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Abstract— We study a model of information aggregation and
social learning recently proposed by Jadbabaie, Sandroni, and
Tahbaz-Salehi, in which individual agents try to learn a correct
state of the world by iteratively updating their beliefs using pri-
vate observations and beliefs of their neighbors. No individual
agent’s private signal might be informative enough to reveal
the unknown state. As a result, agents share their beliefs with
others in their social neighborhood to learn from each other.
At every time step each agent receives a private signal, and
computes a Bayesian posterior as an intermediate belief. The
intermediate belief is then averaged with the beliefs of neighbors
to form the individual’s belief at next time step. We find a set
of necessary and sufficient conditions under which agents will
learn the unknown state and reach consensus on their beliefs
without any assumption on the private signal structure. The key
enabler is a result that shows that using this update, agents will
eventually forecast the indefinite future correctly.

I. INTRODUCTION

Individuals often form opinions about economic, political,
and social issues using both their personal experiences and
information they obtain through communication with their
friends, neighbors, and colleagues [1]. These beliefs determine
the decisions they make when faced with different options.
However, the “best” course of action available to each agent
is, often, not obvious and depends on unknown variables (i.e.,
“states of the world”). Frequently, not all agents make the same
observations, and not all observations are equally informative.
Lack of access to all the relevant information is a motivation
for individuals to share their opinions with others in order to
learn from their personal experiences. Social networks expedite
this process by enabling flow of information from informed
agents to uninformed ones. In light of this, an important
question one could ask is what are the least restrictive
conditions (on the network and signal structures) that ensure
learning by all agents? In this paper we use a non-Bayesian
learning framework to provide an answer to this question.

We base our analysis on the model in [2] in which
agents use a simple non-Bayesian rule to incorporate new
information available to them. Each individual has two sources
of information: her personal observations and those of her
neighbors in a social network. However, agents might not
have direct access to personal experiences of their neighbors.
Instead, we assume that they can only observe their neighbors’
beliefs, i.e., the subjective probabilities assigned to different
feasible realizations of the unknown state of the world.1 Agents
repeatedly interact with their neighbors and use the following
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1An alternative equally valid interpretation is that agents play a particular
repeated game of imperfect information where each agent can only observe
the actions of her neighbors, and the actions completely reveal the beliefs
of acting agents.

rule to update their beliefs. Each agent first forms the Bayesian
posterior given her observed private signal as an intermediate
step. She then updates her belief to the convex combination
of her Bayesian posterior and the beliefs of her neighbors.

This model provides a tractable framework to study the
opinion dynamics of agents who repeatedly receive private
signals in addition to observing the opinions of their neighbors.
This is our main motivation for considering a non-Bayesian
protocol. Bayesian inference in social networks can be—except
for certain simple scenarios—computationally complicated to
carry out. Part of the complications is because there is no
reason to believe that agents know the source of their neighbors’
information. Rather, they have to infer it to be able to form an
unbiased belief about the true state of the world. The complex-
ities of Bayesian updating limit its applicability in practice.

In [2] the authors show that, under some assumptions,
this update eventually leads to social learning even in
finite networks. Namely, agents can eventually forecast the
immediate future correctly. Furthermore, they will eventually
learn the unknown state if for each agent there exists a signal
that is the most probable under the true state of the world
than any other state. This assumption “turns the deck” in
favor of learning by assuming that agents are infinitely often
notified, indirectly, of the true state of the world.

In Section III we show that agents will learn the state of the
world under the much weaker assumption that they can dis-
tinguish the state collectively. Signals need not be independent
among agents at the same time period. Instead, we require the
signal structure to be such that the state is identifiable given
the marginals of the likelihood function. We first prove that
not only agents will forecast the immediate future correctly,
but also they will eventually learn to forecast the indefinite
future. We also show that there exists a signal sequence which
is informative enough to let agents identify the true state of the
world, even if no revealing signal exists. The results signify that
even when none of agents have enough information to learn
the true state of the world, and in spite of individual signals
not being revealing enough, social interaction can aggregate
pieces of information available to agents such that each and
every one of them can distinguish the true state of the world.

In section IV we find a set of necessary and sufficient
conditions for learning by relaxing some of the assumptions
made in [2]. Namely, we prove that all agents learn the true
state if and only if the state is observationally distinguishable
by agents, and the social network can accommodate flow of
information from informed agents to the uninformed ones.
Furthermore, we show that if these assumptions are not satisfied,
the social network can be partitioned into a number of “islands”
together with the set of agents who do not belong to any island.
With probability one, either all agents in an island learn the
true state, or none do so. In absence of right paths for the flow
of information, while some agents will almost surely learn
the truth, some will almost surely not learn it. Furthermore,
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in such instances agents will never reach consensus.
This paper is related to an extensive body of literature on

social learning. For a survey of different models of social learn-
ing see [1]. To overcome the computational complications of
Bayesian updating, various simplifications have been proposed.
The first group of models assumes that agents interact sequen-
tially. Examples include models in [3]–[7]. In such models
each agent, having observed some of agents’ previous actions,
takes an action. However, each agent makes only one decision,
and cannot reverse or change her choice. The other group of
models suggests non-Bayesian rules of thumb for belief update.
Examples include [2], [8]–[14]. In the same spirit is the seminal
work of Tsitsiklis on decentralized decision making [15].

II. THE MODEL

The social learning model we consider was first proposed
in [2]. The model assumes that time is discrete and there are
a finite number of agents, signals, and states of the world.

Let Θ be the finite set of possible states of the world, and
let θ∗ ∈ Θ be the true state that is determined at time zero by
nature and is unchanged thereafter. Without loss of generality
we assume that Θ 6= {θ∗}.

Let N = {1, 2, . . . , n} be the set of agents. At time t ≥ 0
each agent i has a belief about the true state denoted by
µi,t(θ), which is a probability distribution over Θ.

At each time period t ≥ 1, each agent i observes a private
random signal ωi,t ∈ Si, where Si =

{
s1
i , s

2
i , . . . , s

Mi
i

}
is the set of possible signals for agent i. Conditioned
on θ ∈ Θ being the state of the world, the observation
profile ωt = (ω1,t, ω2,t, . . . , ωn,t) is generated according to
likelihood function ` (·| θ) with `i (·| θ) as its ith marginal.
Let Pθ = ` (·| θ)N be the product measure that determines
the realization of signals conditioned on θ being the state of
the world. This definition allows for signals to be correlated
among agents at the same time period, but makes them
independent over time. Without loss of generality we assume
that `i (si |θ∗) > 0 for all si ∈ Si. That is, Si is only the
set of signals that are realized with positive probabilities
conditioned on the true state of the world being θ∗. Also let
Θ̄i = {θ ∈ Θ : `i (si| θ) = `i (si| θ∗) for all si ∈ Si} be the
set of states that are observationally equivalent to the true
state θ∗ from the point of view of agent i.

The interactions between agents are captured by a connected
directed graph G = (N , E). Let Ni = {j ∈ N : (j, i) ∈ E}
be the set of agent i’s neighbors. It is assumed that agent i
can observe the belief of agent j if there exists a directed
edge from j to i, that is, (j, i) ∈ E.

Agent i starts with the initial belief µi,0 (θ) that θ is the
true state of the world. At the end of period t, each agent
observes the beliefs of her neighbors. At the beginning of
the next period, agent i receives the private signal ωi,t+1, and
then uses the following rule to update her belief:

µi,t+1 (θ) = aiiµi,t (θ)
`i (ωi,t+1| θ)
mi,t (ωi,t+1)

+
∑
j∈Ni

aijµj,t (θ) , (1)

where mi,t (si) is defined for any si ∈ Si as

mi,t (si) =
∑
θ∈Θ

`i (si| θ)µi,t (θ) .

Using this rule, each agent updates her belief to a convex
combination of her own Bayesian posterior given only her

private signal and neglecting the social network, and her
neighbors’ previous period beliefs. aij is the weight agent
i assigns to the opinion of agent j, and aii, called the
self-reliance of agent i, is the weight she assigns to her
Bayesian posterior conditional on her private signal. We
assume that aij > 0 and

∑
j∈Ni∪{i} aij = 1 for the beliefs

to remain a probability distribution over Θ after the update.
We use A to denote the n × n matrix whose ij element

is aij , and use µt(θ) to denote the n dimensional column
vector whose ith element is µi,t(θ).

(Ω,F ,P) is the probability triple, where Ω = (
∏n
i=1 Si)

N,
F is the smallest σ-field that makes all ωi,t measurable, and
P = Pθ∗ is the probability distribution determining the real-
ization of signals.2 We use ω ∈ Ω to denote the infinite signal
sequence (ω1, ω2, . . . ), and E to denote the expected value
operator with respect to the probability measure P. Let Ft be the
filtration generated by the observations of all agents up to time t.

We say that the adapted random variables Xt and Yt are
asymptotically P-almost surely equal, denoted by Xt

aas
= Yt, if

there exist Ω̃ ∈ F such that P(Ω̃) = 1, and for all ω ∈ Ω̃ and
all ε > 0, there exist T (ω, ε) such that for all t1, t2 > T (ω, ε),

|Xt1 − Yt2 | < ε.

It is an easy exercise to show that if Xt
aas
= Yt and Zt

aas
= Wt,

then Xt ± Zt
aas
= Yt ±Wt and XtZt

aas
= YtWt.

For all t > 0, µi,t (·) and mi,t (·) are random functions
adapted to Ft, the former on Θ and the latter on Si. mi,t (si) is
the probability that agent i assigns, at time t, to signal si being
observed in the next time step, hence, it is called agent i’s one
step forecast. We can extend this notion to define the k-step
forecast m(k)

i,t (si,1, si,2, . . . , si,k) as the forecast at time t of
agent i that the signal sequence (si,1, si,2, . . . , si,k) ∈ (Si)

k

will be realized in the next k time steps. More formally,

m
(k)
i,t (si,1, . . . , si,k) =

∑
θ∈Θ

`i (si,1| θ) . . . (si,k| θ)µi,t (θ) .

III. ASYMPTOTIC LEARNING

In this section we find a set of sufficient conditions for
learning when agents use (1) to update their beliefs. We
maintain the following assumptions throughout the section:

Assumption 1: The social network is strongly connected.3
Assumption 2: There exists an agent with positive prior

belief on the true parameter θ∗.
Assumption 1 allows for information to flow from any

agent to any other one. Assumption 2 is similar to what is
known as a “grain of truth” in agents’ prior beliefs [16].

In [2] the authors show that if agents use the update in
(1), the ones having positive self-reliance learn to forecast
the immediate future correctly.4

Proposition 1 (Tahbaz-Salehi, Sandroni, and Jadbabaie):
If Assumptions 1 and 2 are satisfied, for any agent i such
that aii > 0,

mi,t (·)→ `i (·| θ∗) as t→∞,

with P-probability one.

2N stands for the set of natural numbers.
3A graph is called strongly connected if there exists a directed path from

any vertex to any other one.
4The proposition is proved assuming that all agents have positive

self-reliance. However, even if not all agents have positive self-reliance, the
proof still applies to those agents who do so, without any modifications.
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The authors also show that agents will learn the true state
asymptotically P−almost surely. However, to prove asymptotic
learning (in addition to maintaining Assumptions 1 and 2
and assuming that all agents have positive self-reliance), the
authors assume that for any agent i, there exists a signal
ŝi ∈ Si and a positive number δi such that

`i (ŝi| θ)
`i (ŝi| θ∗)

≤ δi < 1 ∀θ ∈ Θ such that θ 6= θ∗. (2)

This assumption asks for existence of a signal that is more
likely conditioned on θ∗ being the true state of the world
rather than conditioned on any other state in Θ being the
true state of the world. Under this assumption, and provided
that the conditions of Proposition 1 hold, the authors prove
that agents asymptotically learn the true parameter θ∗ with
P-probability one. The condition in (2) guarantees that there
exists a “revealing signal” that is observed infinitely often.

To prove asymptotic learning no assumption should be made
other than observational distinguishability of the true state
of the world θ∗ by agents who have positive self-reliance.

Assumption 3: There is no θ ∈ Θ that is observationally
equivalent to θ∗ from the point of view of all agents who
have positive self-reliance, that is,

Θ̄
def
=

⋂
{i∈N :aii>0}

Θ̄i = {θ∗} .

This is obviously a necessary condition for agents to learn
the true state of the world. In Proposition 4, which is the main
result of this section, we show that it is also sufficient. To this
end, we first show in Proposition 2 that correct forecasts of
agents can be extended into the future. To prove these results
we first need to present a preliminary lemma.

Lemma 1: If Assumptions 1 and 2 are satisfied, for any
agent i with positive self-reliance,

E [µi,t+1 (θ) | Ft]
aas
= aiiµi,t (θ) +

∑
j∈Ni

aijµj,t (θ) .

Proof: By Proposition 1,

E
[
`i (ωi,t+1| θ)
mi,t (ωi,t+1)

| Ft
]

=
∑
si∈Si

`i (si| θ∗)
`i (si| θ)
mi,t (si)

aas
=

∑
si∈Si

`i (si| θ) = 1. (3)

On the other hand, taking expectations of both sides of (1)
conditioned on Ft,

E [µi,t+1 (θ) | Ft] = aiiµi,t (θ)E
[
`i (ωi,t+1| θ)
mi,t (ωi,t+1)

| Ft
]

+
∑
j∈Ni

aijµj,t (θ) .

Evaluating the above equation for large t and using (3)
completes the proof.

The next result shows that not only agents eventually
forecast the next step correctly, as shown in Proposition 1,
but also they do so for the next k steps for any finite k.

Proposition 2: If Assumptions 1 and 2 are satisfied, for
any agent i with positive self-reliance,

m
(k)
i,t (si,1, . . . , si,k)→

k∏
r=1

`i (si,r| θ∗) as t→∞,

with P-probability one for all si,1, si,2, . . . , si,k ∈ Si.
Proof: To simplify notation, in the proof we drop

the subscript i from si,1, si,2, . . . , si,k and ωi,t+1. We use
induction on k. For k = 1 the result is proved in Proposition 1.
Let s2, . . . , sk ∈ Si be arbitrary. Multiplying both sides of (1)
by mi,t (ωt+1)

∏k
r=2 `i (sr| θ) and summing over θ ∈ Θ,

mi,t (ωt+1)m
(k−1)
i,t+1 (s2, . . . , sk)

= aiim
(k)
i,t (ωt+1, s2, . . . , sk)

+mi,t (ωt+1)
∑
θ∈Θ

k∏
r=2

`i (sr| θ)
∑
j∈Ni

aijµj,t (θ) .

By Lemma 1,

mi,t (ωt+1)m
(k−1)
i,t+1 (s2, . . . , sk)

aas
= aiim

(k)
i,t (ωt+1, s2, . . . , sk)

+mi,t (ωt+1)
∑
θ∈Θ

k∏
r=2

`i (sr| θ)E [µi,t+1 (θ) |Ft]

− aiimi,t (ωt+1)
∑
θ∈Θ

k∏
r=2

`i (sr| θ)µi,t (θ) .

We can change the order of sum and expectation using
Fubini’s theorem to get

mi,t (ωt+1)m
(k−1)
i,t+1 (s2, . . . , sk)

aas
= aiim

(k)
i,t (ωt+1, s2, . . . , sk)

+mi,t (ωt+1)E
[
m

(k−1)
i,t+1 (s2, . . . , sk) | Ft

]
− aiimi,t (ωt+1)m

(k−1)
i,t (s2, . . . , sk) .

By the induction hypothesis, m
(k−1)
i,t (s2, s3, . . . , sk) is

equal to
∏k
r=2 `i (sr| θ∗) and mi,t (ωt+1) is equal to

`i (ωt+1| θ∗), asymptotically P-almost surely. Furthermore,
m

(k−1)
i,t+1 (s2, . . . , sk) is bounded above by one for all t. Hence,

E
[
m

(k−1)
i,t+1 (s2, . . . , sk) | Ft

]
converges P-almost surely to∏k

r=2 `i (sr| θ∗).5 Therefore, reorganizing the terms of the
above expression,

m
(k)
i,t (ωt+1, s2, . . . , sk)

aas
= `i (ωt+1|θ∗)

k∏
r=2

`i (sr|θ∗) ,

which implies that∣∣∣∣∣m(k)
i,t (ωt+1, s2, . . . , sk)− `i (ωt+1|θ∗)

k∏
r=2

`i (sr|θ∗)

∣∣∣∣∣ aas= 0.

Taking expectations of the above expression conditioned on Ft
and using the bounded convergence theorem for conditional
expectations,

∑
s1∈Si

∣∣∣∣∣m(k)
i,t (s1, . . . , sk)−

k∏
r=1

`i (sr|θ∗)

∣∣∣∣∣ `i (s1|θ∗)
aas
= 0.

5This is due to the bounded convergence theorem for conditional
expectations. For a proof see, for instance, page 263 of [17].
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Since `i (s1| θ∗) > 0 for all s1 ∈ Si,

m
(k)
i,t (s1, s2, . . . , sk)

aas
=

k∏
r=1

`i (sr| θ∗) ,

for all s1, . . . , sk ∈ Si
The following proposition uses finiteness of Si to show that

for any agent i there exists a long enough signal sequence
that is more probable under θ∗ than any state θ /∈ Θ̄i.

Proposition 3: For any agent i, there exists a finite number
k̂i and signals ŝi,1, ŝi,2, . . . , ŝi,k̂i such that∏k̂i

r=1 `i (ŝi,r| θ)∏k̂i
r=1 `i (ŝi,r| θ∗)

≤ δi < 1 ∀θ /∈ Θ̄i. (4)

Proof: First assume that `i (si| θ∗) is a rational number
for all si ∈ Si. In this case we will prove that we can
take k̂i to be the least common denominator (LCD) of
{`i (si| θ∗)}si∈Si

and
(
ŝi,1, ŝi,2, . . . , ŝi,k̂i

)
to be a sequence

of signals in which the number of occurrences of each
si ∈ Si is exactly equal to the numerator of the fractional
representation of `i

(
si| θ∗

)
when the denominator is equal to

k̂i. In other words, we pick the signal sequence in which the
frequency of each signal is equal to its probability under θ∗.

Let k̂i = LCD
(
{`i (si| θ∗)}si∈Si

)
and kji = `

(
sji | θ∗

)
k̂i

for 1 ≤ j ≤Mi. We prove that `i (·| θ∗) is the unique proba-
bility measure for which the probability of the signal sequence(

s1
i , . . . , s

1
i︸ ︷︷ ︸

k1i times

, . . . , sMi
i , . . . , sMi

i︸ ︷︷ ︸
k
Mi
i times

)
is maximized. As a result, for this sequence `i (·| θ) /`i (·| θ∗)
is strictly less than one for any θ /∈ Θ̄i.

Let pji = Pi
(
sji
)

for 1 ≤ j ≤ Mi, where Pi is some
probability measure on Si. To simplify notation we drop the
subscript i whenever there is no risk of confusion. We solve
the following concave maximization problem:

max
p1,...,pM

(
p1
)k1(

p2
)k2

. . .
(
pM
)kM

subject to p1 + p2 + · · ·+ pM = 1,

(5)

where by
(
pj
)kj

we mean pj to the power of kj . This
problem has the unique solution

pj =
kj∑M
j=1 k

j
1 ≤ j ≤M.

By construction, this solution corresponds to the probability
measure `i (·| θ∗).

For the case that `i (si| θ∗) is irrational for some si ∈ Si,
the proof follows from continuity of the objective of the
optimization problem (5) with respect to

(
p1, p2, . . . , pj

)
and

the fact that rational numbers are dense in reals.
The condition in (4) is the k-step counterpart of the

condition in (2). We have shown that even though a single
signal revealing the true state might not exist, but there are
signal sequences that will serve to do so.

We are now ready to prove the main result of this section.
Proposition 4: If Assumptions 1–3 are satisfied,

µi,t (θ∗)→ 1 as t→∞,

with P-probability one for all i ∈ N .

Proof: Fix an arbitrary θ 6= θ∗. By Assumption 3, there
exists an agent, call her i, such that both aii > 0 and θ /∈ Θ̄i.
Let k̂i and

(
ŝi,1, ŝi,2, . . . , ŝi,k̂i

)
be a positive integer and a

sequence of signals, respectively, that satisfy (4) for agent i. By
Proposition 2, mi,t (si,1, · · · , si,k) → `i (si,1, · · · , si,k| θ∗)
with P-probability one for any sequence of finite length. We
can use this result for ŝi,1, ŝi,2, . . . , ŝi,k̂i to conclude that

∑
θ̃∈Θ

µi,t(θ̃)
`i

(
ŝi,1, . . . , ŝi,k̂i | θ̃

)
`i

(
ŝi,1, . . . , ŝi,k̂i | θ

∗
) − 1 −→ 0,

and therefore,

∑
θ̃∈Θ\Θ̄i

µi,t(θ̃)
`i

(
ŝi,1, . . . , ŝi,k̂i | θ̃

)
`i

(
ŝi,1, . . . , ŝi,k̂i | θ

∗
)+

∑
θ̃∈Θ̄i

µi,t(θ̃)−1→ 0,

with P-probability one. Using the result of Proposition 3 we
can conclude there exist δi > 0 such that for P-almost all ω,

0 ≤ (1− δi)
∑

θ̃∈Θ\Θ̄i

µi,t(θ̃)→ 0.

This proves that µi,t (θ) → 0 as t → ∞. Taking limits of
(1) as t→∞ and using the result proved above shows that∑

j∈Ni
aijµj,t (θ) converges to zero as t→∞ and so does

µj,t (θ) for all j ∈ Ni, with P-probability one. Proceeding
in the same way and using the strong connectivity assumption,
for all j ∈ N , µj,t (θ)→ 0. Thus, with P-probability one,

µi,t (θ)→ 0 as t→∞ ∀i ∈ N .

Since θ 6= θ∗ was arbitrary and µi,t(·) is a probability
distribution over Θ for all i and t,

µi,t(θ
∗)→ 1 as t→∞ ∀i ∈ N ,

with P-probability one.

IV. NECESSARY AND SUFFICIENT CONDITIONS

Which one of the Assumptions 1–3 are necessary for
learning? Clearly Assumptions 2 and 3 are necessary; violation
of Assumption 2 constrains agents to hold zero beliefs over θ∗
for all t and ω, whereas, if Assumption 3 is violated, then there
exists a state θ̂ that is not distinguishable from θ∗ by any of
agents, i.e., θ∗ 6= θ̂ ∈ Θ̄. In the latter case, agents’ signals con-
tain no information that could help them distinguish θ∗ from θ̂.

In the following proposition we formalize this intuition
by showing that if Assumption 3 is violated, agents will not
learn the true state, P-almost surely. However, if µi,0(θ∗) = 1
for all agents, then they will learn the true state for all ω.
To exclude this (non-generic) case, we make an assumption
similar to Assumption 2.

Assumption 4: There exists at least one agent i such that
µi,0(θ̂) > 0 for some θ∗ 6= θ̂ ∈ Θ̄.

Proposition 5: If Assumptions 1 and 4 are satisfied and
Assumption 3 is not satisfied,

µi,t(θ
∗) 9 1 as t→∞ ∀i ∈ N ,

with P-probability one.
The proof is along the lines of that of Lemma 2 in [2].

Proof: Let θ∗ 6= θ̂ ∈ Θ̄ be the state that satisfies Assump-
tion 4. Since the network is strongly connected, after at most n
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time steps all agents will have positive beliefs over θ̂. Taking
logarithms of (1) evaluated at θ̂ and using Jensen’s inequality,

logµi,t+1(θ̂) ≥ aii logµi,t(θ̂)

+ aii log
`i(ωi,t+1| θ̂)
mi,t(ωi,t+1)

+
∑
j∈Ni

aij logµj,t(θ̂)

Taking expectations conditioned on Ft,

E
[
logµi,t+1(θ̂)|Ft

]
≥ aii logµi,t(θ̂) +

∑
j∈Ni

aij logµj,t(θ̂)

+ aiiE

[
log

`i(ωi,t+1| θ̂)
mi,t(ωi,t+1)

|Ft

]
. (6)

On the other hand, by Jensen’s inequality and since
`i(·| θ̂) = `i(·| θ∗) for all agents i such that aii > 0,

E

[
log

`i(ωi,t+1| θ̂)
mi,t(ωi,t+1)

|Ft

]
= −E

[
log

mi,t(ωi,t+1)

`i(ωi,t+1| θ̂)
|Ft

]

≥ − logE

[
mi,t(ωi,t+1)

`i(ωi,t+1| θ̂)
|Ft

]
= 0,

for all agents with positive self-reliance. Therefore, (6) can
be written in vector form as

E
[
logµt+1(θ̂)|Ft

]
≥ A logµt(θ̂).

Since the network is strongly connected, by Perron-Frobenius
theorem, A has a positive left eigenvector v corresponding to
the unit eigenvalue. Left multiplying the above equation by v,

E

[∑
i∈N

vi logµi,t+1(θ̂)|Ft

]
≥
∑
i∈N

vi logµi,t(θ̂).

Therefore,
∑
i∈N vi logµi,t(θ̂) is a submartingale, with

respect to filtration Ft, which is bounded above by zero.
Hence, it converges P-almost surely. Since vi > 0 for all
i ∈ N , this implies that µi,t(θ̂) is P-almost surely uniformly
bounded away from zero for all i. Therefore, since µi,t(·) is a
probability distribution, µi,t(θ∗) is P-almost surely uniformly
bounded away from one for all i.

Assumption 1, on the other hand, is not necessary for
learning. For instance, if the network is not strongly connected,
but each agent can distinguish θ∗ from all the other states
by herself, then agents will still learn the true state. What
we really require is existence of information paths to any
agent from informed agents. In Theorem 6, which is the main
result of this paper, we find a set of necessary and sufficient
conditions for learning by dropping the strong connectivity
assumption and changing Assumptions 2 and 3 accordingly.
To do so, first, we have to introduce some definitions and
simple results. The following can be found in [13].

A group of agents N ′ ⊆ N is closed if there exist no two
agents i ∈ N ′ and j ∈ N \N ′ such that (j, i) ∈ E. A closed
group of agents N ′ is minimal if no non-empty strict subset
of N ′ is closed. The induced subgraph on any minimal closed
group of agents is strongly connected. Moreover, if a graph
(N , E) is strongly connected, then its only minimal closed
group is N .

The following assumption is sufficient for learning (together
with Assumption 2′ below) when agents use the update in (1).

Assumption 3′: For any minimal closed group N ′ and
any θ 6= θ∗, there exists at least one agent with positive
self-reliance who can distinguish θ from θ∗, that is,

Θ̄N ′
def
=

⋂
{i∈N ′:aii>0}

Θ̄i = {θ∗} ,

for all N ′ minimal closed.
We also have to modify Assumptions 2 and 4 by requiring

them to be satisfied for each closed and minimal group
separately.

Assumption 2′: For any minimal closed group N ′, there
exists at least one agent i ∈ N ′ such that µi,0(θ∗) > 0.

Assumption 4′: For any minimal closed group N ′, there
exists at least one agent i ∈ N ′ and one state θ∗ 6= θ̂ ∈ Θ̄N ′
such that µi,0(θ̂) > 0.

The following theorem generalizes Propositions 4 and 5
by summarizing the necessary and sufficient conditions for
learning (or absence thereof).

Theorem 6: The following statements are true for P-almost
all ω:

1) All agents will asymptotically learn the true state if
Assumptions 2′ and 3′ are satisfied.

2) At least one agent will not asymptotically learn the true
state if Assumption 3′ is not satisfied and Assumption 4′
is satisfied.
Proof: The key observation enabling the proof is that the

evolution of beliefs of agents belonging to a minimal closed
group is independent of that of other agents—or their existence
in the network. Therefore, every minimal closed group can
be analyzed ignoring the rest of agents. Every minimal closed
group is strongly connected. Therefore, Propositions 4 and 5
can be directly applied to them.

If Assumption 3′ is not satisfied and Assumption 4′ is
satisfied, by Proposition 5, there exists at least one closed
minimal group whose members do not learn the true state.
This proves the second part of the theorem.

On the other hand, if Assumptions 2′ and 3′ are satisfied,
Proposition 4 implies that agents in minimal closed groups
will learn the true state with P-probability one. Let N̄ be the
set of agents who do not belong to any minimal closed group.
If N̄ is the empty set, the proof is complete. In what follows
we assume that N̄ 6= ∅.

Evaluating (1) at θ∗ and taking conditional expectations,

E [µi,t+1(θ∗)| Ft] ≥ aiiµi,t(θ∗)
(
E
[
mi,t(ωi,t+1)

`i(ωi,t+1| θ∗)
| Ft
])−1

+
∑
j∈Ni

aijµj,t(θ
∗)

= aiiµi,t(θ
∗) +

∑
j∈Ni

aijµj,t(θ
∗),

where the inequality is Jensen’s. Note that this does not follow
from Lemma 1 as it is obtained without assuming strong connec-
tivity. Taking expectation of the above equation, in vector form,

E [µt+1(θ∗)] ≥ AE [µt(θ
∗)] ,

which by induction implies,

E [µ2t(θ
∗)] ≥ AtE [µt(θ

∗)] . (7)

Agents can be reordered such that A takes the following
canonical form:

A =

(
A11 A12

0 A22

)
,
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where A11, A12, and A22 are |N̄ | × |N̄ |, |N̄ | × |N \ N̄ |, and
|N \ N̄ | × |N \ N̄ | matrices respectively. Furthermore, A22 is
a block diagonal matrix with diagonal blocks corresponding to
different minimal closed groups of agents. By Assumption 3′
each of the diagonal blocks of A22 has at least one positive diag-
onal element. Therefore, each such diagonal block is primitive.
Consequently, the limit of At exists, as t→∞, and is equal to

lim
t→∞

At =

(
0 B
0 C

)
, (8)

where B and C are both stochastic matrices. All the above
definitions and results can be found in Chapter 8 of [18].

Taking lim inf’s of (7) and using (8) implies that for all
i ∈ N̄ ,

lim inf
t→∞

E [µi,t(θ
∗)] ≥

∑
j∈N\N̄

bij lim inf
t→∞

E [µj,t(θ
∗)] ,

where bij is the ij element of B. For all j ∈ N \ N̄ , µj,t(θ∗)
converges to one with P-probability one. Therefore, by Fatou’s
lemma, for all i ∈ N̄ ,

lim inf
t→∞

E [µi,t(θ
∗)] ≥

∑
j∈N\N̄

bij = 1.

Since µi,t(θ∗) takes value only in [0, 1], this implies that

µi,t(θ
∗)→ 1 as t→∞ ∀i ∈ N̄ .

Proof of Theorem 6 also provides some insight about the
outcome when Assumption 3 is satisfied only for some of
the minimal closed groups. If so, the set of agents can be
partitioned into “islands” of minimal closed groups plus a
set of agents that belong to no minimal closed group. With
P-probability one and in each island, either all agents learn
the true state or no agent learns the true state, depending
on whether Assumption 3 is satisfied in that island or not.
Therefore, if the social network contains more than one group
and Assumption 3′ is not satisfied, then agents in different
islands will (generically) never reach consensus.

Assumptions 2′ and 4′ are both satisfied for generic prior
beliefs. That is, if Q is an absolutely continuous probability
measure on agents’ prior beliefs, these assumptions are
satisfied with Q-probability one. Theorem 6 is the most general
characterization of necessary and sufficient conditions—even
for non-generic prior beliefs. However, if agents’ prior beliefs
are probabilistic, one can simplify Theorem 6 as follows.

Corollary 7: Let agents in a social network use (1) to update
their beliefs. Then the following statements hold for Q-almost
all prior beliefs and P-almost all observation sequences:

1) All agents will asymptotically learn the true state if and
only if Assumption 3′ is satisfied.

2) Not all agents will asymptotically learn the true state
if and only if Assumption 3′ is not satisfied.

This second part of the corollary does not follow from the
first one directly. The first statement implies that the second
one holds, only with a positive probability. One could then
prove the second part using a zero-one law. However, here
we have taken the direct approach.

V. CONCLUSION

We found a set of necessary and sufficient conditions for
learning in a non-Bayesian model of social learning. Learning
happens if agents have non-degenerate prior beliefs, the

state is observationally distinguishable, and there exists a
path of information flow to any agent from informed agents.
This is in contrast to the results regarding consensus which
require strong connectivity. As a result of constant inflow of
information about the truth in our model, agents can learn
the truth even in networks that fail to be strongly connected.
In spite of our result being “what one would hope for”, due to
the highly non-linear nature of our update, the proof required
establishing an intermediate result first: Once the immediate
future forecasts of agents become approximately correct, they
can be extended to indefinite future with a negligible error.

Under the same assumptions, not only agents eventually
learn the true state of the world, but also they do so
exponentially fast with an exponent that depends both on
network topology and on signal structure. Moreover, as a
corollary of exponential learning, eventually the consensus
dynamic becomes dominant. Hence, even if the true state is
not distinguishable, agents eventually reach consensus in a
strongly connected network. On the other hand, if the network
is not strongly connected, we will eventually have several
islands such that agents in each island will reach consensus,
whereas agents belonging to different islands might not. We
defer the presentation of these results to a future paper.
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