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Abstract— This paper presents a predictor based approach
to design robust controllers for nonlinear dead-time systems. A
dead-time compensation structure is proposed for constrained
control systems with bounded disturbances and dead-time.
It is shown that input-to-state stability (ISS) and constraint
satisfaction of the controlled system can be guaranteed if the
control law stabilizes (in the ISS sense) an equivalent nonlinear
dead-time free system. This result allows the simplification of
the controller synthesis which is performed for the dead-time
free model of the process. Some simulation results are used to
illustrate the performance obtained with the proposed scheme.

I. INTRODUCTION

Time delays, also known as dead-times, can be found in

most industrial processes dynamics. Dead-times are caused

mainly by the time required to transport mass, energy or

information, but they can also be caused by processing time

or by the accumulation of time lags in a number of simple

dynamic systems connected in series [1]. Processes with

delay are difficult to control using traditional controllers

mainly because of the following [2]: (i) the effect of the

disturbances is not noticed until a considerable time has

elapsed, (ii) the effect of the control action takes some time

to be noticed in the controlled variable, and (iii) the control

action that is applied based on the actual error tries to correct

a situation that originated some time before.

The undesired effects caused by dead-time in the closed-

loop system may be avoided using predictor based con-

trollers, which are extensions of the Smith Predictor [3]. The

main idea of these schemes is to remove dead-time from the

control loop by using a prediction of the process output [2].

Robust control of linear time delay systems has been

widely studied for the unconstrained case, see [1], [4] and

references therein. The case of input constrained systems

with disturbances is analyzed in [5], [6], [7], [8], however,

considering specific control strategies, and not a general

dead-time compensation scheme. In practice, dead-time com-
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pensation can be performed explicitly, outside the optimiza-

tion problem, in order to simplify the control algorithm or to

improve robustness [1]. This kind of prediction is based on

a nominal model, and disturbance effects are considered to

guarantee robust stability and constraint satisfaction. These

ideas are used in [9] to propose a robust MPC for constrained

dead-time systems.

Conceptually dead-time compensation structures used in

the linear case can be applied to nonlinear dead-time pro-

cesses, that is, the controller used in the dead-time free

system can be used in the delayed system through a proper

dead-time compensator. This idea was used to obtain ad-

equate practical results in several works, however without

stability proofs [1]. Thus, this work presents a dead-time

compensator robust control approach that can be used with

nonlinear systems with bounded additive uncertainties. The

proposed controller allows to extend the results obtained for

the linear case in [9] and mainly uses two principal ideas: an

explicit nonlinear dead-time compensation and a procedure

to bound the prediction error [10].

The paper is organized as follows. Problem statement and

dead-time compensation structure are presented, respectively,

in sections II and III. Section IV is dedicated to the stability

analysis where the main result is presented. Simulation

examples are presented in Section V and the concluding

remarks are discussed in Section VI.

Notation

For a certain signal v, vk denotes the value of the signal

at sampling instant k and v = {v0, v1, v2, · · · } denotes a

time sequence of the signal v. For given positive integers

i and j such that i < j, v[i,j] = {vi, · · · , vj}. 0 denotes

the sequence of a null signal with an appropriate dimension.

For a given sequence v, ‖v‖s = supk{‖vk‖s}, where ‖ · ‖s
denotes certain norm. Given a set Z ∈ R

p and a constant

γ ≥ 0, γZ = {γz : z ∈ Z}. For a given couple of sets

A,B ⊆ R
n, the Pontryagin difference A ⊖ B is defined as

the set {x : x+ b ∈ A, ∀b ∈ B}.

R+ denotes the set of reals that are positive or equal

to zero. A function α : R+ → R+ is a K function if it

is continuous in its domain, α(0) = 0 and it is strictly

increasing. A function α : R+ → R+ is a K∞ function

if it is a K function and lims→∞ α(s) = ∞. A function

β : R+×R+ → R+ is a KL function if β(t, s) is continuous,

is a K function in s for all t ≥ 0, strictly decreasing in t for

all s ≥ 0 and limt→∞ β(t, s) = 0 for all s ≥ 0.
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II. SYSTEM DESCRIPTION

Consider an uncertain nonlinear discrete time system with

dead-time given by

xk+1 = f(xk, uk−d) + wk (1)

where xk ∈ R
n is the state of the system, uk ∈ R

m is

the control vector, wk the additive uncertainty and d is the

dead-time.

The system is subject to hard constraints on the state and

on the control action

xk ∈ X, (2)

uk ∈ U (3)

where X and U are closed sets, both of them containing the

origin.

The additive uncertainty vector wk ∈ R
n is known to be

bounded in a compact set W that contains the origin,

wk ∈ W (4)

Notice that the additive uncertainty can model perturbed

systems and a wide class of model mismatch if the following

condition holds:

wk = [xk+1 − f(xk, uk−d)] ∈ W, ∀xk ∈ X,uk ∈ U

The only assumption on W is that it is a compact set [10].

The aim of this paper is to derive controllers to be designed

ignoring the delay but in such a way that constrained robust

stability holds in presence of dead-time. Then, it is useful to

define the model of the plant without the dead-time effect

x̃k+1 = f(x̃k, uk) + wk (5)

The solution of the system (5) for a initial state x, a

sequence of inputs u and disturbances w at sampling time

k is denoted as

φ̃(k, x,u,w) (6)

Then, taking into account the dynamics of the dead-time

we have that

xk = φ̃(k − d, xd,u[0,k−d−1],w[d,k−1])

Note that xd acts as initial state since it is the most recent

state that does not depend on the sequence u.

Ignoring the effect of the uncertainty in the plant, the

nominal trajectory is obtained. This is denoted, with an slight

abuse of notation, as

φ̃(k, x, u[0,k−1]) = φ̃(k, x,u[0,k−1],0) (7)

III. EXPLICIT DEAD-TIME COMPENSATION

A simple idea discussed in [11] can be applied to consider

a different representation of the system without dead-time.

From Eq. 1, we can see that there is no effect of uk over

xk+1, xk+2, ..., xk+d due to the dead-time. As consequence,

in absence of uncertainties, namely w = 0, xk+d depends

only on past controls, so this can be obtained from the

function φ̃ knowing the current state of the plant xk and

the input sequence u[k−d,k−1].

Fig. 1. Controller with explicit delay compensation structure.

Denoting the predicted state by x̂k, we have that

x̂k = φ̃(d;xk,u[k−d,k−1]) (8)

So, through a simple change of variable we can represent

the system (without uncertainty) cascaded by the dead-

time compensator by the following state-space model of the

system without dead-time

x̂k+1 = f(x̂k, uk) (9)

As it is well known since Smith’s seminal work [3], in the

absence of uncertainty, i.e. w = 0, the real state at sample

time k+d, xk+d, is equal to the predicted state x̂k. Then, in

absence of uncertainty, a control law uk = κ(x̂k) such that

stabilizes the dynamical model (9), also stabilizes the system

(1).

However, when w 
= 0, the former control structure,

depicted in figure 1, does not ensure that xk+d = x̂k, since

in general xk+d 
= φ̃(d;xk, u[k−d,k−1]). Then the stabilizing

design of the control law uk = κ(x̂k) may not guarantee the

robust stability of the closed-loop system.

The objective of this paper is to analyze the effect of

uncertainties on the dead-time compensator for an uncertain

non-linear system. Based on this, conditions to design the

control law to ensure robust stability and robust constraint

satisfaction of the whole closed-loop uncertain system will

be derived.

A. Analysis the effect of the uncertainty on the dead-time

compensator

Since the values that the uncertainty can take are unknown,

it is impossible to predict accurately the state of the real

system. In this section we show that, based on the set of

possible values that the uncertainty can take (W ), the effect

of the uncertainty on the predicted state can be bounded.

Furthermore, it is demonstrated that the uncertain system

cascaded with the dead-time compensator can be posed as

a dead-time free system with additive bounded uncertainties

as follows

x̂k+1 = f(x̂k, uk) + ŵk (10)

where x̂k is given by (8).

We consider the following assumption on the model of the

system
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Assumption. 1: The model function f(x, u) is such that

f(0, 0) = 0 and it is locally Lipschitz in x in the domain

X × U , i.e. there is a constant 0 < Lf < ∞ such that for

all x1, x2 ∈ X and for all u ∈ U ,

||f(x1, u)− f(x2, u)||s ≤ Lf .||x1 − x2||s (11)

The constant Lf denotes the Lipschitz constant in a given

norm denoted s-norm.

It is worth remarking that the Lipschitz continuity of a

function does not depend on the chosen norm in (11), but

the value of the Lipschitz constant does.

Under this assumption, the following lemma can be de-

rived

Lemma. 1: Consider that assumption 1 holds. Then the

function φ̃(j, x,u) is Lipschitz continuous in x, for all j ≥ 0,

x ∈ X and ui ∈ U . Furthermore Lj
f is a Lipschitz constant

value.

Proof: This lemma is proved by demonstrating that the

following property holds

‖φ̃(j, a,u[0,j−1])− φ̃(j, b,u[0,j−1])‖s ≤ Lj
f‖a− b‖s

This will be proved by recursion. For j = 1 this is immediate

observing that φ̃(1, a, u0) = f(a, u0). Assume that the

property holds for j − 1, then taking into account that

φ̃(j, a,u[0,j−1]) = f(φ̃(j − 1, a,u[0,j−2]), uj−1)

we have that

‖φ̃(j, a,u[0,j−1])− φ̃(j, b,u[0,j−1])‖s ≤

Lf‖φ̃(j − 1, a,u[0,j−2])− φ̃(j − 1, b,u[0,j−2])‖s ≤

Lj
f‖a− b‖s

Based on this lemma, the following theorem is stated.

Theorem. 1: Let a system be described by (1) and let

the predicted state x̂k given by (8). The dynamics of the

predicted state is given by

x̂k+1 = f(x̂k, uk) + ŵk

with ŵk ∈ Ld
fW and x̂0 given by (8) for k = 0.

Proof: By (8) we have that

x̂k+1 = φ̃(d;xk+1, u[k+1−d,k])

and additionally

f(x̂k, uk) = f(φ̃(d;xk, u[k−d,k−1]), uk)

= φ̃(d+ 1;xk, u[k−d,k])

= φ̃(d; f(xk, uk−d), u[k+1−d,k])

Then, since ŵk = x̂k+1 − f(x̂k, uk), in virtue of lemma 1,

we infer that

‖ŵk‖s = ‖x̂k+1 − f(x̂k, uk)‖s

≤ Ld
f‖xk+1 − f(xk, uk−d)‖s

= Ld
f‖wk‖s (12)

Therefore, it can be derived that

‖ŵk‖s ≤ Ld
fγ

Since W = {w : ‖w‖ ≤ γ}, we infer that ‖ŵk‖s ≤ Ld
fγ

and then ŵk ∈ Ld
fW .

This result is important because this allows to design

controllers based on x̂k. In order to derive the stability

property and constraint satisfaction, it would be interesting

to calculate a bound of the real state xk and the estimated

x̂k. Some important consequences of this fact will be further

discussed.

B. Bounding dead-time compensator error

Since there are mismatches between the real system and

the nominal model, the computed states using a nominal

model might differ from the real states of the system. In

order to consider this effect in the controller synthesis, a

bound on this difference will be computed. This bound is

based on the following lemma, based on the results of [10].

Lemma. 2: Consider that system (1) fulfils assumption 1

and let φ̃ be the function given in (6). Consider a given initial

state z0 and a couple of sequences u and w and define

zk = φ̃(k, z0,u[0,k−1],w[0,k−1])

z̄k = φ̃(k, z0,u[0,k−1])

then we have that

‖zk − z̄k‖s ≤
Lk
f − 1

Lf − 1
‖w[0,k−1]‖s (13)

Proof: This is proved by recursion. It is immediate to

see that for k = 0 the condition holds. Assume that it holds

for k − 1, that is,

‖zk−1 − z̄k−1‖s ≤
Lk−1
f − 1

Lf − 1
‖w[0,k−2]‖s

Then

‖zk − z̄k‖s = ‖f(zk−1, uk−1) + wk−1 − f(z̄k−1, uk−1)‖s

≤ Lf‖zk−1 − z̄k−1‖s + ‖wk−1‖s

≤ Lf

Lk−1
f − 1

Lf − 1
‖w[0,k−2]‖s + ‖wk−1‖s

≤

(

Lf

Lk−1
f − 1

Lf − 1
+ 1

)

‖w[0,k−1]‖s

=
Lk
f − 1

Lf − 1
‖w[0,k−1]‖s

Based on this lemma, the bound between the real state

of the uncertain system and the predicted one is calculated.

This is stated in the following theorem.

Theorem. 2: Consider a system (1) such that assumption

1 is satisfied. Then, for a given sequence of inputs u and
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uncertainty w, the difference between the states of the dead-

time compensator at sample time k − d, x̂k−d, and the real

state of the system xk is bounded by

‖xk − x̂k−d‖s ≤
Ld
f − 1

Lf − 1
‖w[k−d,k−1]‖s (14)

Proof: Notice that

xk = φ̃(k − d, xd,u[0,k−d−1],w[d,k−1])

= φ̃(d, xk−d,u[k−2d,k−d−1],w[k−d,k−1])

and

x̂k−d = φ̃(d, xk−d,u[k−2d,k−d−1])

Then, in virtue of lemma 2 we have that

‖xk − x̂k−d‖s ≤
Ld
f − 1

Lf − 1
‖w[k−d,k−1]‖s

and the theorem is proved.

Notice that the computed bound may be over-conservative

due to the global nature of the Lipschitz constant used. This

bound can be reduced considering some procedures as shown

in [10].

Therefore, the dead-time compensator error,

ek = xk − x̂k−d

has a cumulative effect and belongs to the set

E = {e ∈ R
n : ‖e‖s ≤

Ld
f − 1

Lf − 1
·γ} (15)

In the next section we will be developed results on closed

loop robust stability of dead-time systems based on dead-

time compensators. These results are based on the last two

theorems, and they are the main contribution of this paper.

IV. STABILITY ANALYSIS

A. Input-to-state stability

The concept of input-to-state stability (ISS ) has been

widely used in stability analysis and control synthesis of

nonlinear system [12]. Some of the well established results

in ISS for continuous time nonlinear system have been

extended to discrete-time nonlinear systems in [13]. Some

of the results used in controller synthesis based on dead-

time compensator presented in this paper are shown in this

section.

Definition. 1 (Jiang & Wang [13]): Consider a system

given by

xk+1 = F (xk, wk) (16)

where xk is the state of the system, and wk a bounded input

(disturbance) of the system such that wk ∈ W for all k. Then

the system is ISS if there are a KL-function β(·, ·) and a

K-function δ(·) such that

‖xk‖ ≤ β(x0, k) + δ(‖w[0,k−1]‖)
Note that an ISS system is asymptotically stable in absence

of input or if the input is decaying. Moreover, it has been

proved that this is equivalent to the existence of a stability

margin for the system [13]. If the input is merely bounded

then the evolution of the system is ultimately bounded in a

set which size depends on the bound of the input.

Input-to-state stability notion has demonstrated to be a

suitable framework to the robust stability analysis of con-

strained uncertain systems [14], and this will be used in this

paper for the robust stability results.

B. Main result

Now we are ready to state our main result: a input-to-

state stabilizing control law designed ignoring the dead-time

can be used to control de plant with dead-time by adding a

dead-time compensator.

In effect, consider that a control law κ : Rn → R
m has

been designed. Then the controlled system with the dead-

time compensator is given by the following equations

xk+1 =f(xk, uk−d) + wk

x̂k =φ̃(d, xk,u[k−d,k−1])

uk =κ(x̂k)

(17)

Then, in the following theorem sufficient conditions to design

the control law κ to ensure that the controlled system is

input-to-state stable and that the constraints are robustly

fulfilled.

Theorem. 3:

(i) If the control law uk = κ(x̂k) is such that the system

x̂k+1 = f(x̂k, κ(x̂k)) + ŵk

is ISS for all ŵk ∈ Ld
fW , then the controlled system

(17) is ISS for all wk ∈ W .

(ii) Besides, if the set X ⊖E is not empty and the control

law uk = κ(x̂k) is such that x̂k ∈ X⊖E for all k ≥ 0,

then xk ∈ X for all k ≥ d.

Proof:

Since the system x̂k+1 = f(x̂k, κ(x̂k)) + ŵk, there exists

a KL function β and a K function σ such that

‖x̂k‖s ≤ β(k, ‖x̂0‖s) + σ(‖ŵ[0,k−1]‖s)

From (12) it is derived that

‖ŵ[0,k−1]‖s ≤ Ld
f‖w[0,k−1]‖s

and hence

‖x̂k‖s ≤ β(k, ‖x̂0‖s) + σ(Ld
f‖w[0,k−1]‖s) (18)

Taking into account that ek = xk − x̂k−d, we have that

‖xk‖s =‖x̂k−d + ek‖s

≤‖x̂k−d‖s + ‖ek‖s

≤β(k − d, ‖x̂0‖s) + σ(‖w[0,k−d−1]‖s)

+
Ld
f − 1

Lf − 1
‖w[k−d,k−1]‖s

(19)

Now, define the new KL function β̂(t, s) = β(t, 2s) and

θ(s) = β̂(0, s). Based on this, the following property holds
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for any t, s1, s2 ∈ R+.

β(t, s1 + s2) ≤ β(t, 2max(s1, s2))

= max(β(t, 2s1), β(t, 2s2))

= max(β̂(t, s1), β̂(t, s2))

≤ β̂(t, s1) + β̂(t, s2)

≤ β̂(t, s1) + β̂(0, s2)

= β̂(t, s1) + θ(s2)

Considering that ‖x̂0‖s ≤ ‖xd‖s + ‖ed‖s and based on

the previous property for s1 = ‖xd‖s and s2 = ‖ed‖s, we

derive that

β(k − d, ‖x̂0‖s) ≤ β̂(k − d, ‖xd‖s) + θ(‖ed‖s) (20)

From theorem 2, the following property can be proved

‖ed‖s ≤
Ld
f − 1

Lf − 1
‖w[0,d−1]‖s (21)

Taking into account equations (19)-(21), we have that

‖xk‖s ≤ β̂(k − d, ‖xd‖s) + θ

(

Ld
f − 1

Lf − 1
‖w[0,d−1]‖s

)

+σ
(

Ld
f‖w[0,k−d−1]‖s

)

+
Ld
f − 1

Lf − 1
‖w[k−d,k−1]‖s

Since ‖w[0,d−1]‖s, ‖w[0,k−d−1]‖s and ‖w[k−d,k−1]‖s are

lower that or equal to ‖w[0,k−1]‖s, then there exists a K
function σ̃ such that

‖xk‖s ≤ β(k − d, ‖xd‖s) + σ̂(‖w[0,k−1]‖s)

Once the it is proved that the controlled system is ISS,

in virtue of theorem 2 we have that if x̂j ∈ X ⊖ E for all

j ≥ 0, then since ek ∈ E,

xk = x̂k−d + ek ∈ X

for all k ≥ d.

The main consequence of this result is that we can design

a control law for a modified uncertain system without delay

and this control law together with the dead-time compensator

will robustly stabilize the uncertain dead-time system.

Remark. 1: Due to the global nature of the Lipschitz

constant, the bounds derived from this might be quite con-

servative. Then a suitable choice of the norms and an ad-

hoc parameterization of the plant may lead to reduce the

conservativeness.

Remark. 2: A practical procedure to design the proposed

control structure based on the dead-time compensator may be

the following: first a control law is calculated for the system

without delay in such a way that the size of the admissible

uncertainty γ̂ is maximized . Then the Lipschitz constant

of the controlled system is calculated. Notice that this is

possible since the controller is already calculated, and this

constant is potentially quite smaller that the constant calcu-

lated for the open-loop system. Finally, given the estimated

bound of the uncertainty γ, the maximum allowable delay

is calculated as dmax = γ̂

Ld
f

. If d is lower than or equal to

dmax, then the plant can be robustly stabilized by our control

structure.

V. A CASE STUDY

This section presents a simulation case study that illus-

trates the proposed approach. The system under study is a

continuously stirred tank reactor (CSTR), that consists of

a tank in which a irreversible exothermic decomposition

reaction A → B takes place [15].

The temperature T inside the reactor is controlled using

a cold fluid which circulates in the reactor jacket. The

refrigerant flow is constant and its temperature Tc can be

controlled in an coolant system located at a certain distance

from the reactor. As this system has a fast time constant if

compared to the reactor its model is a simple gain, therefore

Tc can be modelled as:

Tc(t) = r(t− L)

where r(t) is the reference of the coolant system and L is

the delay caused by mass transportation.

The following equations describe the dynamics of the

process (reactor plus coolant system) considering T (t) as

process output and r(t) as manipulated variable, and assum-

ing: (i) a perfect mixture inside the tank, (ii) a first order

reaction kinetics, (iii) the tank volume V (and its level) is

constant, and (iv) a negligible dissipation to the external

environment.

dCA(t)

dt
=

q

V
(CAf − CA(t))− k0e

−E
RT (t)CA(t)

dT (t)

dt
=

q

V
(Tf − T (t)) +

−∆Hr

ρCp

k0e
−E

RT (t)CA(t)

+
UA

V ρCp

(r(t− L)− T (t))

where CA is the concentration of product A inside the tank,

CAf , Tf and q are respectively the concentration, tempera-

ture and flow of the influx of A. Moreover, ρ = 1000g/l,
k0 = 7.210101/min, UA = 5104J/minK, E/R = 8750K,

−∆Hr = 5104J/mol, Cp = 0.239J/gK.

The operation point of the reactor is obtained with the

inputs q = 100l/min, Tf = 350K,V = 100l and CAf =
1.0mol/l, achieving Co

A = 0.5mol/l, T o = 350K and ro =
300K [16]. Note that this equilibrium point is unstable.

A normalized model can be obtained using the following

change of variables:

x(1) =
CA − 0.5

0.5
;x(2) =

T − 350

20
;u =

r − 300

20
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Fig. 2. Closed loop performance with delay compensation.

where u is the control action and x(1), x(2) are the states

of the plant, which are limited in

x(1) ∈ [−0.21; 0.21], x(2) ∈ [−2; 0.25].

Discretizing the model with a sampling time Ts = 0.03
min and considering the uncertainties wk, the discrete model

is then giving by:

xk+1 = f(xk, uk−d) + wk

where d = 5 is the delay in samples and xk = [x(1)kx(2)k]
′.

For a null dead-time (d = 0) this process was controlled

in [16] using a discrete state feedback law uk = Kxk, where

K = [−1.5488−3.4658], in such a way that the closed-loop

system has robust stability for ‖ ŵk ‖≤ 0.1218.

Thus, applying the results in section IV, Lf = 1.6, and

‖ wk ‖=
‖ ŵk ‖

(1.6)5
≤ 0.0116

which means that the dead-time system is robust stable for

this uncertainty if a dead-time compensator is used together

with a controller u = Kx̂. To illustrate the performance of

this controller, a simulation is shown in figure 2 for x0 =
(−0.15, 1.8) and the signal wk generated randomly in the

defined range.

As can be seen the closed-loop system is stable and

because of the conservationism of the Lipschitz constant

computation, the dynamic behavior has no oscillations.

VI. CONCLUSIONS

This paper has presented a predictor based approach to

design robust controllers for nonlinear systems. The pre-

dictor scheme allows to compute an equivalent uncertainty

dead-time free system and to bound the equivalent model

uncertainty. This equivalent dead-time system is then used

to compute a stabilizing control law which guaranty robust

stability for the original one. As a dead-time free system

is used in this last step the control design is simplified. A

simulation case study was used to illustrate the theoretical

results.
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