting and challenging
mathematical problems. Mechanical control systems, that
form a natural bridge between mechanics and control theory,
are studied for instance in [1], [2], [15].

A big number of works on mechanical control systems
has emerged both on the Lagrangian and the Hamiltonian
perspectives, leading to new insights in control and motion
planning of mechanical control systems. Based on the La-
grangian point of view of mechanics, many works have been
developed using the affine connection formulation (see for
instance [2], [3], [8], [11], [12]). For an approach based on
the Hamiltonian formalism we refer the reader to Chapter 12
of [13] and, e.g., the papers [4], [19]. In the present paper
we shall rest on the Lagrangian point of view of mechanical
control systems.

Our goal is to find a complete set of equivariants of me-
chanical control systems and, as consequence, to characterise
the equivalence (under a diffeomorphism of configuration
manifolds) of two mechanical control systems using these
equivariants. Our equivariants also describe the equivalence
of the corresponding control systems, defined on the tangent
bundle of the configuration manifolds, under extended point
transformations as well as under arbitrary diffeomorphisms
(not necessarily fiber preserving) of the tangent bundle.

The outline of the paper is as follows. Section II provides
some preliminary notions and notation. In Section III, we de-
fine families of structure functions, expressed via symmetric
products and Lie products of input vector fields, and we use
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these families to geometrically characterise the mechanical
state equivalence of two mechanical control systems that
satisfy the geodesic accessibility property. This is a first
version of our main result stated in terms of objects on the
configuration manifold. In Section IV, a second version is
given for control systems that admit a geodesically accessible
mechanical structure and in Section V we present two
examples.

II. PRELIMINARIES

In our previous study [18], a geometric setting for studying
general mechanical control systems is presented. Here we
review tools and definitions necessary for the present paper.

A. Mechanical control systems

We define a mechanical control system (MS) as a 4-tuple
(Q,∇, g0, d), in which
(i) Q is an n-dimensional configuration manifold;

(ii) ∇ is a symmetric affine connection on Q;
(iii) g0 = (g0, g1, . . . , gm) is an (m + 1)-tuple of smooth

vector fields on Q;
(iv) d : TQ→ TQ is a map sending the fiber TqQ into the

fiber TqQ, for any q ∈ Q, linear on fibers.

A curve γ : I → Q, I ⊂ R, is a trajectory of (MS) if it
satisfies the equation

∇γ̇(t)γ̇(t) = g0(γ(t)) + d(γ̇(t)) +

m∑
r=1

urgr(γ(t)). (1)

The term d(γ̇(t)) corresponds to dissipative-type (or
gyroscopic-type) forces acting on the system; the vector field
g0 results from an external uncontrolled force and the vector
fields g1, . . . , gm result from controlled external forces. Fi-
nally, u = (u1, . . . , um) are controls of the system. In local
coordinates (x1, . . . , xn) on Q, this equation is equivalent to
the second-order system of differential equations

ẍi=−Γijk(x)ẋj ẋk + dij(x)ẋj + gi0(x) +

m∑
r=1

urg
i
r(x), (2)

with 1 ≤ i ≤ n. Here, and in what follows, we use the
summation convention except for terms involving controls.
The above system is also equivalent to the first-order system
of differential equations on TQ, equipped with coordinates
(x1, . . . , xn, y1, . . . , yn), which we will also denote (MS):

ẋi = yi, (3)

ẏi = −Γijk(x)yjyk + dij(x)yj + gi0(x)+

m∑
r=1

urg
i
r(x).

A particularly important role will be played by mechanical
control systems for which d=0 and g0 =0, i.e., mechanical
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control systems which are neither subject to dissipative-type
(or gyroscopic-type) forces nor uncontrolled ones. These
systems are known as affine connection control systems and
are thus defined as a 3-tuple (ACS) = (Q,∇, g), with Q
and ∇ as before and g = (g1, . . . , gm) an m-tuple of smooth
input vector fields on Q (see [8], [9], [10], [11], [12]).

B. Geodesically accessible mechanical control systems

Associated with an affine connection ∇ on Q, there is
a symmetric real-bilinear operation called the symmetric
product:

〈X : Y 〉 = ∇XY +∇YX,

with X,Y smooth vector fields on the configuration manifold
Q. In local coordinates (x1, . . . , xn) on Q, we have

〈X :Y 〉=
(
∂Xi

∂xj
Y j+

∂Y i

∂xj
Xj+ΓijkX

jY k+ΓijkY
jXk

)
∂

∂xi
.

The symmetric product was first introduced by Crouch in
[5]. For a geometric interpretation see [8].

Let SYM(g) be the smallest distribution on Q containing
the input vector fields g1, . . . , gm and closed under the
symmetric product defined by the connection ∇.

Definition 1 ([18]): The system (MS) is called geodesi-
cally accessible at x0 ∈ Q if

SYM(g)(x0) = Tx0Q,

and geodesically accessible if the above equality holds for
all x0 ∈ Q.
A geodesically accessible mechanical control system will be
denoted shortly by (GAMS). If additionally, the system is
affine connection (i.e., if we have a (GAMS) with d = 0
and g0 = 0), then it will be called geodesically accessible
affine connection system and denoted shortly by (GACS).

In order to use the above definition, we will provide
an algorithmic way of constructing SYM(g). Consider the
following sequence of families of vector fields on Q :

Sym1(g)=g = {gr | 1 ≤ r ≤ m}

and, inductively,

Symi(g)=
{
〈X :Y 〉 |X∈Symp(g), Y ∈Syml(g), p+ l = i

}
.

Define
Sym(g) =

∞⋃
i=1

Symi(g). (4)

Then SYM(g) = span Sym(g).
The geodesic accessibility property plays a crucial role in

our approach because, as shown in [18], it guarantees the
uniqueness of the mechanical structure.

C. Mechanical state equivalence

Given two mechanical control systems (MS) =

(Q,∇, g0, d) and (M̃S) = (Q̃, ∇̃, g̃0, d̃), we say that (MS)

and (M̃S) are mechanical state equivalent, shortly MS-
equivalent, if they are related by a diffeomorphism. More
precisely, (MS) and (M̃S) are MS-equivalent (respectively,
locally MS-equivalent at points x0 ∈ Q and x̃0 ∈ Q̃) if

there exists a diffeomorphism φ : Q → Q̃ (respectively, a
local diffeomorphism φ : U → Ũ , φ(x0) = x̃0, with U a
neighborhood of x0 and Ũ a neighborhood of x̃0) such that

φ(∇) = ∇̃, φ∗d = d̃, and φ∗gi = g̃i, (5)

for 0 ≤ i ≤ n, where φ∗ stands for the tangent map of φ
and φ(∇) denotes the affine connection ∇ transformed via
x̃ = φ(x), that is, the affine connection ∇̄ whose Christoffel
symbols are given by

Γ̄ijk(x̃) = Γpqr
∂xq

∂x̃j
∂xr

∂x̃k
∂x̃i

∂xp
+

∂2xp

∂x̃j∂x̃k
∂x̃i

∂xp
.

III. MAIN RESULTS: FIRST VERSION

In this section we discuss the MS-equivalence of me-
chanical control systems satisfying the geodesic accessibility
property, in terms of conditions involving two families of
structure functions, which we will prove to be equivariants of
the MS-equivalence, that is, to transform via the conjugating
diffeomorphism.

Consider two geodesically accessible affine connection
systems (GACS) = (Q,∇, g) and (G̃ACS) = (Q̃, ∇̃, g̃)
around points x0 ∈ Q and x̃0 ∈ Q̃, respectively. We assume
that dimQ = dim Q̃ and consider g = (g1, . . . , gm) and
g̃ = (g̃1, . . . , g̃m), m-tuples of smooth input vector fields on
Q and Q̃, respectively.

The geodesic accessibility property (see Definition 1)
guarantees the existence of independent vector fields
v1, . . . , vn ∈ Sym(g) and ṽ1, . . . , ṽn ∈ Sym(g̃). We assume
that g1, . . . , gm are independent and we take vi = gi, 1 ≤
i ≤ m (and analogously, ṽi = g̃i, 1 ≤ i ≤ m). A generali-
sation to the case of gi that are dependent is straightforward
(although technically more involved).

Any element vj in the frame (v1, . . . , vn), being an
element of a certain Symi(g) (see (4)), is the symmetric
product of two elements w1 and w2 of Syml(g) and Symp(g),
respectively, l + p = i. Both w1 and w2 are successions of
symmetric products, so vector fields belonging to Symi(g)
shall be referred to as symmetric products of length i.
We shall choose the elements of the frame (v1, . . . , vn) to
be vector fields of smallest possible length. Clearly, v1 =
g1, . . . , vm = gm are of length one.

We will say that two frames (v1, . . . , vn) and (ṽ1, . . . , ṽn)
are conform if each ṽj , 1 ≤ j ≤ n, is constructed as an
analogous successive symmetric product as that defining vj
(with the elements of Symp(g) and Syml(g) being replaced
by the corresponding ones of Symp(g̃) and Syml(g̃)).

Fix a frame (v1, . . . , vn) and consider the equalities
(LAR)

[
viq , . . . , [vi3 , [vi2 , vi1 ]] . . .

]
= α si1...iq vs, and

(SAR) 〈viq : . . . 〈vi3 : 〈vi2 : vi1〉〉 . . .〉 = β si1...iq vs,

defining the structure functions α si1...iq and β si1...iq , where
q ≥ 2 and 1 ≤ s, i1, . . . , iq ≤ n. Equalities (LAR) and
(SAR) give, respectively, information about the Lie algebraic
relations and the symmetric algebraic relations of the system.
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Analogously, we can derive the structure functions α̃ si1...iq
and β̃ si1...iq for (G̃ACS). We consider the families of struc-
ture functions

s = {α si1...iq , β
s
i1...iq} and s̃ = {α̃ si1...iq , β̃

s
i1...iq}.

We will say that a family of smooth functions
{γ si1...iq | q ≥ 2} is of constant rank r, in an open

neighborhood U of x0 ∈ Q, if
{
dγsi1...iq (x) | q ≥ 2

}
span

an r-dimensional space at any x ∈ U . We call order of a
family of constant rank r the minimal number ρ such that
dim span

{
dγsi1...iq | 2 ≤ q ≤ ρ

}
(x0) = r.

Next result establishes the local MS-equivalence of sys-
tems (GACS) and (G̃ACS) in terms of conditions involving
only the sets of structure functions s and s̃ and proving that
they are equivariants of MS-equivalence.

Theorem 1: Two geodesically accessible affine connection
systems (GACS) = (Q,∇, g) and (G̃ACS) = (Q̃, ∇̃, g̃),
whose families of structure functions s and s̃ are of constant
rank in neighborhoods of x0 ∈ Q and x̃0 ∈ Q̃, are MS-
equivalent around x0 and x̃0, respectively, if and only if
there exists a diffeomorphism ϕ : U → Ũ , where U and Ũ
are neighborhoods of x0 and x̃0 in Q and Q̃, respectively,
such that

(LAC) α si1...iq = α̃ si1...iq ◦ ϕ,
(SAC) β si1...iq = β̃ si1...iq ◦ ϕ,

for q ≤ ρ+ 1, with ρ being the common order of families s
and s̃.

Remark 1: The above conditions have a clear meaning
that justifies their names: (LAC) says that the Lie mod-
ules, generated by the symmetric vector fields of (GACS)

and (G̃ACS), (i.e., vector fields from Sym(g1, . . . , gm) and
Sym(g̃1, . . . , g̃m), respectively) coincide (up to conjugation
by a diffeomorphism of the configuration manifolds Q and
Q̃); (SAC) states that the symmetric modules, generated
by all symmetric vector fields of (GACS) and (G̃ACS),
coincide (up to conjugation by the same diffeomorphism).

Remark 2: If a diffeomorphism φ establishing the MS-
equivalence of (GACS) and (G̃ACS) exists then it is unique.
On the other hand, the diffeomorphism ϕ conjugating the
structure functions is almost never unique. To discuss rela-
tions between φ and ϕ, let r denote the rank of the families
s and s̃. Clearly, r satisfies 0 ≤ r ≤ n, where dimQ = n.
We can distinguish three cases: (i) if r = n, i.e., s and s̃ are
of maximal possible rank, then the diffeomorphism ϕ conju-
gating them is unique (and can be, implicitly, expressed via
s and s̃). In this case, the diffeomorphisms ϕ and φ coincide;
(ii) if r = 0, i.e., s and s̃ consists of constant functions only,
then (LAC) and (SAC) imply that the structure functions have
to be the same (see Corollary 1, below) and, if this is the case,
any diffeomorphism ϕ conjugates them; (iii) if 0 < r < n,
then only an r-dimensional “part” of the diffeomorphism φ
is determined by the diffeomorphism ϕ.

The case r = 0 leads to the following result for affine
connection systems whose all structure functions α si1...iq and
β si1...iq , q ≥ 2 and 1 ≤ s, i1, . . . , iq ≤ n, are constant.

Corollary 1: Consider a geodesically accessible affine
connection system (GACS) with constant structure functions
α si1...iq , β

s
i1...iq

∈ R. A geodesically accessible affine connec-

tion system ˜(GACS) is locally MS-equivalent to (GACS) if
and only if their structure functions coincide, i.e., α̃ si1...iq =

α si1...iq and β̃ si1...iq = β si1...iq .

IV. S-EQUIVALENCE AND MS-EQUIVALENCE OF
CONTROL SYSTEMS THAT ADMIT A (GAMS) STRUCTURE

Our result Theorem 1 is actually based on a more general
result concerning the equivalence of general control-affine
systems to mechanical systems. We shall discuss this issue
in the present section. Again, for proofs of the results of this
section, see [17].

A. S-equivalence and MS-equivalence of control systems

Let Σ and Σ̃ be control-affine systems evolving respec-
tively on M and M̃, smooth manifolds of dimension 2n :

Σ : ż = F (z) +

m∑
s=1

usGs(z), z ∈M, and

Σ̃ : ˙̃z = F̃ (z̃) +

m∑
s=1

usG̃s(z̃), z̃ ∈ M̃.

We say that Σ and Σ̃ are state equivalent, shortly S-
equivalent, if they are related by a diffeomorphism (and then
also their trajectories, corresponding to the same controls,
are related by that diffeomorphism) [6], [13], [16]. More
precisely, Σ and Σ̃ are S-equivalent (respectively, locally S-
equivalent at points z0 ∈ M and z̃0 ∈ M̃ ) if there exists
a diffeomorphism Ψ : M → M̃ (respectively, a local
diffeomorphism Ψ : W → W̃ , Ψ(z0) = z̃0, with W a
neighborhood of z0 and W̃ a neighborhood of z̃0) such that
Ψ∗F = F̃ and Ψ∗Gr = G̃r, 1 ≤ r ≤ m, where Ψ∗ denotes
the tangent map of Ψ.

Definition 2: We say that Σ is S-equivalent to a mechani-
cal control system if there exists a mechanical system (MS)
of the form (3) such that Σ and (MS) are S-equivalent. In
this case, we also say that Σ admits a mechanical structure.

Analogously, we define local S-equivalence of Σ at z0 to
a mechanical system (MS) at (x0, y0) ∈ TQ. In this case,
we say that Σ admits locally a mechanical structure.

To distinguish the role of various diffeomorphisms that
appear, we systematically use the following notation. By Ψ
we will denote a diffeomorphism Ψ : M → M̃ (respectively
Ψ : M → TQ) conjugating a system Σ on M with Σ̃
on M̃ (respectively with a mechanical system (MS) on
TQ) and a diffeomorphism conjugating their equivariants
by ψ. By φ we denote a diffeomorphism φ : Q → Q̃,
establishing the MS-equivalence, as defined in Section II-
C, between two mechanical systems (MS) = (Q,∇, g0, d)

and (M̃S) = (Q̃, ∇̃, g̃0, d̃). A diffeomorphism conjugating
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their equivariants is denoted by ϕ. When considering the MS-
equivalent systems (MS) and (M̃S) as control systems of
the form (3) written, respectively, in state spaces TQ and
TQ̃, we will also call them MS-equivalent. Clearly, they
are S-equivalent under the extended point transformation
Φ : TQ → TQ̃ given by Φ = (φ1, φ2) with x̃ = φ1(x) =
φ(x) and ỹ = φ2(x, y) = Dφ(x)y, where (x, y) and (x̃, ỹ)
are local coordinates, respectively, on TQ and TQ̃. More
generally, given two control systems Σ and Σ̃, that are S-
equivalent to mechanical control systems, we will denote
by Φ : M → M̃ any diffeomorphism establishing the S-
equivalence of Σ and Σ̃ and preserving the bundle structures
of the underlying manifolds (imposed by their mechanical
structures).

B. S-equivalence to a mechanical control system

Given a control-affine system Σ as in Section IV-A, we
denote by V the smallest vector space, over R, containing
the vector fields G1, . . . , Gm and satisfying

[V, adFV] = {[Vi, adFVj ] | Vi, Vj ∈ V} ⊂ V,

We define the sequence of families of vector fields on M :

V1 = {Gr | 1 ≤ r ≤ m}
and, inductively, Vi =

⋃
p+l=i

[Vp, adFVl] , p, l ≥ 1,

where [Vp, adFVl]={[Vk, adFVj ] |Vk ∈ Vp, Vj ∈ Vl} . Then
we have

V = VectR

∞⋃
i=1

Vi. (6)

Likewise, we define the sequence Ṽ1, . . . , Ṽi and Ṽ on M̃.

Recall that a point z0 ∈ M is said to be an equilibrium
point for the system Σ if F (z0) = 0. We call a zero-
velocity point for the mechanical control system (MS) any
point of the form (x0, y0) = (x0, 0), that is any point of
the zero section of TQ. An equilibrium point for (MS)
is a zero-velocity point (x0, 0) such that g0(x0) = 0. Next
result provides a geometric characterisation of (GAMS)’s
and (GACS)’s, locally around zero-velocity points.

Theorem 2: [18] Let M be a smooth 2n-dimensional
manifold. A control system Σ is locally, at z0 ∈ M, S-
equivalent to a geodesically accessible mechanical system
(GAMS) around a zero-velocity point (x0, 0) if and only if

(MS0) F (z0) ∈ V(z0),
(MS1) dimV(z) = n and dim (V + [F,V]) (z) = 2n,
(MS2) [V,V] (z) = 0,

for any z in a neighborhood of z0. Moreover, Σ is locally, at
z0 ∈ M, S-equivalent to a (GACS) around an equilibrium
point, if and only if it additionally satisfies

(MSND) adFV(z0) ⊂ Tz0QΣ,
(MSNU) F |QΣ =0, where QΣ ={z ∈M |F (z) ∈ V(z)}.

The conditions in this theorem have a clear geometric
meaning: (MS0) implies that z0 ∈M is mapped into a zero-
velocity point; (MS1), together with (MS0), is equivalent to

the geodesic accessibility property; and (MS2) is responsable
for the mechanical structure of the system. The additional
conditions (MSND) and (MSNU) correspond, respectively,
to the absence of dissipative-type forces and the absence
of external uncontrolled forces acting on the system, that
is, respectively, d = 0 and g0 = 0. Since a (GACS) is a
(GAMS) for which we have additionally d = 0 and g0 = 0,
zero-velocity points for (GACS)’s coincide with equilibrium
points and thus in that case (MS0) can be replaced by (MS0)’
stating that F (z0) = 0.

It has been shown in [18] that conditions (MS0)–(MS2)
of Theorem 2 encode all the structure information of a
(GAMS)–system to which Σ is S-equivalent. Therefore,
under these three conditions, we are able to construct for
the system Σ, locally around a point z0 ∈ M, all canonical
objects in the definition of a mechanical control system
(QΣ, ∇Σ, gΣ

0 , d
Σ). For the purposes of the present paper,

we will define only the configuration manifold QΣ and the
control vector fields gΣ

1 , . . . , g
Σ
m. For the detailed construc-

tion of the connection ∇Σ, the map dΣ, and the uncontrolled
vector field gΣ

0 , see [18]. The configuration manifold QΣ is
given by QΣ = {z ∈ M | F (z) ∈ V(z)}. The distribution
spanV is involutive (because of (MS2)) and its integral leaves
define a foliation denoted by FV . We define the surjective
submersion π : M → QΣ by attaching to any z ∈ M
the point q = π(z) defined as {q} = QΣ ∩ Lz , where
Lz is the leaf of FV passing through z. Notice that the
intersection consists of one point only since the manifold
QΣ is transversal to the leaves of FV . Any vector field
V ∈ V gives rise to a vector field v on QΣ. Indeed, by
definition of V , the vector field adFV satisfies the condition
[adFV,V] ⊂ V, which implies that adFV projects to the
vector field

v := −π∗(adFV ) (7)

on QΣ. Since Gr ∈ V, 1 ≤ r ≤ m, equality (7) implies, in
particular, that gΣ

r := −π∗(adFGr) are the projected input
vector fields. In this way, given n locally independent vector
fields V1, . . . , Vn ∈ V we obtain a local frame v1, . . . , vn
on QΣ. Conversely, given a local frame v1, . . . , vn on QΣ,
there exists a unique collection of independent vector fields
V1, . . . , Vn ∈ spanV such that Vi is the vertical lift of vi.

C. Structure functions for control systems that admit a
mechanical structure

We assume that Σ and Σ̃ are locally S-equivalent, at
z0 ∈M and z̃0 ∈ M̃, to geodesically accessible mechanical
systems (GAMS) and (G̃AMS), respectively, around zero-
velocity points (x0, 0) ∈ TQ and (x̃0, 0) ∈ TQ̃. Clearly, the
systems Σ and Σ̃ satisfy conditions (MS0)-(MS2) of Theo-
rem 2. Due to (MS1), there exist vector fields V1, . . . , Vn ∈ V
and vector fields Ṽ1, . . . , Ṽn ∈ Ṽ such that the families

{Vi, adFVi | 1 ≤ i ≤ n} and
{
Ṽi, adF̃ Ṽi | 1 ≤ i ≤ n

}
consists of 2n independent vector fields. In this case we will
call (V1, . . . , Vn) to be a V-frame and (Ṽ1, . . . , Ṽn) to be a
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Ṽ-frame. We assume that G1, . . . , Gm are independent and
we take Vi = Gi, (and analogously, Ṽi = G̃i), 1 ≤ i ≤ m.

We can choose a V-frame (V1, . . . , Vn) (and we will
assume that throughout) such that any element Vj of V
belongs to a certain Vi and thus it is the Lie brackets of
elements of Vp and adFVl, with p+ l ≤ i. Similarly to what
we have done in Section III, vector fields belonging to Vi
shall be referred to as vector fields obtained as a succession
of Lie brackets of length i and we shall choose the elements
of the frame to be vector fields of smallest possible length.

We will say that two frames (V1, . . . , Vn) and (Ṽ1, . . . , Ṽn)
are conform if each Ṽj , 1 ≤ j ≤ n, is constructed via
an analogous succession of Lie brackets as that defining Vj
(with the elements of Vp and adFVl being replaced by the
corresponding ones of Ṽp and adF̃ Ṽl).

Fix an V-frame and define smooth functions A s
i1...iq

and
B s
i1...iq

on M , called structure functions, via the fundamental
equalities[

adFViq , . . . , [adFVi3 , [adFVi2 , adFVi1 ]] . . .
]

= (8)

(−1)q−1A s
i1...iq adFVs mod spanV,[

adFViq , . . . , [adFVi3 , [adFVi2 , Vi1 ]] . . .
]

= (9)

(−1)q−1B s
i1...iq Vs

q ≥ 2, 1 ≤ s, i1, . . . , iq ≤ n. We observe that the absence
of terms adFVs on the right hand side of (9) results from the
fact that the left hand side of this equality is an element of V .
Now we will show that the structure functions A s

i1...iq
and

B s
i1...iq

, defined by equalities (8) and (9), are very closely
related to the functions α si1...iq and β si1...iq , defined by the
fundamental equalities (LAR) and (SAR) in Section III. The
relation is coming from two facts. First, the functions A s

i1...iq
and B s

i1...iq
are constant on the leaves of the canonical

foliation FV and thus project well via π. Secondly, given a
V-frame (V1, . . . , Vn), equality (7) allows to obtain a frame
(v1, . . . , vn) on QΣ. We have:

Lemma 1 ([18]): Let vi and vj be the projections on QΣ

of the vectors fields adFVi and adFVj , respectively. Then:
(i) [vi, vj ] = π∗ ([adFVi, adFVj ]) ,
(ii) 〈vi : vj〉 = π∗ ([F, [adFVi, Vj ]]),
(iii) the functions A s

i1...iq
and B s

i1...iq
are constant on

the leaves of the canonical foliation FV .
(iv) The structure functions are related via

A s
i1...iq (z) = α si1...iq (π(z))

B s
i1...iq (z) = β si1...iq (π(z)).

The above lemma explains that equality (8) projects,
via π∗, to equality (LAR) on QΣ. Taking the Lie bracket
with F of both sides of equality (9), we get[

F,
[
adFViq , . . . , [adFVi3 , [adFVi2 , Vi1 ]] . . .

]]
=

(−1)q−1B s
i1...iq adFVs mod spanV

which, in turn, projects via π∗ to equality (SAR) on QΣ.
Analogously, we derive Ã s

i1...iq
and B̃ s

i1...iq
for the system

Σ̃. As in Section III, we consider the families of structure
functions for the systems Σ and Σ̃, respectively,

S =
{
A s
i1...iq , B

s
i1...iq

}
and S̃ =

{
Ã s
i1...iq , B̃

s
i1...iq

}
.

D. Main results: second version

Next we state the second main result of this paper, that
is, a generalisation of Theorem 1 to control affine systems
locally S-equivalent to (GACS).

Theorem 3: Let Σ and Σ̃ be control systems locally S-
equivalent, around equilibrium points z0 ∈ M and z̃0 ∈
M̃, to geodesically affine connection systems (GACS) and
(G̃ACS), respectively. Assume that the families S and S̃ of
structure functions, of a given conform pair of an V-frame
and an Ṽ-frame, have constant rank in neighborhoods of z0

and z̃0, respectively. The following conditions are equivalent:
(i) Σ and Σ̃ are S-equivalent, locally around z0 and z̃0;

(ii) Σ and Σ̃ are MS-equivalent, locally around z0 and z̃0;
(iii) The families S and S̃ have the same order ρ and there

exists a diffeomorphism ψ : W → W̃ , with W and
W̃ neighborhoods of z0 and z̃0, respectively, such that

(LAC) A s
i1...iq = Ã s

i1...iq ◦ ψ, q ≤ ρ+ 1,

(SAC) B s
i1...iq = B̃ s

i1...iq ◦ ψ, q ≤ ρ+ 1.

V. EXAMPLES

We will illustrate our results with two examples.

Example 1: Let Q = R+ × S1 be the configuration
manifold of the following affine connection system:

(GACS) :
ẍ1 = x1(ẋ2)2 + cos(x2)u1 + sin(x2)u2,

ẍ2 = − 2
x1 ẋ

1ẋ2 − sin x2

x1 u1 + cos x2

x1 u2.

Clearly, the system is geodesically accessible since

SYM(g1, g2)(q)=VectR{g1, g2}(q)=TqQ, for all q ∈ Q.

Writing the system as a control system on the tangent bundle
TQ, we easily identify the vector fields

F = yi
∂

∂xi
+ x1(y2)2 ∂

∂y1
− 2

x1
y1y2 ∂

∂y2
, i = 1, 2,

G1 = cos(x2)
∂

∂y1
− sinx2

x1

∂

∂y2
,

G2 = sin(x2)
∂

∂y1
+

cosx2

x1

∂

∂y2
,

Direct Lie bracket computations show that

[adFG1, adFG2] = 0 and [adFGj , Gi] = 0, i, j = 1, 2.

Therefore the set S of structure functions of the system
(GACS) has constant rank equal zero. Consider also

(G̃ACS) :
¨̃x1 = u1,
¨̃x2 = u2.

Also, for this system all structure functions are identically
zero, and so, the set of of structure functions S̃ has also
constant rank zero. Any diffeomorphism ψ conjugates the
structure functions of S with those belonging to S̃, since
both sets contain zero functions only. Therefore, condition
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(iii) of Theorem 3 is trivially satisfied and, it follows that, the
systems (GACS) and (G̃ACS) are MS-equivalent. In fact, we
can check easily that the diffeomorphism given by

x̃1 = x1 cosx2,
x̃2 = x1 sinx2,

ỹ1 = y1 cosx2 − x1y2 sinx2,
ỹ2 = y1 sinx2 + x1y2 cosx2,

transforms (GACS) into (G̃ACS), showing that (GACS) is
the system (G̃ACS), represented in polar coordinates.

Example 2: Consider a simple model of a planar rigid
body, see Figure 1, whose equations of motion are

θ̈ = −h
J
u2,

ẍ =
cos θ

m
u1 −

sin θ

m
u2,

ÿ =
sin θ

m
u1 +

cos θ

m
u2,

with q = (θ, x, y) ∈ Q = S1 × R2 the configuration of the
system, where θ describes the relative orientation of the body
reference frame Rbody with respect to the inertial (spatial)
frame Rspatial, the vector (x, y) denotes the position of the
center of mass with respect to Rspatial, m is the mass of the
body and J its moment of inertia about the center of mass,
h > 0 is the distance between a point in which is applied a
force F and the center of mass Obody, u1 is the component
of F in the body b1-direction and u2 be the component in
the b2-direction (see also [2], [18]).

Fig. 1. The planar rigid body.

The Christoffel symbols of the corresponding Levi-Civita
connection ∇ (see e.g., [2], [14]) are Γijk = 0. We have
g0 = 0, d = 0 and the input vector fields

g1 =
cos θ

m

∂

∂x
+

sin θ

m

∂

∂y
and

g2 = −h
J

∂

∂θ
− sin θ

m

∂

∂x
+

cos θ

m

∂

∂y
.

The system is geodesically accessible since

SYM(g1, g2)(q)=VectR{g1(q), g2(q), 〈g1 : g2〉(q)}=R3,

for all q ∈ Q. Lie brackets and symmetric brackets computa-
tions show that all structure functions are constant and equal
either one or (a function of) h/J . Therefore, the family of
structure functions s has rank and order zero and any system
MS-equivalent to the planar rigid body must have the same
structure functions as those obtained for this system (see
Corollary 1). It follows that the mass m is not an invariant

and we can normalize it to one (by taking x̃ = mx and
ỹ = my) and that the distance h and the moment of inertia
J are not invariant either but their ratio is.

VI. CONCLUSIONS

The S-equivalence and MS-equivalence of geodesically
accessible affine connection systems (GACS) are studied in
this paper, leading to the first version of our main results,
stated in terms of objects on the configuration manifold.
These results are then generalised for control affine systems
locally S-equivalent to (GACS). Our main results give nec-
essary and sufficient conditions for the local S-equivalence
and local MS-equivalence in terms of two collections of
equivariants, called structure functions. Among structure
functions we distinguish those that are related to the Lie
algebra, generated by the input vector fields and their sym-
metric products, and those related to the symmetric algebra,
generated by the input vector fields and their symmetric
products.
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