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Abstract— This paper considers the optimal induced L2-
gain estimator design problem for infinite dimensional systems
with finite dimensional outputs. It is shown that this problem
is equivalent to a dual regulator design problem. Moreover
the relationship between the dual problem and a two player
differential game is established. A solution to the latter problem
is derived which, in turn solves the dual regulator design
problem and the optimal estimator problem.

I. INTRODUCTION

Distributed parameter systems occur in numerous engi-

neering applications. Estimation of non-measured outputs of

distributed systems based on measurements or observed out-

puts is of key importance to infer information of system vari-

ables from partial information. One typically distinguishes

estimation from filtering problems. Estimation problems are

concerned with the (optimal) approximation of non-observed

variables from measurements, filtering problems deal with

the estimation of state variables. Estimators and filters infer

estimates of variables in a causal manner from observed data.

The estimation problem is depicted in Fig. 1 and typically

involves a given dynamical system that is affected by noise

and that produces noise-corrupted measurements y, which

are subsequently used to estimate a non-observed signal

z. The estimator to be designed is a causal system that

processes measurements y to estimates ẑ.

In this paper we present a complete solution to the design

of a deterministic optimal L2-gain output estimator for linear

distributed parameter systems. Optimal L2-gain estimators

arise in finite time estimation problems and are analogues to

the H∞ estimators, which involve infinite time horizons of

the to be estimated signals. The optimal L2-gain estimator

design problem is of relevance, since its solution enables the

design of estimators in a robust estimation setting. In this

way estimators for uncertain systems can be designed.

For finite dimensional systems it is known that there is

a strong relation between estimation and control problems,

which is usually evidenced using arguments in duality the-

ory. This relation is studied for instance in [7] for finite

dimensional systems and in [8] for an H2-optimal estimator

design for distributed parameter systems. In this paper, we

will generalize this result to the optimal L2-gain estimator

design problem in an infinite dimensional setting. In the

work of Van Keulen and Curtain, for instance see [3], the

design of H∞ optimal output feedback controllers has been
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studied in an infinite dimensional setting. This work presents

methods for coupled estimator and controller design, which

are inherent for the H∞ framework. Estimator design in the

absence of a controller can be treated as a special case of the

approach in [3] and the resulting estimator will coincide with

the estimator derived in this work. However, the derivation

of a complete solution to the optimal L2-gain estimator

design problem presented here is of independent interest

as we consider this problem from different perspectives,

including a game theoretic analysis. The solution provides

an intuitive interpretation to the problem, since it is based

on a completion of the squares arguments. This method has

been used in [6] to solve the optimal H∞ regulator design

problem for distributed parameter systems.

The paper is organized as follows. In the first section

we formalize the optimal L2-gain estimator design problem

for distributed parameter systems. In the second section we

introduce notion of dual systems. In the third section we

introduce an L2-gain regulator design problem for a dual

system. We show the equivalence of the L2-gain estima-

tor design problem and the previously mentioned regulator

design problem. Subsequently, we will provide a solution

to the regulator design problem which is based on game

theory and a completion of the squares argument. Using this

result, an explicit state space realization of an optimal L2-

gain estimator is given in section four. In the last section

conclusions of the presented estimator design procedure are

drawn and recommendations for future work are given.

A. Notation:

We denote the inner product associated with a Hilbert

space X by 〈 , 〉. The induced inner product on L2(T,X ) is

denoted by 〈〈 , 〉〉, such that 〈〈x, x′〉〉 =
∫

T
〈x(τ), x′(τ)〉dτ .

We use || · ||2 to indicate the 2-norm on X as well as

L2(T,X ). For a operator A : L2(T,X) → L2(T,X),
its induced 2, 2-norm is the smallest number α for which

||Ax|| ≤ α||x||. The inner product on elements of Rn×m is

denoted by 〈M1,M2〉 = trM∗
1M2 where tr represents the

trace. Let M denote the function space L2(T× T,Rn×m).

II. PROBLEM STATEMENT

Let X be a Hilbert space, and let Y = R
m, Z = R

n, D1 =
R

d1 and D2 = Y be Euclidean spaces equipped with the

standard inner product. Consider the system Σp with states

x(t) ∈ X , outputs z(t) ∈ Z , measurements y(t) ∈ Y and
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Fig. 1. Interconnection of plant and estimator.

disturbances d1(t) ∈ D1, d2(t) ∈ D2, given by:

Σp :











ẋ = Ax+Gd1

y = Cx+ Sd2

z = Hx

(1)

The operator A : D(A) → X is a linear (possible

unbounded) operator and A is the generator of a strongly

continuous semi-group operator T (t) : X → X . In this work

we consider time instants t ∈ T = [0, te] with te ∈ [0,∞). It

is assumed that T (t) is exponentially stable, i.e. there exists

a positive constant α such that for all x0 ∈ X , there exists an

M such that ||T (t)x0|| ≤ Me−αt for all t ∈ T. Moreover,

we assume that the pair (A,C) is T-observable, which means

that x0 = 0 whenever CT (t)x0 = 0 for all t ∈ T. Let

d1 ∈ L2(T,D1) and d2 ∈ L2(T,D2).
We introduce a second system Σe, called the estimator. We

demand that Σe is a, possibly time variant, linear mapping

L2(T,Y) → L2(T,Z) which is causal and which can be

represented by the input/output-map:

Σe(M) : ẑ(t) :=

∫ te

0

M(τ, t)y(τ)dτ (2)

with M ∈ M, called the convolution kernel of the estimator.

The convolution kernel M is required to be in the class

M = L2(T×T,Rn×m), with M(τ, t) = 0 whenever τ > t.

We indicate the parametrization of the estimator with respect

to M by Σe(M) when this is convenient. The estimation

error is defined as e = z − ẑ. The estimator is connected

to Σp, as shown in Figure 1. The interconnection of Σp

with Σe, represents the transfer between the disturbances d1
and d2 and the error e. The composite system is defined by

the mapping Σp ∧ Σe : L2(T,D1 × D2) → L2(T,Z). The

induced L2-gain of the system after interconnection is given

by:

||Σp ∧ Σe(M)||2,2 = sup
d1∈L2(T,D1)
d2∈L2(T,D2)

x0∈X

||e||2
√

||x0||22 + ||d1||22 + ||d2||22

We consider the following problem:

Problem 1: Determine γ∗ such that?

γ∗ := inf
M∈M

||Σp ∧ Σe(M)||2,2.

Moreover, find the optimal estimator Mopt ∈ M such that

||Σp ∧ Σe(Mopt)||2,2 = γ∗ if it exists or, alternatively, find

for all ǫ > 0 the almost optimal estimator Mǫ ∈ M such

that γ∗ ≤ ||Σp ∧ Σe(Mǫ)||2,2 ≤ γ∗ + ǫ.

Note that this estimation problem involves an optimization

over a finite horizon. Also note that in this problem the

d1, d2 e

Σg

Σe

ẑ y

Fig. 2. Estimator design problem reformulated as controller design problem
for a generalized plant Σg .

disturbances (d1, d2) as well as the initial condition x0 are

assumed to be unknown in (1). This means that the L2-

gain depends on an optimization that involves the initial

condition as well. The estimation problem where the initial

condition x0 is known is different from the one considered

here. For known initial conditions the estimation involves the

following problem:

Problem 2: Determine γ∗(x0) together with an (almost)

optimal estimator M ′
ǫ where:

γ∗(x0) := inf
M∈M

sup
d1∈L2(T,D1)
d2∈L2(T,D2)

||e||2
√

||x0||22 + ||d1||22 + ||d2||22
.

We stress that this problem demands a different treatment.

In the next section we will show that the interconnection

of the system and the estimator can be represented as a

generalized plant. It will turn out that we can solve the

estimator design problem for the generalized plant using

duality theory.

III. GENERALIZED PLANT

In the remainder of this paper we will study the following

alternative representation of the problem. We introduce the

system Σg : (d1, d2, ẑ) → (e, y), the generalized plant

associated with the estimator design problem for Σp, which

is given by:

Σg :







































ẋ = Ax+
[

G 0 0
]







d1

d2

ẑ







[

e

y

]

=

[

H

C

]

x+

[

0 0 −I

0 S 0

]







d1

d2

ẑ







(3)

The interconnection of the generalized plan Σg and the

estimator Σe is realized by sharing of the variables y and

ẑ between Σg and Σe as shown in Figure 2. This intercon-

nection defines the operator Σg ∧ Σe : L2(T,D1 × D2) →
L2(T,Z). Observe that the following holds.

Lemma 1: Σp ∧ Σe(M) = Σg ∧ Σe(M).
The optimal L2-gain estimator Σe to be designed, is the

estimator which minimizes the L2-gain of the system Σg ∧
Σe. Hence, the estimator design problem can be equivalently

phrased as a regulator design problem.

A. Duality

We define the notion of a dual system for infinite di-

mensional systems, as done in [4] for finite dimensional

systems. We will characterize the dual system of Σg , i.e.
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we will provide a state space realization and use this to

establish a series of problems equivalent to the estimator

design problem. Consider the system Σ:

Σ :

{

ẋ = Ax+Bu

y = Cx+Du
(4)

defined on the interval t ∈ T. Assume x(0) = x0 ∈ X
and let A : D(A) → X be the infinitesimal generator of an

exponentially stable semi group S(t) for t ∈ T. It follows

from [2] that the unique mild solution is given by:

y(t) =CS(t)x0 +

∫ t

0

CS(t− τ)Bu(τ)dτ +Du(t)

=:G(x0, u)(t) (5)

where G is the system operator mapping from (x0, u) ∈
X ×L2(T,U) to y ∈ L2(T,Y). This mapping is well defined

under the assumption that A is exponentially stable.

Definition 1: Let Σ be a system with system operator

G defined as above. The dual system of Σ, denoted by

Σ∗, is the system with system operator G∗ : L2(T,Y) →
X × L2(T,U), and is defined as the Hilbert adjoint of

G. Hence, G∗ is the operator for which 〈〈G(x0, u), ỹ〉〉 =
〈〈(x0, u), G

∗ỹ〉〉 for all (x0, u) ∈ X × L2(T,U) and ỹ ∈
L2(T,U), where 〈〈(x0, u), (x̃0, ũ)〉〉 := 〈x0, x̃0〉X + 〈〈u, ũ〉〉.
The following theorem relates the state space realizations of

a system to the state space realization of its dual system. In

order to prove the theorem, the following lemma is needed.

Lemma 2: [5, theorem 10.8] The infinitesimal generator

of the adjoint semi group is the adjoint of the infinitesimal

generator of the original semi group.

Theorem 1: Let the system operator G be defined by

equation (5). Then the dual operator G∗ is given by G∗ỹ :=
(x̃0, ũ) with:

x̃0 =

∫ te

t

S∗(τ)C∗ỹ(τ)dτ

ũ(t) =

∫ te

t

B∗S∗(τ − t)C∗ỹ(τ)dτ +D∗ỹ(t)

where t ∈ T and S̃(t) : X → X is semi-group operator with

generator −A∗ for t ∈ T. Proof: Consider the following

differential equation with endpoint condition p(te) = 0:

Σ̃ :

{

ṗ = −A∗p− C∗ỹ

ũ = B∗p+D∗ỹ

Given that A is the infinitesimal generator of semigroup

S(t) for t ∈ T, it follows from Lemma 2 that A∗ is

the infinitesimal generator of S∗(t). Suppose x0, p0 ∈ X ,

u, ũ ∈ U and y, ỹ ∈ Y . We observe that the following

relation holds:

d

dt
〈x(t), p(t)〉+ 〈y(t), ỹ(t)〉 = 〈u(t), ũ(t)〉

since

d

dt
〈x(t), p(t)〉+ 〈y(t), ỹ(t)〉 =

〈Ax(t) +Bu(t), p(t)〉+ 〈Cx(t) +Du(t), ỹ(t)〉+

〈x(t),−A∗p(t)− C∗ỹ(t)〉 = 〈u(t), ũ(t)〉

Hence after integration over T = [0, te], we infer

〈x(te), p(te)〉 − 〈x0, p(0)〉+ 〈〈G(x0, u), ỹ〉〉 = 〈〈u, ũ〉〉

In particular, with the end-condition p(te) we find

〈〈G(x0, u), ỹ〉〉 = 〈x0, p(0)〉+ 〈〈u, ũ〉〉

By definition, the left hand side equals 〈〈(x0, u), G
∗ỹ〉〉 so

we infer that:

〈〈(x0, u), G
∗ỹ〉〉 = 〈x0, p(0)〉+ 〈〈u, ũ〉〉.

This shows that G∗ỹ = (x̃0, ũ), where x̃0 = p(0) with p(t)
the solution of (1) given by:

{

p(t) = S∗(te − t)p(te) +
∫ te

t
S∗(τ − t)C∗ỹ(τ)dτ

ũ(t) = B∗p(t) +D∗ỹ(t)

This concludes the proof.

The theorem above enables to determine the dual system

once system Σ and the initial condition is given.

The following lemma indicates that the L2-gain of a

system given by (4) and its dual system are equal.

Lemma 3: The L2 gain of a system Σ and its dual system

Σ∗ are equal, i.e ||Σ||2,2 = ||Σ∗||2,2. This is a standard result

for operators on a Hilbert space, which can be found in e.g.

[1, thm 3.9-2].

Using Theorem 1, it follows that Σ∗
g is characterized by:

Σ∗
g :































ṗ = −A∗p−
[

H∗ C∗

]

[

ẽ

ỹ

]







d̃1

d̃2
ˆ̃z






=







G∗

0

0






p+







0 0

0 S∗

−I 0







[

ẽ

ỹ

] (6)

From Lemma 3 it directly follows that the L2-gain Σg and

Σ∗
g are equal, i.e. ||Σg||2,2 = ||Σ∗

g||2,2.

We define an output feedback regulator Σc : L2(T,Z) →
L2(T,Y) with interconnection variables z and y. The inter-

connection of Σ∗
g and an output feedback regulator Σc is

realized by interconnection of the variables ỹ and y resp.
˜̂z and z as shown in Figure 3. This interconnection defines

the operator Σ∗
g ∧ Σ∗

c : L2(T,Z) → L2(T,D1 × D2). We

introduce the following lemma:

Lemma 4: Let Σg be given by (3) and let Σ∗
c be a output

feedback regulator for Σ∗
g and let the interconnections Σc ∧

Σg and Σ∗
c∧Σ

∗
g be as defined. Then following equality holds:

(Σc ∧ Σg)
∗ = Σ∗

c ∧ Σ∗
g.

The equality can be derived by straight forward calculation

of (Σc ∧Σg)
∗ and Σ∗

c ∧Σ∗
g using their state space represen-

tations.

We remark that the system Σ∗
e can be interpreted Σ∗

e as

output feedback regulator for Σ∗
g . Moreover we define a state

feedback regulator Σs : L2(T,X ) → L2(T,Y) with inter-

connection variables q and y. The interconnection of Σ∗
g and

a state feedback regulator Σs is realized by interconnection

of the variables p and q resp. ỹ and y. This interconnection

defines the operator Σ∗
g ∧Σs : L2(T,Z) → L2(T,D1×D2).
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ẽ d̃1, d̃2

Σ∗
g

Σ∗
c

ỹ ˆ̃z

Fig. 3. Controller design problem for the dual system of the generalized
plant Σ∗

g
.

We are now in the position to present the main contribution

of this paper. We will show that the estimator design problem

presented above can be formulated as regulator design prob-

lem for the dual system, interconnected as in figure 3. It will

turn out that due to the specific structure of the equivalent

regulator design problem, this problem admits an insightful

solution based on a completion of the squares argument.

IV. MAIN RESULT

The main result of this work will be to show the relation

between four problems associated to Σg , Σ∗
g and a two player

zero sum differential game. We will show that for one of the

problems a solution can be found, which can be used to solve

the related problems and finally provide a solution to the

estimator design problem defined in problem 1. Associated

to Σ∗
g , we introduce the linear functional Jγ(ỹ, ẽ, pte), which

is, for fixed γ, defined as:

Jγ(ỹ, ẽ, pte) = ||p(0)||22 + ||d̃1||
2
2 + ||d̃2||

2
2 − γ2||ẽ||22

and where (d̃1, d̃2, ẽ) satisfy the system evolution of Σ∗
g ,

given by the differential equation in (6). Secondly, we

introduce the following problems:

P. 1 Find an estimator Σe : L2(T,Y) → L2(T,Z) for

Σg such that the L2-gain of the interconnection is

less than γ, as shown in Figure 2,i.e. ||Σg∧Σe|| < γ

P. 2 Find an output feedback regulator Σc :
L2(T,Z) → L2(T,Y) such that the L2-gain

of the interconnection of Σ∗
g and Σc, as shown in

Figure 3, is less than γ, i.e. ||Σ∗
g ∧ Σc|| < γ

P. 3 Find a state feedback regulator Σs : L2(T,X ) →
L2(T,Y), with realization ys(t) = F (t)p(t) and

F (t) ∈ L(X ,Y), such that the L2-gain of the

interconnection of Σ∗
g and Σs is less than γ, i.e.

||Σ∗
g ∧ Σs|| < γ

P. 4 Two-player zero-sum differential game with full

state information feedback and value function

Jγ(ỹ, ẽ, pte). Find a strategy (yN ∈ L2(T,Ry),
(eN ∈ L2(T,Rz) such that a Nash equilibrium is

established. This is characterized by:

Jγ(yN , e, pte) ≤ Jγ(yN , eN , pte) ≤ Jγ(y, eN , pte)

for all y ∈ L2(T,Ry) and e ∈ L2(T,Rz).
P. 5 Find a strategy (yo(eo), eo) that establishes a sup-

inf equilibrium for Jγ in the sense that:

Jγ(yo(e), e, pte) = inf
y
Jγ(y, e, pte) for all e

and:

Jγ(yo(eo), eo, pte) = sup
e

inf
y
Jγ(y, e, pte).

In the remainder of this section we will show that the solution

of problem 5 provides a solution to all of the problems stated

above. This follows from the following theorems. The proofs

of the theorems are given at the end of this section. First the

relation between problem P1 and problem P2 is expressed

by the following theorem.

Theorem 2 (relation P1 and P2): The estimator Σe

solves problem P1 if and only if the controller Σc = Σ∗
e

solves problem P2.

Due to the special structure of the generalized plant, a

solution to the state feedback regulator design problem P3
provides a solution to the output feedback regulator design

problem P2.

Theorem 3 (Relation between P3 and P2): Suppose that

the state feedback regulator Σs implements a feedback law

ỹs(t) = Ftpt such that it solves P3. Then ys(t) provides a

solution to problem P2.

Next, we state the relation between problem P4 and problem

P3. It will turn out that the Nash equilibrium strategy

provides a solution to the state feedback regulator design

problem.

Theorem 4 (relation P4 and P3): If the zero sum

strategy (yN , eN ) establishes a Nash equilibrium for

Jγ(y, e, pte), then the strategy yN can be interpreted as a

state feedback regulator which solves P3.

Theorem 5 (relation P5 and P4): Suppose that a solu-

tion to the sup-inf problem P5 is given by the strategy

(yo(eo), eo). Then (yo(eo), eo) is a Nash equilibrium strategy

and provides a solution to problem P4.

The theorems show that the solution to problem P5 provides

a solution to P1 since P5 solves P4, P4 solves P3, P3
solves P2 and P2 solves P1. Before we proceed with the

proof theorems above, a number of lemmas regarding the

solution of P4 and P5 will be introduced. We show that

under full information feedback the two player zero sum

differential game has an unique Nash-equilibrium. To do so,

we first show that the value function Jγ can be rewritten in

a more convenient form.

Lemma 5: Suppose there exists a symmetric operator

P (t), which is for all p1, p2 ∈ D(A) a solution of differential

equation:

〈p1, Ṗ p2〉 =〈PA∗p1, p2〉+ 〈p1, PA∗p2〉+ 〈G∗p1, G
∗p2〉

−〈P (C∗(SS∗)−1C − γ−2H∗H)Pp1, p2〉. (7)

with P (0) = I . Then for all (d̃1, d̃2, ẽ, ỹ, ˜̂z) that satisfy (6)

we have:

Jγ(y, e, p(te))=〈pte , P (te)pte〉+||γ
−1HPp+ γe||22

+||(SS∗)−
1
2CPp+ (SS∗)

1
2 y||22 (8)

Proof: We introduce the identity V (p(t)) =
〈p(t), P (t)p(t)〉 and differentiate V with respect to t. We

1320



omit the time index for brevity.

V̇ (p) = 〈p, P ṗ〉+ 〈ṗ, Pp〉+ 〈p, Ṗ p〉.

Then we substitute the dynamics of Σ∗
g for ṗ. Given that

P solves the Ricatti equation for all p ∈ D(A∗), substitute

Ṗ (t) with the Ricatti equation with p1 = p2 = p(t):

V̇ (p) =〈p, P (−A∗p− C∗y −H∗e)〉

+ 〈−A∗p− C∗y −H∗e, Pp〉

+ 〈PA∗p, p〉+ 〈p, PA∗p〉+ 〈G∗p,G∗p〉

+ γ−2〈HPp,HPp〉 − 〈S−1CPp, S−1CPp〉

Subsequently, one can reformulate this using a completion of

the squares argument. We use d1 = G∗p and d2 = S∗y and

after integration of the right- and left-hand side from t = 0
to t = te one obtains an expression that equals the definition

of Jγ(y, e, pte):

〈p(0), P (0)p(0)〉+

∫ te

0

||d1(t)||
2
2 + ||d2(t)||

2
2 − γ2||e(t)||22dt

= 〈pte , P (te)pte)〉+

∫ te

0

||(SS∗)−
1
2CPp(t) + (SS∗)

1
2 y(t)||22

− ||γe(t)− γ−1HPp(t)||22 dt.

This concludes the proof.

From the result above a Nash equilibrium strategy that

provides a solution to P4 follows intermediately.

Theorem 6 (Solution to problem P4.): The strategy

(yN , eN ) which is definede as:

eN (t) = + γ−2HPp(t) (9a)

yN (t) =− (SS∗)−1CPp(t). (9b)

establishes a unique Nash equilibrium. The value of the

game under the equilibrium strategy is Jγ(yN , eN , pte) =
〈pte , P (te)pte〉. Under the Nash equilibrium strategy the

closed loop dynamics is given by:

ṗN (t) = (−A∗ + (C∗(SS∗)−1C − γ−2H∗H)P )pN (t).

Proof: Using Lemma 5 we rewrite the value function

Jγ(y, e, p(te)) as done in equation (8). When the value func-

tion is evaluated at (9) the quadratic terms vanish. By convex-

ity of the norms uniqueness of the Nash Equilibrium strategy

follows and we have that Jγ(yN , eN , pte) ≤ Jγ(y, eN , pte)
resp. Jγ(yN , e, pte) ≤ Jγ(yN , eN , pte). Therefore, the fol-

lowing inequality holds for all y ∈ L2(T,Ry) and e ∈
L2(T,Rz)

Jγ(yN , e, pte) ≤ Jγ(yN , eN , pte) ≤ Jγ(y, eN , pte),

which shows that yN , eN establishes a Nash equilibrium with

value Jγ(yN , eN , pte) = 〈pte , P (te)pte〉. The closed loop

dynamics follow immediately by substitution of the Nash

equilibrium strategy into (6).

A sup-inf strategy to solve problem P5 can be derived by

solution of two linear quadratic optimization problems. The

first problem solves the inf-problem parameterized by a fixed

but arbitrary disturbance strategy e to determine the strat-

egy yo(e) which minimizes Jγ(yo(e), e, p(te)). The second

problem solves the sup-problem to determine the strategy eo,

which maximizes the value function Jγ(yo(e), e, p(te)).
Lemma 6 (Solution to P5): A strategy which establishes

a sup-inf strategy to Jγ is given by:

yo(t) =− (SS∗)−1C(Γ + Λ)p(t)

eo(t) =γ2H(Γ + Λ)p(t)

where Γ and Λ solves the Ricatti equations given by (10)

resp. (11), with boundary values Γ(0) = I resp. Λ(0) = 0.

〈p1, Γ̇p2〉 =〈p1, AΓp2〉+ 〈p1,ΓA
∗p2〉+ 〈p1, GG∗p2〉

−〈p1,ΓC
∗(SS∗)−1CΓp2〉 (10)

〈p1, Λ̇p2〉 =〈p1, ÃΛp2〉+ 〈p1,ΛÃ
∗p2〉+ 〈p1,ΓH

∗HΓp2〉

−〈p1,Λ(C
∗(SS∗)−1C − γ−2H∗H)Λp2〉 (11)

where Ã = (A− Γ(C∗(SS∗)−1C − γ−2H∗H)). The proof

of this lemma is omitted for brevity. The solution can be

derived along the line of section 3 in [6].

A. Proofs of the main result

In next section we will provide a proof to theorems stated

before.

Proof: [Proof of theorem 2, relation P1 and P2. ] Let the

solution to problem P1 be given by Σe. Then the system

Σg ∧ Σe is defined by the interconnection of Σg with Σe

and satisfies ||Σg ∧Σe||2,2 ≤ γ. We define Σ∗
e : L2(T,Z) →

L2(T,Y) as the dual system of Σe. From Lemma 3 it follows

that ||(Σg∧Σe)
∗||2,2 ≤ γ. Moreover, from lemma 4 it follows

that (Σg ∧ Σe)
∗ = (Σ∗

g ∧ Σ∗
e), such that it follows that

||(Σ∗
g ∧Σ∗

e||2,2 ≤ γ. Therefore Σc = Σ∗
e provides a solution

to problem P2. The converse holds on the basis of the same

arguments.

Proof: [Proof of theorem 3, relation P3 and P2.] Given that

the regulator Σs : ys(t) = F (t)p(t) solves problem P3, it

follows that the interconnection of Σs and system Σ∗
g has

L2-gain less then or equal to γ. After interconnection of Σ∗
g

with Σs the system admits the following dynamics.

Σ∗
g ∧ Σs =

{

ṗ(t) = (−A∗ − C∗F (t))p(t)−H∗ẽ(t)

ys(t) = Fp(t), with: p(te) = 0.

From the generalized plant, equation (6) specifically, it

follows that ẽ = −˜̂z. Therefore ys(t) can be implemented

by a operator ˜̂z → y, by replacement of ẽ by −˜̂z in the

system above. This operator can be interpreted as an output

feedback regulator which solves problem P2.

Next we will show that a solution to P4 provides a solution

to P3.

Proof: [Proof of theorem 4, relation P4 and P3.] In The-

orem 6 it is shown that the equilibrium strategy can be

implemented as a state feedback law for system Σ∗
g . Given

that (yN , eN ) establishes a Nash equilibrium, for all e ∈ Z

we have Jγ(yN , e, pte) ≤ Jγ(yN , eN , pte). Moreover we

have that Jγ(yN , eN , pte) = 〈pte , P (te)pte〉, such that it

follows that Jγ(yN , e, pte) ≤ 〈pte , P (te)pte〉 for all e ∈
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L2(T,Z). For system Σ∗
g , we have defined pte = 0. There-

fore, we infer that if yN is applied to the system Σ∗
g then

||p(0)||22+||d1||
2
2+||d2||

2
2−γ2||e||22 ≤ 0 for all e ∈ L2(T,X ).

This is equivalent to:

sup
e∈L2(T,X )

||p(0)||22 + ||d1||
2
2 + ||d2||

2
2

||e||22
≤ γ2.

Therefore we conclude that if the system is driven with ỹ =
yN , the L2-gain of the system is less or equal to γ, which

concludes the proof.

When we compare the solutions to problem P4 and P5, the

relation between the Nash equilibrium strategy and the sup-

inf equilibrium strategy follows.

Proof: [Proof of theorem 5, relation P5 and P4] First we

make the following observation. Assume that solutions to the

Ricatti equations given by equations (7), (10) and (11) exist

with boundary values P (0) = I,Γ(0) = I and Λ(0) = 0.

Calculation shows that 〈p1, (Ṗ − (Γ̇ + Λ̇))p2〉 = 0 for all

p1, p2 ∈ D(A). Moreover it follows from the boundary

conditions that P (0) = Γ(0) + Λ(0). We conclude that

P (t) = Γ(t) + Λ(t). The equivalence of Nash equilibrium

strategy and the sup-inf strategy follows now follows from

the realizations of yo and yN resp. eo and eN .

In this section we have shown the equivalence between

the problems P1 and P2 and the relationship between the

problems P2 and P3, problem P3 and P4 and problem P4
and P5. This enables to solves the optimal L2-gain estimator

design problem. The solution to this problem will presented

in the next section.

V. SOLUTION TO ESTIMATOR DESIGN PROBLEM.

In this section we will derive the solution to the optimal

L2-gain estimator design problem with use of the relations

between the problems as established in the previous section.

Given the relation between problem P4 and P3 as stated

before, it follows that the Nash equilibrium strategy (yN , eN )
given by (9), also provides a state feedback law which im-

plements a state regulator that solves problem P3. Therefore,

we infer that the feedback law

ỹs(t) = −(SS∗)−1CP (t)p(t),

provides a solution to P3. With use of Theorem 3 an output

feedback regulator which solves P2 can be derived from the

solution to P3. We find that the output feedback regulator

with the following realization:

Σc :

{

ṗ(t) = (−A∗ + C∗(SS∗)−1CP (t))p(t) +H∗ ˜̂z(t)

ỹ(t) = −(SS∗)−1CP (t)p(t)

with p(te) = 0 solves P2. In this realization, P (t) is the

positive solution of the operator Ricatti equation (7) and

satisfies the boundary condition P (0) = I . The system

obtained after interconnection of the regulator Σc and the

plant Σ∗
g has L2-gain less then or equal to γ. With use of the

equivalence of Problem P1 and Problem P2 it now follows

that an estimator which solves problem P1 can be obtained

from dualization of the regulator Σc which solves problem

p2. Using the duality theory introduced in section III-A, it

now follows that an estimator to solve problem P1 is realized

Σe = Σ∗
c :

Σe :

{

ξ̇ = (A− PC(S∗S)−1C∗)ξ + PC∗(SS∗)−1y

ẑ = Hξ with: ξ(0) = 0,

(12)

where P (t) is again the solution to Ricatti equation given by

equation (7) with initial condition P (0) = I . We conclude

with the observation that the estimator solving problem P1
realizes the input/output mapping:

ẑ(t) =

∫ t

0

HTP (t)C(S∗S)−1C∗(t−τ)P (t)C∗(SS∗)−1y(τ)dτ,

where t ∈ T and TP (t)C(S∗S)−1C∗ is the mild evolution

operator with infinitesimal generator A−P (t)C(S∗S)−1C∗.

Remark 1: It is interesting to remark that the solution to

problem 2 proceeds along almost identical lines. That is,

for x0 = 0 one can shown that the solution to problem 2

is equal to (12) with the initial condition to the differential

equation (7) set to P (0) = 0.

VI. CONCLUSIONS

A method for the design of optimal L2-gain estimators for

distributed parameter systems is presented in this paper. The

method is based on duality theory for distributed parameter

systems with finite dimensional input and outputs. The

method exploits the special structure in the estimation prob-

lem, which enables to reformulate the estimation problem

as a regulation problem. It has been shown that there exist

a two player differential game problem for which the value

function is quadratic in its decision variables. The quadratic

structure enables one to apply a completion of the squares

argument to obtain the equilibrium strategy for the game.

It has been shown that the equilibrium strategy provides a

solution to the equivalent optimal L2-gain regulator design

problem and indirectly enables to solve the optimal L2-gain

estimator design problem.
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