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Abstract— Modern engineering systems (such as the Internet)
consist of multiple coupled subsystems. Such subsystems are
designed with local (possibly conflicting) goals, with little or no
knowledge of the implementation details of other subsystems.
Despite the ubiquitous nature of such systems very little is
formally known about their properties and global dynamics.

We investigate such distributed systems by introducing a
novel game-theoretic construct, that we call game-coupling.
Game coupling intuitively allows us to stitch together the payoff
structures of two or more games into a new game. In order
to study efficiency issues, we extend the price of anarchy
framework to this setting, where we now care about local
and global performance. Such concerns give rise to a new
notion of equilibrium, as well as a new learning paradigm.
We prove matching welfare guarantees for both, both for
individual subsystems as well as for the global system, using a
generalization of the (λ, µ)-smoothness framework [17].

In the second part of the paper, we establish conditions
leading to advantageous couplings that preserve or enhance
desirable properties of the original games, such as convergence
of best response dynamics and low price of anarchy.

I. INTRODUCTION

Game-theoretic approaches are successful in designing and
analyzing distributed systems and have recently been used
for distributed control [9], [10], [14], [20]. A natural stable
state of a system of agents corresponds to the game-theoretic
concept of equilibrium, at which each agent minimizes its
own cost. Basic properties of equilibria, such as existence,
reachability via learning dynamics, and total cost are quite
well-understood if the entire population of agents is homoge-
neous [6], [8], [10], [13], [16]. In many systems, especially
large ones, such homogeneity is only encountered locally at
a group level while overall the system is heterogeneous. For
example in routing of Internet traffic the same time delay
results in much higher costs for low-latency applications
such as Voice-over-IP than for other applications such as
email. Similarly, in load balancing (assignment of jobs to
machines) the delay of a job mostly depends on jobs that use
heavily the same component of the machine (e.g. processors
or input/output). What are the prerequisites or the tradeoffs
for local guarantees to carry over to the global level when
coupling different groups? We formally study such questions
(largely overlooked thus far) by introducing game-couplings.
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We consider games (systems) with J ≥ 2 disjoint groups
N1. . . NJ of players (agents) such that agents in group N j

take part in a game with a desirable property P for any fixed
behavior of all agents from other groups. We define such
settings as couplings of P-games. We examine the effect of
different localized classes of properties P on the performance
of each group. We also look for necessary or sufficient
conditions for couplings to preserve (to some degree) P .

We first study the property of (λ, µ)-smoothness of cost
changes to individual strategy updates. (λ, µ)-smoothness
provably implies tight bounds on the inefficiency of standard
equilibrium concepts in several game classes [15], [17], [18].
We show tight guarantees on group cost when each subgame
N j exhibits local (λj , µj)-smoothness. These performance
guarantees carry over to a wide set of equilibrium notions as
well as for no-regret learning algorithms. Using LP-duality
arguments, we identify a new equilibrium notion for which
all these bounds extend automatically for all groups.

Furthermore, we introduce a novel learning framework
modeling interactions of competing groups/institutions (e.g.
Internet providers). In our framework each group has a center
that provides public advertisement [2], [3] of (possibly differ-
ent) strategies to each player in the group. We analyze centers
whose advertised behaviors exhibits vanishing average regret
with hindsight. This is a rather natural benchmark, since
several simple learning algorithms offer such guarantees [5].
On the side of the individual agents, we make a similarly
weak assumption. We assume that the average performance
of each agent will eventually be roughly as high as that of
her advertised strategy. We prove tight welfare guarantees for
each group in this framework as well as global guarantees
which match those of our proposed equilibrium.

We give conditions for couplings to preserve the existence
of types of potential functions. Specific learning dynamics
are known to converge [9], [13] given a potential, i.e. a strong
measure of cost alignment among players. Our necessary
and sufficient condition for preserving an exact potential
leverages a condition in [13]. We also provide conditions
for game couplings to preserve the existence of a weak po-
tential (equivalently, weak acyclicity), a more general notion
guaranteeing weaker convergence than an exact potential.

We apply our techniques to solve in the affirmative an
open question regarding the convergence of Nash dynamics
of a heterogeneous population in aggregation games [11].

RELATED WORK. Structural properties of games often follow
from analysis of their sub-games. Sandholm [19] considers
sub-games defined by all subsets of players (as opposed to
a specific partition as we do here) and shows that a game
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has an exact potential if and only if all active players in a
sub-game have identical utility functions. Fabrikant et al. [6]
show that the uniqueness of a Nash equilibrium in any sub-
game is sufficient, but not necessary, for a game to be weakly
acyclic. Monderer [12] defines the classes of J-potential
games and J-congestion games for J ∈ N and shows they
are isomorphic. In a J-congestion game, players’ mappings
of costs to delay can belong in J classes. The case J = 1
is treated in Monderer and Shapley’s seminal paper [13]. An
instance captured by our framework is J = 2 and N1, N2

being the groups of players with delays from the same class.
Our view of a population divided into groups is often

adopted in distributed adaptive control, where a center can
only control a local group of agents, e.g. in the collective
intelligence [20] and probability collectives [21] frameworks.

II. PRELIMINARIES

We model distributed systems as games G with simulta-
neous moves. For a game G we denote by {1, . . . , n} the
players (agents), by Σi player i’s set of (pure) strategies,
and by ∆(Σ) all distributions over outcomes Σ =×ni=1Σi.
Any player i aims to minimize her cost1 Ci(σ1, . . . , σn) with
σh ∈ Σh chosen by player h = 1..n. Individual costs are
aggregated by the social costC(σ)=

∑
iCi(σ). We denote by

v−i = (v1, . . . , vi−1, vi+1, . . . , vr) a vector v = (v1, . . . , vr)
without its ith entry, for 1≤ i≤r.

A stable state (equilibrium) is an outcome in which each
player minimizes its own cost in some sense. A pure Nash
equilibrium is a basic stable outcome in which for any player,
its strategy minimizes its cost given others’ strategies.

Definition 1: A strategy vector (σ1, . . . , σn) ∈ Σ is a pure
Nash equilibrium (PNE) if any player i minimizes its cost by
playing σi, i.e. Ci(σi, σ−i) ≤ Ci(σ′i, σ−i),∀i,∀σ′i ∈ Σi

While PNE do not exist in some games, all other equilibria
we study in Section III exist in any game. PNE may not be
efficient from a social perspective. A standard measure of
distributed inefficiency is the price of anarchy (PoA) [8],
defined as the ratio of the social cost of the worst PNE to
the optimum: PoA(G)=

maxσ∈PNE C(σ)

minσ∗∈Σ C(σ∗)
In hierarchical systems, group-level stability is a prerequi-

site for global stability. We assume that groups are P-games
i.e. they satisfy a property P e.g. the existence of PNE or
constant PoA. Our goal is to understand whether this local
P is preserved (to some extent) globally. To this goal we
introduce and study the novel concept of game coupling.

Definition 2: G is a (N1, . . . , NJ)-coupling of P-games if

• N1, . . . , NJ are groups partitioning {1 . . . n}, i.e. N j ∩
N j′=∅, ∀ 1≤j<j′≤J and N1∪. . .∪NJ = {1 . . . n}.
The groups are fixed: no player can choose its group.

• Let2 Σj = ×i∈NjΣi and Σ−j = ×i 6∈NjΣi. For any j
and any fixed vector σ−j ∈ Σ−j of players in N−j , the
sub-game G|N−j←σ−j (played by N j) has property P .

1In Section V we use utility maximization instead of cost minimization.
2Subscripts refer to players, while superscripts refer to sets of players.

Coupling Example. In a load balancing game (LBG), each
agent (job) chooses a machine. Each machine e has a specific
cost function ce which depends only on e’s load, i.e. number
of jobs on it. PNE always exist in such games [13]. Jobs are
rarely this homogeneous; instead, there are often groups of
jobs, e.g. computation-intensive or memory-intensive. In this
case, each machine has a cost function cje for each type j
of jobs. When fixing the strategies of other jobs, the game
experienced by jobs of any type j is a standard LBG and
hence admits a PNE. Thus, a LBG with heterogeneous jobs
is a coupling of games that admit PNE. The question is then
when does the global (heterogeneous) LBG also admit PNE.

We start by analyzing costs of PNE and other equilibria
within each group and consequences for coupling efficiency.

III. PRICE OF ANARCHY WITHIN GROUPS

Roughgarden [17] identified (λ, µ)-smoothness, a canoni-
cal property of games that yields tight PoA bounds.
Definition 3:[17] Game G is (λ, µ)-smooth if for all σ, σ′∈Σ∑n

i=1 Ci(σ
′
i, σ−i) ≤ λ · C(σ′) + µ · C(σ)

If G is (λ, µ)-smooth (with λ≥0 and µ∈(0, 1)), then [17]
each of G’s PNE has cost at most λ/(1−µ) times that of a
socially optimal outcome, i.e. PoA(G) ≤ λ/(1− µ).

PoA bounds based on (λ, µ)-smoothness extend [17] to
three other standard equilibrium concepts that we review
now. A mixed Nash equilibrium (MNE) is a product proba-
bility distribution in ∆(Σ) in which each player minimizes
its (expected) cost given others’ strategies. For any correlated
equilibrium (CE) π ∈ ∆(Σ), if a mediator draws σ from
π and reveals to each player i only its strategy σi then i
minimizes cost by playing σi, assuming others also follow
σ−i. A coarse correlated equilibrium (CCE or equivalently
Hannan-consistent strategy [5]) is more general than a CE in
that the deviation σ′i cannot depend on the draw σi. Average
coarse correlated equilibria with respect to a socially optimal
σ∗∈Σ (ACCE∗ [15]) comprise the class of distributions for
which the social cost is lower than the sum of costs when
each agent i unilaterally deviated to σ∗i . ACCE∗ is the class
for which the best PoA bound via (λ, µ)-smoothness is tight.
Definition 4: A correlated equilibrium (CE) π∈∆(Σ)is a dis-
tribution such that for all i

∑
σ−i∈Σ−i

Ci(σi, σ−i)π(σi, σ−i)
≤
∑
σ−i∈Σ−i

Ci(σ
′
i, σ−i)π(σi, σ−i),∀σi, σ′i∈Σi.

At a coarse correlated equilibrium (CCE) π∈∆(Σ), ∀i,∑
σ∈ΣCi(σi, σ−i)π(σi, σ−i)≤

∑
σ−i∈Σ−i

Ci(σ
′
i, σ−i)πi(σ−i)

for all σ′i ∈ Σi where πi(σ−i) =
∑
τi∈Σi

π(τi, σ−i) is the
marginal probability that vector σ−i ∈ Σ−i will be played.

At an ACCE∗ π for some socially optimal σ∗ (i.e.
C(σ∗)≤C(σ),∀σ) we have

∑
σ∈ΣCi(σi, σ−i)π(σi, σ−i)≤∑

σ∈Σ

∑
i Ci(σ

∗
i , σ−i)π(σi, σ−i)

We reviewed equilibria in increasing order of generality.

PNE ⊆MNE ⊆ CE ⊆ CCE ⊆ ACCE∗

We denote the ratio of the social cost3 of the worst equi-
librium in class C ⊆ ∆(Σ) to the optimum by PoAC(G) =

3For distribution π we use the expected social cost C(π) = Eσ∼π [C(σ)]
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maxσ∈C C(σ)

minσ∗∈Σ C(σ∗)
. For any G, PoA(G) = PoAPNE(G) ≤

PoAMNE(G) ≤ PoACE(G) ≤ PoACCE(G) 4 ≤
PoAACCE∗(G) = inf{ λ

1−µ : G is (λ, µ)-smooth}
We present localized (λ, µ)-smoothness arguments for

game couplings. Analogously to the social cost, we define
group j’s total cost at σ ∈ Σ by Cj(σ)=

∑
i∈Nj Ci(σ).

Definition 5 ((~λ, ~µ)-smoothness): A coupling is (~λ, ~µ)-
smooth (with ~λ ∈ RJ , ~µ ∈ [0, 1)J ) if each sub-game j has
the local (λj , µj)-smoothness property. That is, if for all sub-
games j, for every two outcomes (σj , σ−j) and (σ′, σ−j):∑
i∈NjCi(σ

′
i, σ

j
−i, σ

−j) ≤ λj ·Cj(σ′, σ−j)+µj ·Cj(σj, σ−j)
where vectors σ′, σj ∈×k∈NjΣk, σ

−j∈×k/∈NjΣk.
We define the local PoA for global equilibria C, comparing

group j’s costs at σ ∈ C to its minimal group cost given σ−j .
Definition 6: The local price of anarchy of group j in G for

C ⊆∆(Σ) is PoAjC(G) = max
σ∈C

Cj(σ)

Cj(OPTj , σ−j)
where OPTj

minimizes group j’s cost (i.e. Cj(OPTj, σ−j)≤Cj(σj , σ−j),
∀σj ∈Σj) given the behavior σ−j of the outside agents.
PoAjC(G) measures the inefficiency of equilibria C (e.g.

PNE) of the coupling G instead of equilibria within group j
only for σ−j . For a single group (J=1), PoA1

C=PoAC.
Local smoothness leads to a bound on the local PoA for

the most general equilibrium concept we introduced thus far
that holds even with adversarial behavior of the other groups.

Theorem 1: PoAjACCE∗(G)≤ λj

1−µj for all (~λ, ~µ)-smooth G.

A. Dual Equilibrium Notions
We use LP duality to characterize the distributions for

which PoAj bounds derived via local smoothness arguments
are tight. For σ′∈Σj we finding the best such PoAj bound,
formulated below as a linear fractional problem (LP):

min λj / (1− µj)
s.t.
∑
i∈NjCi(σ

′
i, σ−i) ≤ λjCj(σ′, σ−j) + µjCj(σ),∀σ∈Σ

0 < µj < 1, λj > 0

Introducing pj= λj

1−µj >0 and zj= 1
1−µj >0 yields the LP

min pj

s.t. pjCj(σ′, σ−j) + zj(Cj(σ)−
∑
i∈NjCi(σ

′
i, σ−i)) ≥Cj(σ)

the corresponding dual to which has as follows:

max
∑
σ∈Σ sσC

j(σ)

s.t.
∑
σ∈Σ sσC

j(σ′, σ−j) ≤ 1 and sσ ≥ 0 ∀σ ∈ Σ∑
σ∈Σ sσ

(∑
i∈Nj Ci(σ

′
i, σ−i)− Cj(σ)

)
≥ 0

Since the social costs are positive, we can replace the first
inequality with an equality. Furthermore, since this quantity
is a constant (and furthermore equal to 1), we can divide the
objective by it without having any effects on the system:

max
∑
σ∈Σ sσC

j(σ) /
∑
σ∈Σ sσC

j(σ′, σ−j)

s.t.
∑
σ∈Σ sσC

j(σ′, σ−j) = 1 and sσ ≥ 0 ∀σ ∈ Σ∑
σ∈Σ sσ

(∑
i∈Nj Ci(σ

′
i, σ−i)− Cj(σ)

)
≥ 0

4Blum et al. [4] call PoACCE(G) the price of total anarchy in G.

Finally, due to scaling invariance the normalization∑
σ∈Σ sσC

j(σ′, σ−j) = 1 can be replaced by
∑
σ∈Σ sσ = 1.

max
∑
σ∈Σ sσC

j(σ) /
∑
σ∈Σ sσC

j(σ′, σ−j)

s.t.
∑
σ∈Σ sσ = 1 and sσ ≥ 0 ∀σ ∈ Σ∑
σ∈Σ sσ

(∑
i∈Nj Ci(σ

′
i, σ−i)− Cj(σ)

)
≥ 0

Hence, we can define group j’s average coarse correlated
equilibria with respect to localized optima (ACCELj) as
distributions for which local PoAj bounds via (λj , µj)-
smoothness are always tight; ACCEL=

⋂
j∈J ACCEL

j .

Definition 7: ACCELj = {s : ∃ rj ∈minσj Cj(σj , s−j) s.t.∑
σ∈Σ C

j(σ)s(σ)≤
∑
σ∈Σ

∑
i∈NjCi(ri, σ−i)s(σ)}.

Theorem 2:PoAj
ACCELj(G)=min{ λj

1−µj : G (~λ, ~µ)-smooth}
ACCEL are the distributions for which the average regret

of players within each group for not following the prerogative
of a group optimal strategy is non-positive. If G is an
organization with hierarchical structure, ACCEL correspond
to policies that are plausible given competent management
that guides a competent-on-average population.

B. ACCEL and Public Advertising

We introduce a novel learning procedure that incorporates
public advertising and which offers welfare guarantees anal-
ogous to those of ACCEL. Intuitively, the setting has as
follows. Within each group j, there exists a broadcasting
center that can communicate with all agents within the group.
On each day t = 1 . . . T , the center of group j computes a
strategy vector ADVj(t) for the group and advertises to each
agent i her respective strategy ADVji (t). There exist two high
level issues in any such model: first, how does the center
decide on which vector to advertise and second, how do the
individual agents respond to the recommendations.

In terms of center actions, prior public advertising mod-
els [2], [3] assumed that there existed a single center with full
information over the whole game that was able to broadcast
to all agents. In such settings the center can easily broadcast
a global optimum solution or the best Nash equilibrium.
Here, we are moving towards a more restricted and realistic
model where each center only controls a local neighborhood
of agents. Many real life settings share this structure (e.g.
competing Internet providers, or more generally competing
institutions/organizations). In such settings, the managing
centers have a high incentive in employing sophisticated
online algorithms in order to effectively calibrate their pre-
dictions. Here, we will analyze centers whose advertised
behaviors exhibits vanishing average regret with hindsight.
This is a rather natural benchmark, since several simple
learning algorithms can offer such guarantees5.

On the side of the individual agents, we make a similarly
weak assumption. We assume that the average performance

5A policy (sequence of strategies) satisfies no-regret if its cumulated
payoffs are almost as good as ones of the best fixed (time-invariant) strategy
given the history of play. CCE are limit points of time-averages of no-regret
policies. Generally, no-regret algorithms offer guarantees in expectation over
their randomized strategies. For ease of notation, we consider pure strategy
outcomes. The analysis trivially extends to the case of randomized strategies.
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of each agent i (of group j) will eventually be (almost) as
high as that of his advertised strategy ADVji (t). Any dummy
agent can meet this benchmark merely by following the
recommended strategy. A more realistic agent could still
achieve such guarantees by interpolating between his innate
learning strategy and the provided advice. We will show
that advertising-guided learning offers guarantees analogous
to those of ACCEL. We start by bounding the possible
negative effects of agents’ experimentation.

Lemma 1: If in group j the time-average6 cost of each i is
(almost) as low as that of i’s advertised strategies ADVji ,

1
T

∑
t Ci
(
σ(t)

)
≤ 1

T

∑
t Ci
(

ADVji (t), σ
−i(t)

)
+ o(1)

then advertising-guided learning only incurs a λj/(1− µj)
overhead when compared to the advertised strategy.

1
T

∑
tC

j(σ(t)) ≤ λj

1−µj
1
T

∑
tC

j
(

ADVj(t), σ−j(t)
)

+ o(1)

Given a history of play σ(1), . . . , σ(T ), we denote the best
group response of group j with hindsight as OPTj(T ):

OPTj(T ) = argminsj∈Σj
1
T

∑
t C

j
(
sj , σ−j(t)

)
Given a game coupling (N1, N2, . . . , NJ), we define

its super-game as follows: it is a game with J agents,
the available strategies to each super-agent j correspond to
strategy tuples for all agents in group j, i.e. σj ∈ ×i∈NjΣi.
Finally, the cost of the super-agent j is the group cost for
all agents in group j, i.e. Cj(σ) =

∑
i∈Nj Ci(σ). We let

λsup ∈ R+, µ
sup ∈ [0, 1) such that the super-game is

(λsup, µsup)-smooth. Finally, we define a socially optimal
strategy vector as global OPT ∈ argminσ C(σ).

We now prove cost bounds for advertising-guided learning.

Theorem 3: If each agent’s time-average cost is (almost) as
low as that of her advertised strategy, and the advertised
strategy for each group j has vanishing time-average regret:

1
T

∑
tC

j
(
ADVj(t), σ−j(t)

)
≤ 1

T

∑
tC

j
(
OPTj(T ), σ−j(t)

)
+o(1)

then for advertising-guided learning, the group cost satisfies

1/T
∑
t C

j
(
σ(t)

)
1/T

∑
t C

j
(

OPTj(T ), σ−j(t)
) ≤ λj

1− µj
+ o(1)

and for minj
1−µj

λj > µsup, the social cost satisfies

1/T
∑
t C
(
σ(t)

)
minσ′ C(σ′)

≤ λsup

minj
1−µj

λj − µsup
+ o(1)

An identical PoA bound of (λsup)/(minj
1−µj

λj − µsup)
for social cost can be derived for all ACCEL distributions.

We will now shift focus from costs and PoA to the ex-
istence of PNE and their reachability via learning dynamics
– we have seen learning via advertising in this section. We
will relate these topics to bounds on PoA in Section V.

6In this section, whenever we write
∑
t, we mean

∑T
t=1.

IV. COUPLINGS AND POTENTIALS

In this section we identify structural properties of games
within each group that are preserved in the global game
when augmented with conditions on the interplay among
groups (for clarity, we only present results for two groups).
We consider two properties of the natural Nash dynamics,
namely existence of an exact potential and weak acyclicity.

A. Potential functions review

A potential function Φ : Σ→ R simultaneously encodes
improvement opportunities and is closely linked to PNE.
Definition 8: [13] Game G has an exact potential Φ(·) if
Ci(σi, σ−i) − Ci(σ

′
i, σ−i) = Φ(σi, σ−i) − Φ(σ′i, σ−i) ∀i,

∀σi, σ′i ∈ Σi, σ−i∈ Σ−i. Game G has an ordinal potential
Φ(·) if Ci(σi, σ−i)<Ci(σ′i, σ−i)⇔ Φ(σi, σ−i)<Φ(σ′i, σ−i)
G has a weak potential Φ(·) [10] if and only if at

any strategy vector (σ1, . . . , σn) that is not a (pure) Nash
equilibrium there exists a player i that can simultaneously
lower both her cost and Φ by switching to some strategy σ′i:
Ci(σi, σ−i) > Ci(σ

′
i, σ−i) and Φ(σi, σ−i) > Φ(σ′i, σ−i)

If G has an exact potential (respectively ordinal potential,
or weak potential) then G is called an exact potential
(respectively ordinal potential, or weakly acyclic) game.

Def. 8 reviews potentials in increasing order of generality.

exact potentials ⊆ ordinal potentials ⊆ weak potentials

An ordinal potential Φ is also a weak one, since it suffices
that one player increases Φ upon improving her utility. The
existence of an ordinal potential is equivalent [13] to the
convergence of Nash dynamics, i.e. asynchronous updates
by each player to a better strategy given others’ current
strategies. Any weakly acyclic game has at least one PNE,
for example the global optimum of the weak potential.

B. Exact potential games

The compelling property of existence of an exact potential
function implies, among others, convergence of distributed
Nash dynamics. In distributed control of multi-agent systems,
exact potentials arise for example in the “wonderful life
utility” scheme [20], by which a planner can ensure that
individual agents will act in accordance to common welfare.

We give a necessary and sufficient condition for a coupling
of exact potential games to also have an exact potential. Our
condition leverages a well-known characterization [13].
Lemma 2: [13] Game G has an exact potential if and only if
for any i, k, any strategies σi, σ′i of i and σk, σ′k of k and for
any σ−ik of the other players we have dσiσ′iσkσ′k

(σ−ik) = 0
where dσiσ′iσkσ′k

(σ−ik) := ∆σiσk
(σ−ik) − ∆σiσ′k

(σ−ik) −
∆σ′iσk

(σ−ik) + ∆σ′iσ
′
k
(σ−ik) and ∆sisk(σ−ik) :=

Ci(si, sk, σ−ik)−Ck(si, sk, σ−ik),∀si, sk
That is, the differences in i’s and k’s utilities sum up

to 0 on any 4-cycle of strategy updates. Our condition on
couplings abstracts away the individuals in a group and
considers an auxiliary game using group potentials.
Theorem 4: Let G be a (N1, N2)-coupling of exact potential
games: ∀σj ∈Σj , the sub-game G|Nj←σj induced by group
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N j playing strategy vector σj has exact potential Φσj (·),
for j = 1, 2. Define a game Γ with players {1, 2} in
which player j’s strategy space is Σj and the utilities from
playing (σ1, σ2) are (Φσ2(σ1),Φσ1(σ2)). Then G is an exact
potential game if and only if Γ is an exact potential game.

An exact potential is preserved when some players’ strate-
gies are fixed. Theorem 4’s condition that each induced sub-
game has an exact potential is tight. Also, if Γ is not an exact
potential game, then G may even lack a PNE: any two-player
game G satisfies Theorem 4’s condition since G is trivially
a coupling of potential games.

C. Weakly acyclic games

We present a second instantiation of coupling with use-
ful structural properties. It requires and aims for signifi-
cantly less cohesion among groups of players. Specifically,
Lemma 3 below provides a sufficient condition for a game-
coupling to preserve weak acyclicity. We then use it to iden-
tify a model of malice in congestion games that guarantees,
unlike other similar models, the existence of a PNE.

Weak acyclicity, a natural property of engineered systems
(e.g. in the consensus problem [10]), is defined as the exis-
tence of a better-response path from any strategy vector to
a PNE. In better-response dynamics, players asynchronously
update to a better strategy given others’ current strategies.
Even though defined as a property of global convergence
of coordinated Nash dynamics, simple distributed dynamics
converge to PNE [10] in any weakly acyclic game.

Recall Def. 8: weak acyclicity amounts to existence of a
weak potential. Our sufficient condition is quite unrestrictive
– it only concerns the change of the sub-game weak potential
at a sub-game equilibrium. Intuitively, this requires that the
progress (towards convergence) of one group is not impeded
by the progress of the other group. Interestingly, we only
require this condition upon (local) convergence.

Lemma 3: If a coupling G of weakly acyclic games satisfies
• G|Nj←σj has weak potential Φσj for ∀σj ∈Σj , j=1, 2.
• if σ2 is PNE in G|N1←σ1 then any better-response σ̄1

i

to σ1
−i (and σ2) by any i in sub-game G|N2←σ2 does

not reduce the weak potential: Φ2
σ1(σ2) ≤ Φ2

σ̄1
i ,σ

1
−i

(σ2)

then G is a weakly acyclic game with weak potential
Φ(σ1, σ2) = C · Φσ1(σ2) + Φσ2(σ1) for C > 0 with
C ·min(Φσ1(σ2)− Φσ1(σ̄2

i , σ
2
−i)) > max |Φ(σ2

i ,σ
2
−i)

(σ1)−
Φ(σ̄2

i ,σ
2
−i)

(σ1)| where the min and max are both over i ∈
N2, σ2

i , σ̄
2
i ∈ Σi, σ

2
−i ∈ Σ2

−i, σ
1 ∈ Σ1 and, for the min only,

the Φ2 difference in the argument must be strictly positive.

One can show that the weak acyclicity of each in-
duced sub-game for any fixed vectors σ1, σ2 is necessary.
Lemma 3’s second assumption relates sub-games. In general,
weak acyclicity, unlike the existence of an exact or ordinal
potential, is not preserved when a player’s strategy is fixed.

Congestion-seeking malice: We apply Lemma 3 to the
well-studied [13], [16] congestion games. These games arise
in many settings with joint usage of resources and are iso-
morphic to exact potential games. In many congestion games,
especially ones modeling routing applications through fixed

networks, players have higher costs for higher congestion,
because resource delays are increasing. Such players are nat-
urally vulnerable to malicious players that seek congestion.
Leveraging Lemma 3 with N2 as the malicious congestion-
seeking players, we can establish that a model of malice
preserves some structure in several congestion game classes,
unlike other models with a similar scope [1].
Corollary 1: A (N1, N2)-coupling G with |N2| ≥ 2 pre-
serves weak acyclicity assuming that players in N2 benefit
from using resources r used by others (in N1 or N2), namely

(A) for any i2 ∈ N2 if Supp(σ)\σi2 6=∅ then i2 can BR
by also using some r∈Supp(σ)\σi2 , i.e. σi2 := σi2∪{r}.

where Supp(σ) denotes resources used (by players) in σ∈Σ.

Such malicious players (in N2) are “lone wolves” since
they act independently; they may also increase the congestion
of other malicious players. We can show that Corollary 1
applies to several classes of congestion games (in particular
assumption (A) holds): market-sharing games [17] (a natural
model of uniform competition on resources), facility location
games [17] (a game-theoretic distributed allocation problem)
and load-balancing games, for which Corollary 1 is tight
in several ways. Weak acyclicity is preserved even if each
malicious player also minimizes delay (like a regular player)
on some resources as long as assumption (A) holds.

Our existence guarantees for PNE in game couplings with
malicious players imply that the (local) PoA is well-defined.
Load-balancing games with affine delays are ( 5

3 ,
1
3 )-smooth

[17], yielding a 5
2 =

5
3

1− 1
3

upper bound on their local PoA.

V. AGGREGATION VIA HETEROGENEITY
Convergence guarantees for dynamics are made more rele-

vant by quantitative statements about the quality of equilibria
(or equilibria that such dynamics can reach)7.

Mol et al. [11] show that heterogeneous systems in aggre-
gation games (AG, defined below), have significantly lower
PoA than homogeneous AGs. They only prove convergence
of Nash dynamics and hence existence of PNE for homoge-
neous systems and one instance of a heterogeneous system
(we review their results below after introducing the model).

We prove convergence of Nash dynamics for any heteroge-
neous AG, thus solving a salient open question in their work.
For this we exhibit a new global potential that explicitly
couples the potentials of each homogeneous sub-system. We
thus show that heterogeneity is useful even as a utility design
criterion (to reduce PoA) while it preserves global stability.

Aggregation games model systems aiming for high inter-
nal connectivity. Specifically, consider an undirected graph
Gr = ({1, . . . , N}, E) without self-loops. There are n ≤ N
players, that must each choose a different vertex in 1..N ;
denote by H the set of all n players’ vertices: |H| = n.
Each player i has a parameter βi ∈ [0, 1], inducing its utility
function8 uβi it aims to maximize, where if vi is i’s vertex

uβi(vi, H \ {vi}) = Evi,H + βiEvi,{1,...,N}\H (1)

7Profiles during learning dynamics, even non-convergent ones, may
however be much better than any PNE [7].

8Utilities are more natural than costs for evaluating connectivity.
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and EI1,I2 = |{e ∈ E : e = (i1, i2), i1 ∈ I1, i2 ∈ I2}|
denotes the number of edges between vertex sets I1 and I2.
We write G(Gr, β1, . . . , βn) for the corresponding AG G.

Players with β = 0 are called followers as they maximize
u0 = Ev,H i.e. the number of edges to H (the other players’
vertices). In contrast, players with β = 1 are called leaders
because they maximize u1 = Ev,{1,...,N} i.e. the degree of
v in the hope that other players, in particular followers, will
be drawn to the adjacent vertices. A player with a general β
is called a β-leader; note uβ(·) = βu1(·) + (1−β)u0(·). We
call an AG G(Gr, β1, . . . , βn) homogeneous if βi = β,∀i.

The social welfare (the counterpart of social cost) is the
number EH of internal edges, for any β1, . . . , βn. As EH
should be maximized (distributively),PoA(G)= maxH∗ EH∗

minH PNE EH
.

We now consider issues regarding PNE, PoA and con-
vergence of dynamics in AGs. For n= Θ(N) players there
exist [11] graphs Gr for which any uniform β leads to high
PoA = Θ(N). A balanced mix of β-leaders and followers
has constant PoA for constant β, but existence of PNE had
only been established for β=1.
Theorem 5: [11] There exist connected Gr such that for any
β and homogeneous AG G = G(Gr, β, . . . , β), PoA(G)≥n.

For any graph Gr and AG G(Gr, 0, . . . , 0, β, . . . , β) with
λn β-leaders (β ≥ 1

n ) and (1− λ)n followers, we have
PoA(G) = O( 1

1−λ min(n, 1
βλ )). Hence, PoA(G) is con-

stant for constant λ (i.e. a balanced mix) and constant β.
Given their high PoA, AGs cannot be (λ, µ)-smooth for

small (λ, µ). We instead prove their stability via coupling.
Any homogeneous AG has an exact potential (implicitly

shown in [11]). The form of this potential implies that any
Nash dynamics converges to a PNE in polynomial time.
Theorem 6: A homogeneous AG G, i.e. βi=β∈ [0, 1]∀i has
exact potential Φβ(H) = (1 + β)EH + βEH,{1,...,N}\H

In contrast, the only known structural result for a heteroge-
neous system is that when all βi are either 0 or 1, i.e. a mix
of leaders and followers, the game has an ordinal potential.
Structural results are however critical to Theorem 5 since it
bounds the quality of PNE without proving that they exist.

We significantly generalize these results, using a weighted
potential function. This is always an ordinal potential and it
is an exact potential if and only if all weights are 1.
Definition 9: A game has a weighted potential function [13]
Φ : ×ni=1Σi → R with (positive) weights w1, . . . , wn if
ui(σi, σ−i) − ui(σ′i, σ−i) = wi · (Φ(σi, σ−i) − Φ(σ′i, σ−i))
for any player i and any strategies σi, σ′i ∈ Σi, σ−i ∈ Σ−i.

We are ready now for this section’s main result: any set of
players, with arbitrary βi < 1 parameters, leads to a weighted
potential function. The weighted potential is an explicit
mapping of potentials in each sub-game. An analogous result
when some β’s equal 1 follows easily. Thus Nash dynamics
converge (and PNE exist) in any aggregation system.
Theorem 7: Fix an AG G with H = H1∪. . .∪HJ where Hj

are vertices occupied by all βj-leaders. Then G has weighted
potential (with weights 1− βj > 0 for each player i ∈ Hj)

Φ(H) = EH +
∑J

j=1

Φβj (Hj , H \Hj)− EH
1− βj

where Φβj (Hj, H \Hj)=(1 + βj)EH + βjEHj ,{1,...,N}\H
is an exact potential of the aggregation sub-system over the
(homogeneous) Hj given fixed vertices of others (in H\Hj).

In a homogeneous system (J=1, i.e. same β for all), this
weighted potential reduces to the exact one in Theorem 6.

The only AGs not covered by Theorem 7 are ones con-
taining leaders (β = 1). Dealing with all leaders separately,
one can easily identify an ordinal potential. Hence
Corollary 2: A AG has an ordinal potential and thus a PNE.

VI. CONCLUDING REMARKS

We introduced and studied game couplings, a concept that
encapsulates globally heterogeneous systems exhibiting local
homogeneity. We gave several applications of this framework
to learning in games, quality of equilibria (PoA) and struc-
tural properties. An exciting research direction suggested by
our work is to design groups of players and their couplings
with desirable properties, in particular considering the effect
of natural local types of behavior on global performance.
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