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Abstract—This paper studies the adaptive control problem of
multi-input, multi-output (MIMO) piecewise linear systems, a
class of linear systems with switched parameters. A direct state
feedback model reference adaptive control (MRAC) scheme is
developed based on the LDS decomposition of high frequency
gain matrices of such systems to achieve closed-loop signal
boundedness and asymptotic output tracking performance. Sim-
ulation results on linearized NASA GTM models are presented
to demonstrate the effectiveness of the proposed scheme.

I. INTRODUCTION

Adaptive control of plants that are modeled or approximated

by linear time-invariant (LTI) systems has been studied exten-

sively in the literature [7], [15]. However, in many practical ap-

plications an LTI system model may be insufficient to describe

an actual plant. As an attempt to meet increasing performance

requirements over a wide range of operating conditions, we

consider the adaptive control problem of piecewise linear

systems in this paper.

By a piecewise system (also called a “switched system”

in the literature by many researchers), we mean a dynamical

system whose dynamics switches among a set of continuous-

time subsystems according to certain switching criteria. The

motivation to study piecewise linear systems is two-fold. On

the one hand, as shown in [10], [12], a nonlinear system may

be modeled as a piecewise linear system for control design,

which is expected to be capable of expanding the system

operating range. On the other hand, many practical systems are

of a hybrid nature and require several dynamical subsystems to

describe their behavior [8], e.g., the motion of an automobile

subject to a manual or an automatic transmission [1] and power

electronics [14]. Such systems also arise in aircraft flight

control applications, and a typical example is the linearized

dynamics of an aircraft at some chosen operating points over

its flight envelope, each corresponding to a set of constant

parameter matrices. With a sufficient number of operating

points chosen, transitions among them can be modeled as

parameter switches.

Despite the tremendous growth of research interest in sta-

bility analysis and control design of such systems over the

past two decades (see [8], [13] and the references therein),

an adaptive control approach to piecewise systems is largely

unexploited. An adaptive control scheme was presented in [3]

for bimodal piecewise linear systems, but the assumption of

canonical forms limits its applicability to system with more

general structures. The proposed research focuses on the devel-

opment of model reference adaptive control (MRAC) designs

for piecewise linear systems to achieve closed-loop stability

(signal boundedness) and asymptotic tracking performance,

in the presence of structural and parametric uncertainties and

repetitive system mode switches. Preliminary investigation by

the authors has shown that under a slow system mode switch

condition, the state feedback for state tracking design [10] can

achieve closed-loop stability and a small state tracking error

in the mean-square sense (asymptotic tracking for arbitrary

system mode switches under certain matching conditions [2]).

Asymptotic tracking performance is restored under the persis-

tency of excitation condition. For the output tracking design

[11], asymptotic tracking is ensured in addition to closed-loop

stability. For both designs, stability and asymptotic tracking

are accomplished for arbitrary system mode switches if a

common Lyapunov function exists. This paper is an extension

of the adaptive control design in [11] for SISO piecewise linear

systems to the MIMO case. It is shown that with the proposed

MRAC schemes, closed-loop stability and asymptotic tracking

performance are achieved for such systems, if the occurrence

frequency of parameter discontinuities is sufficiently low.

The paper is organized as follows. The formulation of

the adaptive control problem for piecewise linear systems is

presented in section II. In section III, the non-adaptive model

reference control problem is considered, and an MRAC design

is proposed, with the stability results established in Section

IV. For demonstration of the effectiveness of the proposed

adaptive control schemes, an illustrative example is given in

Section V, and some concluding remarks and future work are

given in Section VI.

II. PROBLEM STATEMENT

The adaptive state feedback control problem is formulated

for a piecewise linear system to make its output track a desired

trajectory generated from a reference model system. Indicator

functions are introduced to characterize system parameter

discontinuities, based on which an MRAC approach to such a

control problem is proposed in Section III.

A. Piecewise Linear Systems

Consider an M -input, M -output piecewise linear system

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = CTx(t), x(0) = x0,
(1)
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where x(t) ∈ R
n is the state vector and is available for

measurement, u(t) ∈ R
M is the control input to be specified

by an adaptive control law, y(t) ∈ R
M is the controlled

output, A(t) ∈ R
n×n and B(t) ∈ R

n×M are unknown

time-varying system parameter matrices, and C ∈ R
n×M is

an unknown constant parameter matrix. The unknown time-

varying matrices A(t) and B(t) can be expressed as

A(t) =

l
∑

i=1

Aiχi(t), B(t) =

l
∑

i=1

Biχi(t), (2)

where the parameter matrix set (Ai,Bi), i ∈ I �

{1, 2, . . . , l}, is called the ith system mode, and l is the

total number of system modes. Here, to characterize the

system mode switches and for a simple notation, the indicator

functions are introduced as follows:

χi(t) =

{

1, if (A(t),B(t)) = (Ai,Bi),
0, otherwise.

Since at each specific time instant t, the piecewise linear sys-

tem (1) can operate in one and only one system mode, the indi-

cator functions have the following properties
∑l

i=1 χi(t) = 1,

χj(t)χk(t) = 0, j �= k, j, k ∈ I.

The indicator functions contain knowledge of the durations

of time the system resides in each mode and the time instants

at which mode switches occur, which is useful for adaptive

control design. It is assumed that system mode switches can

be detected instantaneously; that is, although χ i(t) may not be

known a priori, they are available during system operation.

B. Control Objective

The control objective is to develop a state feedback control

law u(t) for the piecewise linear system (1) with param-

eter variations characterized in (2) such that all signals in

the closed-loop system are bounded, and the plant output

y(t) asymptotically tracks a reference signal ym(t), i.e.,

limt→∞(y(t) − ym(t)) = 0, with ym(t) generated from a

reference model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s), (3)

where ξm(s) is a common modified left interactor matrix for

the transfer matrix of each system mode, i.e.,

Gi(s) = CT(sI −Ai)
−1Bi, i ∈ I, (4)

and r(t) is a bounded, piecewise continuous external reference

input signal.

III. ADAPTIVE CONTROL DESIGN

A new state feedback controller structure is proposed in

this section for the piecewise linear system (1) to achieve

closed-loop stability (signal boundedness) and asymptotic out-

put tracking performance. The non-adaptive model reference

control problem is considered first, and a gradient design is

then presented to solve the adaptive control problem.

Assumptions. Suppose for the ith system mode the transfer

matrix of the system is as in (4). To design an adaptive

state feedback control law for output tracking, the following

assumptions are made for i ∈ I:

(A1) (Ai,Bi) are stabilizable and (C,Ai) are observable.

(A2) The zeros of Gi(s) are stable.

(A3) Gi(s) are strictly proper, have full rank, and a

common modified left interactor matrix ξm(s) is

known.

(A4) All leading principle minors ∆ij , j = 1, 2, . . . ,M , of

the high frequency gain matrices, defined as Kpi =
lims→∞ ξm(s)Gi(s), are nonzero with known signs.

(A5) The LDS decompositions of Kpi [6] are such that

Kpi = LsDsiSi, (5)

where Ls ∈ R
M×M is unity lower triangular, Si ∈

R
M×M are symmetric, positive definite, and

Dsi = diag{sign[∆i1]γi1, . . . , sign[
∆iM

∆iM−1
]γiM}

with γij > 0, j = 1, 2, . . . ,M , being arbitrary.

Under Assumption (A4), a gain matrix Kp ∈ R
M×M with

nonzero leading principle minors ∆j , j = 1, 2, . . . ,M , has

a unique LDU decomposition [6], [15], i.e., Kp = LD∗U ,

where L is unity lower triangular, U is unity upper tri-

angular, and D∗ = diag{∆1,
∆2

∆1
, . . . , ∆M

∆M−1
}. Note that

its LDS decomposition, Kp = LsDsS, is not unique in

that it follows from the unique LDU decomposition with

Ls = LDsU
−TD−1

s , S = UTD−1
s D∗U , and Ds =

diag{sign[∆1]γ1, . . . , sign[
∆M

∆M−1
]γM}, whose diagonal ele-

ments γj > 0 may be chosen arbitrarily.

Assumption (A5), that is, the high frequency gain matrix

Kpi of each system mode is assumed to have a common Ls

matrix in their LDS decompositions (5), is essential in the

derivation of the error model for adaptive control design to

avoid differentiation operations on the output tracking error

signal e(t), which is undesirable in practical applications

with the presence of noises in signals. This assumption is

automatically satisfied for the case when the system is single-

input, single-output [11]. For a set of high frequency gain

matrices Kpi ∈ R
M×M with M > 1, Ds may be carefully

chosen such that a common Ls follows. This is illustrated with

a simulation example in Section V.

A. Nominal Control Scheme

When system parameters are known, a model reference

controller can be applied to achieve closed-loop signal bound-

edness and asymptotic (exponential) tracking performance.

Controller structure. If Ai and Bi, i ∈ I, are known, the

following state feedback control law is applied

u(t) = K∗T
x (t)x(t) +K∗

r (t)r(t) (6)

with the controller parameters K ∗
x(t) =

∑l

i=1 K
∗
xiχi(t) and

K∗
r (t) =

∑l

i=1 K
∗
riχi(t), where K∗

xi ∈ R
n×M and K∗

ri ∈
R

M are defined to satisfy the plant-model matching condition:

CT(sI−Ai−BiK
∗T
xi )BiK

∗
ri = Wm(s), K∗−1

ri = Kpi. (7)
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The existence of K∗
xi and K∗

ri is guaranteed under Assump-

tions (A1)–(A2) [4]. Furthermore, A i +BiK
∗T
xi are stable.

Substituting (6) in (1) leads to the closed-loop system

ẋ(t) =

l
∑

i=1

(

(Ai +BiK
∗T
xi )χix(t) +BiK

∗
riχir(t)

)

y(t) = CTx(t),

(8)

Note that from (7)–(8), the output tracking error can be

expressed as e(t) = y(t) − ym(t) = ǫ0(t) with ǫ0(t) an

initial condition related term, ǫ0(t) = CT
Φ(t, t0)x(t0), where

Φ(t, t0) is the state transition matrix associated with the

homogeneous part of the system (8):

ż(t) = Am(t)z(t), (9)

where Am(t) =
∑l

i=1 Amiχi(t) with Ami � Ai +BiK
∗T
xi

being stable.

Exponential stability of (9) is sufficient for stability of (8),

which has been studied in [5]. It is well known that for

(9) to be exponentially stable, the time interval between two

consecutive mode switches should be long enough. Let the

increasing time sequence {tk}
∞
k=1 denote the time instants at

which system mode switches occur, T0 the minimum switching

time interval, i.e., T0 = mink∈Z+{tk−tk−1}, where Z+ stands

for all positive integers, and Pmi, Qmi ∈ R
n×n be symmetric,

positive definite satisfying

AT

miPmi + PmiAmi = −Qmi, i ∈ I. (10)

Due to the stability of Ami, there exist ami, λmi > 0 such

that ‖eAmit‖ ≤ amie
−λmit. Define am = maxi∈I ami,

λm = mini∈I λmi, α = maxi∈I λmax[Pmi], and β =
mini∈I λmin[Pmi], where λmin[·] and λmax[·] denote the min-

imum and maximum eigenvalues of a matrix. The following

lemma gives a lower bound on T0 that ensures exponential

stability of (9):

Lemma 1 [11]. The homogeneous system (9) is exponentially

stable with decay rate σ ∈ (0, 1/2α) if the minimum switching

time interval T0 satisfies

T0 ≥
α

1− 2σα
ln(1 +µ∆Am

), µ =
a2m
λmβ

max
i∈I

‖Pmi‖, (11)

where ∆Am
stands for the largest difference between any two

modes of Am(t), i.e., ∆Am
= maxi,j∈I‖Ami −Amj‖.

Stability and tracking performance. With the model

reference controller (6) applied to the piecewise linear system

(1), we have closed-loop stability and exponential tracking

performance as stated in the following lemma:

Lemma 2. All signals in the closed-loop system (8) are

bounded and the output tracking error e(t) = y(t) − ym(t)
with ym(t) from (3) converges exponentially to zero if the

minimum switching time interval T0 satisfies (11).

Proof: Closed-loop signal boundedness and the fact that

Φ(t, t0) ≤ ce−σ(t−t0) for some c > 0 under the condition

(11) follow from Lemma 1. Exponential output tracking per-

formance can be concluded since e(t) = y(t) − ym(t) =
CT

Φ(t, t0)x(t0). ∇

Remark 1: In the state feedback state tracking design for

piecewise linear systems [10], a plant-model matching con-

dition in the form of Ai + BiK
∗T
xi = Ami, BiK

∗
ri = Bmi

is crucial and certain structural information about the plant

parameter matrices Ai, Bi are needed for the specification of

Ami, Bmi in the piecewise linear reference model system. In

the output tracking case, such restrictive matching conditions

are relaxed; in particular, the triple (Ai+BiK
∗T
xi ,BiK

∗
ri,C

T)
here is only a state space realization of the transfer ma-

trix Wm(s), to ensure input-output, piecewise plant-model

matching, which can always be satisfied under the stated

assumptions. In other words, the existence of the parameter

matrices K∗
xi, K

∗
ri is guaranteed. �

B. Adaptive Control Scheme

Since Ai, Bi, i ∈ I, are unknown, the nominal controller

parameters K∗
xi and K∗

ri are also unknown, and the model

reference control law (6) cannot be implemented. An adaptive

control law with its parameters updated from some adaptive

laws is needed.

Controller structure. The adaptive version of (6) is pro-

posed as follows:

u(t) = KT

x (t)x(t) +Kr(t)r(t), (12)

where Kx(t) =
∑l

i=1 Kxi(t)χi(t), Kr(t) =
∑l

i=1 Kri(t)χi(t). The parameter matrices Kxi(t), Kri(t)
are the adaptive estimates of K∗

xi(t) and K∗
ri(t), respectively,

and are updated from some adaptive laws to be developed.

By applying the adaptive control law (12) to the plant (1)

and defining K̃x(t) = Kx(t) − K∗
x(t), K̃r(t) = Kr(t) −

K∗
r (t), K̃xi(t) = Kxi(t)−K∗

xi, K̃ri(t) = Kri(t)−K∗
ri, the

closed-loop system follows:

ẋ(t) =

l
∑

i=1

(

(Ai +BiK
∗T
xi )χi(t)x(t) +BiK

∗
riχi(t)r(t)

)

+

l
∑

i=1

Bi

(

K̃T

xi(t)χi(t)x(t) + K̃ri(t)χi(t)r(t)
)

,

y(t) = CTx(t).
(13)

In view of (3) and (7), the tracking error equation is

e(t) = Wm(s)

[

l
∑

i=1

KpiΘ̃
T

i χiω

]

(t) + ǫ0(t) (14)

where ǫ0(t) is an initial condition related term, and

Θ̃i(t) = Θi(t) − Θ
∗
i (t), Θi(t) = [KT

xi(t),Kri(t)]
T, Θ∗

i =
[K∗T

xi ,K
∗
ri]

T, and ω(t) = [xT(t), r(t)]T.

Error model. With (3) and (14), it follows that

ξm(s)[e](t) =

l
∑

i=1

KpiΘ̃
T

i (t)χi(t)ω(t), (15)
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after ignoring the term ǫ0(t). To deal with the parametric

uncertainties in Kpi, their LDS decompositions are used under

Assumptions (A4)–(A5). Substituting (5) into (15) leads to

L−1
s ξm(s)[e](t) =

l
∑

i=1

DsiSiΘ̃
T

i (t)χi(t)ω(t). (16)

By introducing Θ
∗
0 = L−1

s −I, which is lower triangular with

zero diagonal elements, we obtain

Θ
∗
0ξm(s)[e](t) + ξm(s)[e](t) =

l
∑

i=1

DsiSiΘ̃
T

i (t)χi(t)ω(t).

Operating both sides of the above equation by h(s)I, where

h(s) = 1/f(s) with f(s) a monic stable polynomial of degree

equal to the maximum degree of ξm(s), leads to

[0, θ∗T
2 η2(t), θ

∗T
3 η3(t), . . . , θ

∗T
M ηM (t)]T + ē(t)

=

l
∑

i=1

DsiSih(s)[Θ̃
T

i χiω](t).

where θ∗
j ∈ R

j−1, j = 2, . . . ,M , denotes the

jth row elements of Θ
∗
0 under its diagonal, ē(t) =

ξm(s)h(s)[e](t) = [ē1(t), ē2(t), . . . , ēM (t)]T, ηj(t) =
[ē1(t), ē2(t), . . . , ēj−1(t)]

T ∈ R
j−1.

Define the estimation error signal

ǫ(t) =[0, θT

2 (t)η2(t), θ
T

3 (t)η3(t), . . . , θ
T

M (t)ηM (t)]T

+ ē(t) +
l

∑

i=1

Ψi(t)ξi(t),
(17)

where θj(t), j = 2, 3, . . . ,M , are the estimates of θ∗
j , and

Ψi(t) are the estimates of Ψ∗
i = DsiSi, and

ξi(t) = Θ
T

i (t)ζi(t)−h(s)[ΘT

i χiω](t), ζi(t) = h(s)[χiω](t).

We can obtain the error model

ǫ(t) =[0, θ̃T

2 (t)η2(t), θ̃
T

3 (t)η3(t), . . . , θ̃
T

M (t)ηM (t)]T

+

l
∑

i=1

Ψ̃i(t)ξi(t) +

l
∑

i=1

DsiSiΘ̃
T

i (t)ζi(t),
(18)

where θ̃j(t) = θj(t) − θ∗
j , Ψ̃i(t) = Ψi(t) − Ψ

∗
i (t) are the

parameter errors.

Adaptive laws. Based on the error model (18), we propose

the following gradient adaptive laws to update θ j(t), Θi(t),
and Ψi(t), i ∈ I, j = 2, 3, . . . ,M :

θ̇j(t) = −
Γθjηj(t)ǫj(t)

m2(t)
, Γθj = Γ

T

θj
> 0 (19)

Θ̇
T

i (t) = −
Dsiǫ(t)ζ

T

i (t)

m2(t)
, (20)

Ψ̇i(t) = −
Γiǫ(t)ξ

T

i (t)

m2(t)
, Γi = Γ

T

i > 0 (21)

where ǫ(t) = [ǫ1(t), ǫ2(t), . . . , ǫM (t)]T is as defined in (17),

Γθj and Γi are the adaptation gain matrices, and m2(t) =

1+
∑l

i=1

(

ζT

i (t)ζi(t) + ξTi (t)ξi(t)
)

+
∑M

j=2 η
T

j (t)ηj(t) is the

normalizing signal.

Along the line of derivation in this section, LDU and SDU

decomposition based designs can be developed for adaptive

state feedback control of piecewise linear systems for output

tracking. Similar to Assumption (A5), the controlled sys-

tem modes in these designs need to share certain common

structural characteristics (a common L matrix in the LDU

based deisign, or a common S matrix in the SDU based

design). When these assumptions are not satisfied, however,

the unparameterized uncertainties would lead to the loss of

the desired signal properties (see Lemma 3 in the next sec-

tion), and closed-loop system stability and asymptotic tracking

performance may not be concluded.

IV. STABILITY ANALYSIS

In this section, we analyze the stability and asymptotic

tracking performance of the closed-loop system with the

piecewise linear system (1), the reference model system (3),

and the adaptive control law (12) updated from the adaptive

laws (19)–(21). Some desired properties of the adaptive laws

are presented first, which will then be used to establish the

asymptotic tracking performance.

The adaptive laws (19)–(21) have the following desired

properties for i ∈ I, j = 2, 3, . . . ,M :

Lemma 3. The adaptive laws (19)–(21) ensure that

θj(t),Θi(t),Ψi(t) ∈ L∞, and
ǫ(t)
m(t) , θ̇j(t), Θ̇i(t), Ψ̇i(t) ∈

L2 ∩ L∞.

Proof: Consider the Lyapunov function candidate

V =
1

2

M
∑

j=2

θ̃T

j Γ
−1
θj

θ̃j +

l
∑

i=1

(

tr[Ψ̃T

i Γ
−1
i Ψ̃i] + tr[Θ̃iSiΘ̃

T

i ]
)

.

Its time derivative along the trajectories of (19)–(21) is

V̇ = −
M
∑

j=2

θ̃T

j ηjǫj

m2
−

l
∑

i=1

ξTi sΨ̃
T

i ǫ

m2
−

l
∑

i=1

ζT

i Θ̃iSiDsiǫ

m2

≤
ǫTǫ

m2
≤ 0

This implies that θj(t),Θi(t),Ψi(t) ∈ L∞,
ǫ(t)
m(t) ∈ L2 ∩

L∞, and from (19)–(21) and the boundedness of
ηj(t)
m(t) ,

ζi(t)
m(t) ,

ξi(t)
m(t) , we also have θ̇j(t), Θ̇i(t), Ψ̇i(t) ∈ L2 ∩ L∞. ∇

With Lemma 3, the following results can be eastablished:

Theorem 1. All signals in the closed-loop system with the

piecewise linear system (1), the reference model system (3),

and the control law (12) updated by the adaptive laws (19)–

(21) are bounded, and the tracking error satisfies

lim
t→∞

e(t) = lim
t→∞

(y(t)− ym(t)) = 0, e(t) ∈ L2,

for any initial condition, if the minimum switching time

interval T0 satisfies (11).
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Although this is a state feedback control design, a direct

Lyapunov stability analysis is not applicable because the state

error is not available in this output tracking case. Closed-loop

signal boundedness can be proved by first using a reduced-

order state observer design of the piecewise linear system (1)

to parameterize the state feedback controller structure in (6)

into an output feedback form. A filtered system output y(t) is

then expressed in a feedback framework that is suitable for the

application of the small gain theorem and with the the Barbălat

Lemma and the signal properties as above to conclude signal

boundedness and asymptotic output tracking.

The minimum switching time interval requirement (11)

is for ensuring internal stability in the presence of system

mode switchings. It can be relaxed to arbitrarily fast mode

switchings under additional conditions, such as these stated in

the following corollaries:

Corollary 1. If ∆Am
= 0, i.e., Ai+BiK

∗T
xi = Am, i ∈ I, for

K∗
xi in (7), then closed-loop stability and asymptotic output

tracking are achieved for arbitrary system mode switches.

Proof: The condition of (11) reduces to T0 > 0 with ∆Am
= 0,

and the stability and asymptotic tracking performance follow

from Theorem 1. ∇

Corollary 2. If the Ami matrices in (10) share a common

Lyapunov matrix Pm, such that AT

miPm +PmAmi = −Qmi

for some symmetric, positive definite Qmi, then closed-loop

stability and asymptotic output tracking are achieved for

arbitrary system mode switches.

Proof: Consider a continuous Lyapunov function candidate

V = zT(t)Pmz(t) for the homogeneous system (9). It

follows that V̇ ≤ −(γ/α)V , for γ = mini∈I λmin[Qmi],
α = λmax[Pm]. Therefore exponential stability of (9) is

concluded for arbitrary mode switches, so is the closed-

loop stability. Asymptotic output tracking performance follows

from Theorem 1. ∇

Compared with the state tracking case [10], [12], where

the reference state trajectory is specified by a piecewise linear

system in state space form, the conditions in Corollary 2 are

stronger, because in addition to the existence of a common

Lyapunov matrix, the set of Ami have to satisfy the plant

model matching condition (7) due to the specification of the

LTI reference model system (3) in input/output form. Systems

in certain canonical forms, e.g., controllable canonical form,

fit in this context, and an illustrative example is given in [11]

for the SISO case.

In the output tracking design, the analysis method used is

analogous to the conventional state feedback output tracking

design for an LTI plant. An estimation error ǫ(t) (along

with some auxiliary signals) is defined as in (17) and the

proposed gradient adaptive laws are such that the desired

signal properties in Lemma 3, i.e., the boundedness of

parameter estimates, and θij(t),Θi(t),Ψi(t) ∈ L∞, and
ǫ(t)
m(t) , θ̇ij(t), Θ̇i(t), Ψ̇i(t) ∈ L2 ∩ L∞ remain in spite of

the presence of mode switchings, and these properties help

establish signal boundedness and the asymptotic tracking

performance in a feedback framework for which small gain

theorem can be applied. The only difference in the analysis

with respect to the conventional output tracking design is the

requirement on a minimum mode switching time interval T 0,

which is needed to ensure the exponential decaying of the

initial condition related term ǫ0(t) and internal stability of the

closed-loop system.

On the other hand, in the state feedback state tracking design

for the general case [10], an analogous Lyapunov analysis to

the conventional state tracking design cannot be carried out

due to the nonexistence of a common Pm matrix for Ami,

in general. A piecewise continuous Lyapunov function was

considered, instead. However, the minimum switching time

interval requirement for ensuring a stable reference model

system cannot ensure bounded parameter estimates, thus a

parameter projection algorithm is needed. Additional switch-

ing time interval requirements are imposed for establishing

the boundedness of e(t) with the boundedness of parameter

estimates. Asymptotic state tracking performance cannot be

concluded due to the loss of e(t) ∈ L2 property.

V. AN ILLUSTRATIVE EXAMPLE

Simulations are performed to demonstrate the system sta-

bility and tracking performance with the proposed adaptive

control schemes applied to a piecewise linear system model

of the NASA GTM [9] at multiple operating points. It is to be

noted that in the simulations, switches between the chosen

linearized GTM models are time-dependent for illustration

purposes, while transitions of operating points of the nonlinear

GTM system are state-dependent. Extensions of the proposed

adaptive control scheme in this paper for piecewise linear

systems to be applicable to nonlinear systems are under

investigation.

For simplicity of presentation, we choose l = 2, and trim

the GTM at steady-state, straight, wings-level flight conditions

at 80 knots and 90 knots at 800 ft., respectively, to obtain

a piecewise linear lateral system model in the form of (1),

where x = [v, p, r, φ, ψ]T with the elements being the per-

turbed aircraft velocity component along the y-body-axis (fps),

angular velocity along the x- and z-body-axis (crad/s), roll

angle (crad), and yaw angle (crad), respectively. The outputs

are chosen as y = [v, ψ]T, while the control inputs are the

perturbed aileron deflection δa and rudder deflection δr, i.e.,

u = [δa, δr]
T, and the nominal parameter matrices are

A1 =











−0.6137 0.0959 −1.3454 0.3210 0

−66.3000 −6.7565 1.8813 0 0

24.1200 −0.3162 −1.4992 0 0

0 1.0000 0.0691 0.0002 0

0 0 1.0000 0 0











,

A2 =











−0.6870 0.0801 −1.5153 0.3213 0

−72.9200 −7.5625 1.8623 0 0

27.3600 −0.3078 −1.6865 0 0

0 1.0000 0.0513 0.0001 0

0 0 1.0000 0 0











,
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B1 =











−0.0274 0.4892

−90.0900 29.6300

−2.5200 −46.8300

0 0

0 0











,

B2 =











−0.0396 0.6160

−116.5300 38.2700

−3.1300 −59.5300

0 0

0 0











, C =











1 0

0 0

0 0

0 0

0 1











.

It is clear that M = 2, n = 5, and with the choice of the

modified left interactor matrix ξm(s) = diag{s+1, (s+1)2},

the high frequency gain matrices can be computed, from which

it follows that sign[∆11] = −1, sign[∆12] = 1, sign[∆21] =
−1, sign[∆22] = 1, and with the choice of Ds1 = −100I,

Ds2 = diag{−100,−197.8998}, we have

Ls1 =

[

1 0

109.8248 1

]

, S1 =

[

0.0003 −0.0049

−0.0049 1.0056

]

,

Ls2 =

[

1 0

109.8248 1

]

, S2 =

[

0.0004 −0.0062

−0.0062 0.6427

]

.

The reference model system is specified by (3) where r(t) is

a bounded, piecewise continuous reference input vector signal.

Furthermore, it can be verified that the plant model matching

condition (7) for i = 1, 2, are satisfied.

The switching time interval is chosen to be T = 50s. The

initial system state is [2, 0, 0, 0, 10]T with zero reference model

initial condition, and the initial parameter estimates are set at

70% of their nominal values. The adaptation gains are chosen

as Γθ2 = 103, Γ1 = Γ2 = 105I. The parameters of the filter

h(s) are such that f(s) = (s+ 6)2.

Fig. 1 shows the output tracking error e(t) with the ref-

erence input r(t) = [2 sin(0.014t), 10 sin(0.014t)]T, corre-

sponding to fluctuations of the lateral velocity in between ±2
fps and of the yaw angle in between ±5.73◦ (±10 crad). It

can be seen that the desired closed-loop signal boundedness

and asymptotic output tracking performance are achieved.
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Fig. 1. Tracking error e(t) for r(t) = [2 sin(0.014t), 10 sin(0.014t)]T .

VI. CONCLUSIONS

A direct state feedback model reference adaptive control

(MRAC) scheme is developed in this paper for MIMO piece-

wise linear systems. The proposed control design employs the

knowledge of the time instants of parameter discontinuities,

which is characterized by the indicator functions. Closed-

loop signal boundedness and asymptotic output tracking are

achieved for sufficiently slow system mode switchings. Sim-

ulation results for a piecewise linear model of the GTM

lateral dynamics demonstrate the effectiveness of the proposed

adaptive control scheme. A current research topic under in-

vestigation is the extension of the adaptive control design

proposed in this paper to be applicable to nonlinear systems

over multiple operating conditions.
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