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Abstract— In the traditional maneuvering problem, the ob-
jective has been to solve a geometric task and a dynamic task,
where the former is to converge to and follow a 1-dimensional
manifold, a path, in the output space of the system, and
the latter is to satisfy a desired dynamic behavior along the
path. In this paper the objective is to generalize this problem
statement, by rather stabilizing more general manifolds of
higher dimension. With the system output constrained to
the desired manifold, the dynamic task becomes to satisfy a
dynamic assignment that ensures that the underlying control
objective is solved with sufficient performance.

In order to exemplify the theory, a case study is performed
where a line-of-sight (LOS) algorithm is used to steer a
simplified vessel to and along a desired parametrized path.
In this case the desired manifold, which is of dimension 3, is
defined as the set in which the LOS method is effectuated.
The LOS algorithm then ensures, as the dynamic task, that the
vessel steers correctly towards and along the path. A simulation
study is provided to illustrate the effectiveness and properties
of the resulting dynamic control law.

I. INTRODUCTION

Controlling a dynamic system to a path is a standard con-
trol problem, especially within vehicle control and robotics;
see for instance [1], [2], [3], and references therein. This has
further been refined in the specification of the maneuvering
problem, which is to control the dynamical system under
consideration according to desired maneuvers in the output
space [4]. In [5] and more generally in [1], the maneuvering
problem was broken down into two tasks: the Geometric
Task, which was to converge to and follow a desired path
parametrized by a scalar variable θ, and the Dynamic Task,
which was to satisfy a dynamic assignment along the path.
The dynamic assignment was further specified typically as a
speed assignment for θ̇, but it could also be a time assignment
for θ(t) or an acceleration assignment for θ̈.

While the geometric task is equivalent to stabilizing a
desired 1-dimensional manifold, the dynamic task specifies
the reduced dynamics, the desired motion of the system,
when the states are constrained to this manifold. Since the
manifold was parametrized by a sufficiently smooth map
θ 7→ hd(θ), and the dynamic assignment was typically given
by a speed assignment θ̇ = υs(θ, t), an interpretation is
that this 1-dimensional system forms a guidance or reference
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system,
θ̇ = υs(θ, t)
yd = hd(θ)

for the dynamical system under consideration. Moreover, in
the presented control designs it was shown how this reference
system was allowed to be corrected by feedback from the
states of the plant in order to reduce transients and achieve
a favorable overall behavior.

An obvious applications for this theory is position control
of vehicles and robotic manipulators, and especially fully
actuated systems as exemplified in various cases in [1].
Control of underactuated systems has also been addressed
in the same framework, but with customized modifications
according to the application at hand; see [6], [2], [7], and [8].
Even though maneuvering as presented is typically solved by
tracking a point that traces the desired path, it can also, as
elaborated in this paper, achieve the inherent properties of a
path-following design where set stability of the desired path
is directly aimed for [9]. Other challenges have also been
addressed, for instance systems with unstable zero dynamics
[10], where the extra degrees of freedom introduced in a
maneuvering control problem are used to stabilize the zero
dynamics.

In this paper, the objective is to make the maneuvering
problem statement more generic such that it can be used to
solve a wider class of control problems, while still retaining
the constructive methodology of breaking the design problem
down into the geometric and dynamic tasks.

Notation: In GS, LAS, LES, UGAS, UGES, etc., stands
G for Global, L for Local, S for Stable, U for Uni-
form, A for Asymptotic, and E for Exponential. Total time
derivatives of x(t) are denoted ẋ, ẍ, x(3), . . . , x(n), while
a superscript denotes partial differentiation: αt(x, θ, t) :=
∂α
∂t ,αx

2

(x, θ, t) := ∂2α
∂x2 , and αθ

n

(x, θ, t) := ∂nα
∂θn , etc.

The Euclidean vector norm is |x| := (x>x)1/2, and the
distance to a set M is |x|M := inf {|x− y| : y ∈M}.
Stacking several vectors into one is denoted col(x, y, z) :=
[x>, y>, z>]>, similarly row(x, y, z) is a row vector, and
whenever convenient, |(x, y, z)| = | col(x, y, z)|. See also
[11] for definitions of class-K, K∞, and KL functions.

II. THE MANEUVERING PROBLEM

In some control problems the task may be to control the
output of the system to a manifold of higher dimension
than 1, and then on the manifold satisfy some behavior
defining desired maneuvers for the system. Consequently, the
maneuvering problem can be generalized by consider as the
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geometric task to converge to a q-dimensional manifold, q ≥
1. The reduced dynamics for the system when constrained to
this manifold should then be further specified by a dynamic
assignment.

An example is the design in [12], where a formation
of r vessels was controlled to an r-dimensional manifold,
parametrized by the scalar path parameters for the individual
vessels. On this manifold each vessel satisfied its individual
path-following objective, while the assigned dynamics on the
manifold ensured that all path variables were asymptotically
synchronized in order to achieve group coordination.

A. Generic maneuvering problem statement

For a system output y = h(x) where h : Rn → Rm, the
desired manifold is all points represented by the set

Q := {x ∈ Rn : ∃ξ ∈ Rq s.t. h(x) = hd(ξ)} (1)

where q ≤ m and the map ξ 7→ hd(ξ) is sufficiently
smooth. Given the parametrization hd(ξ) of the manifold and
a dynamics assignment on the manifold, the Maneuvering
Problem is comprised of the two tasks:

1) Geometric task: For some absolutely continuous func-
tion ξ(t), force the output y to converge to the desired
manifold hd(ξ),

lim
t→∞

|y (t)− hd (ξ(t))| = 0. (2)

2) Dynamic task: Force ξ̇ to converge to a desired
dynamic assignment fd(ξ, y, t),

lim
t→∞

∣∣∣ξ̇ (t)− fd(ξ(t), y(t), t)
∣∣∣ = 0. (3)

The main generalization in this problem statement is
to consider a q-dimensional manifold instead of a 1-
dimensional path. In addition, we allow the dynamic as-
signment fd to incorporate feedback from the system output
directly.

When addressing the geometric task, this is solved by
stabilizing the noncompact set

A = {(ξ, x, τ) ∈ Rq × Rn × R≥0 : h(x) = hd(ξ)} (4)

where as proposed by [11] and [1], τ is included to represent
a possible time-variation in fd(ξ, y, t) with dynamics τ̇ = 1,
τ(0) = t0. Typically, this task is solved by tracking control
or extensions of this, for instance those presented in [1].
For the dynamic assignment, giving the dynamic behavior
of the solutions of the closed-loop system when constrained
to the noncompact set A, there is an underlying assumption
that ξ̇ = fd(ξ, y(t), t) is well-behaved and satisfies necessary
stability and performance properties. Thus, it is perhaps in
the design of the dynamic task that the engineering skills are
most important. An example of this is shown later in this
paper where the line-of-sight algorithm is specified as the
dynamic task to steer an underactuated vessel to and along
a desired path.

B. Maneuvering control design

Consider the nonlinear system

ẋ = f(x, u, t), y = h(x) (5)

where for each t ≥ t0, x(t) ∈ Rn is the state vector, u(t) ∈
Rp is the control, y(t) ∈ Rm is the output, and f : Rn ×
Rp × R≥0 → Rn and h : Rn → Rm are smooth functions.

There are many techniques for control design of various
classes of nonlinear systems, such as backstepping, feedback
linearization, sliding-mode, linear control, CLF-based meth-
ods, etc. If by some appropriate method a control law for (5)
can be constructed for our problem, then we have the result:

Proposition 1: Suppose there exist a control law

u = α(ξ, x, t), (6)

a smooth Lyapunov function V : Rq × Rn × R≥0 → R≥0,
K∞-functions α1, α2, and a continuous positive definite
function α3, such that for all (ξ, x, τ) ∈ Rq × Rn × R≥0,

α1 (|(ξ, x, τ)|A) ≤ V (ξ, x, τ) ≤ α2 (|(ξ, x, τ)|A) (7a)

V ξ(ξ, x, τ)fd(ξ, h(x), τ) + V x(ξ, x, τ)f(x, α(ξ, x, τ), τ)

+V τ (ξ, x, τ) ≤ −α3 (|(ξ, x, τ)|A) . (7b)

Then, under the assumption that the closed-loop system

ξ̇ = fd(ξ, h(x), t) (8)
ẋ = f(x, α(ξ, x, t), t) (9)

is forward complete, the noncompact set (4) is UGAS, and
this solves the maneuvering problem. ♦

The proof follows from standard Lyapunov arguments for
noncompact sets; see [13] and [1]. In particular, let βV be a
class-KL function such that

V (ξ(t), x(t), t) ≤ βV (V (ξ0, x0, t0), t− t0) (10)

which follows from (7), where x0 = x(t0) and ξ0 = ξ(t0).
Letting βA(s, t) := α−1

1 (βV (α2(s), t)) this gives ∀t ≥ t0,

|(ξ(t), x(t), t)|A ≤ βA(|(ξ0, x0, t0)|A, t− t0). (11)

In Proposition 1, the dynamic assignment (3) is satisfied
identically. However, since the dynamic assignment needs to
be satisfied only in the limit, more possibilities exist. One
option is to use the gradient tuning function first reported in
[14] for the scalar case. In general we have:

Proposition 2: Suppose the conditions of Proposition 1
are satisfied. Every continuous tuning function ω : Rq ×
Rn × R≥0 7→ Rq that for all (ξ, x, τ) ∈ Rq × Rn × R≥0

satisfies:
1) there exists a class-K function α4 such that
|ω(ξ, x, τ)| ≤ α4 (|(ξ, x, τ)|A), and

2) V ξ(ξ, x, τ)ω(ξ, x, τ) ≥ 0,

and under the assumption that the closed-loop system (9)
and

ξ̇ = fd(ξ, h(x), t)− µω(ξ, x, t), µ ≥ 0 (12)

is forward complete, renders the set (4) UGAS and solves
the maneuvering problem. ♦
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This proof also follows from standard Lyapunov argu-
ments for noncompact sets where it is noticed that the bound
on ω(ξ, x, τ) by α4 ensures that the dynamic task (3) is
satisfied in the limit.

The above tuning function design enables a dynamic
assignment for ξ̇ corrected by feedback to give improved
overall performance of the system, for instance by a rapid
minimization of the distance to the desired manifold Q
through a gradient algorithm. Another option, not explored
here, is to use a filtered version of the gradient feedback
as presented in [1]. In this case ω becomes the output of
a filter that can be used to improve performance due to,
for instance, noise or disturbances in the measurements. A
further extension is presented in [15] where passivity-based
techniques are used to construct such filters.

C. Gradient tuning function

In this section we will show that by choosing ω(ξ, x, τ)
as a gradient tuning function, we will achieve set stability
of the desired manifold Q × R≥0 within the accuracy of
an arbitrarily small offset δ > 0, despite the fact that the
maneuvering problem is solved as a tracking problem of
the point hd(ξ(t)). To this end, assume that σ(ξ)V ξ(ξ, x, τ)
satisfies the conditions for ω(ξ, x, τ) in Proposition 2, where
σ(ξ) > 0 is a bounded correction gain chosen by design.
Then

ω(ξ, x, τ) := σ(ξ)V ξ(ξ, x, τ), (13)

called the gradient tuning function, is one design alternative.
The performance of the gradient tuning function follows
from the results in [14] where it is shown for the 1-
dimensional case that by choosing µ � 1, a separation of
time-scales is induced. In the fast time-scale, the dynam-
ics (12) and (13) will make the solution hd(ξ(t)) rapidly
converge to a favorable position on the manifold, while the
control law u = α(ξ, x, t) in the slow time-scale will drive
the output y(t) towards yd(t) = hd(ξ(t)).

To make this precise, we define Qt := Q×R≥0 and make
the assumption:

Assumption 3: The set Q in (1) is compact and ∃ρ > 0
such that for every fixed pair (x, τ) in the set Hx(ρ)×R≥0,
with Hx(ρ) : = {x : |x|Q ≤ ρ} , the function ξ 7→ V (ξ, x, τ)
has a global minimizer denoted ξV (x, τ) which, for (x, τ)
fixed, is a LAS equilibrium for

ξ̇ = −σ(ξ)V ξ(ξ, x, τ), (14)

with region of convergence Hroc(x, τ), where the function
(x, τ) 7→ ξV (x, τ) is locally Lipschitz on Hx(ρ), uniformly
in τ. It is further assumed that ∃k > 0 such that Hroc(x, τ)
contains the ball Bξ(k) := {ξ : |ξ − ξV (x, τ)| ≤ k} for all
(x, τ) ∈ Hx(ρ)× R≥0. ♦

A rapid minimization of the distance |(ξ, x, τ)|A is of
interest. A measure of this minimum distance is

|(x, τ)|Qt = |x|Q := inf
κ∈Q
|x− κ| = |x− κ̄(x)| , (15)

where κ̄(x) is a minimizer for (15), and for which the

following bound holds,

|(x, t)|Qt = inf{κ: ∃z:h(κ)=hd(z)} |x− κ|
= inf{κ: ∃(z τ):(z,κ,τ)∈A} |x− κ|
≤ inf{(z,κ,τ)∈A} |(ξ, x, t)− (z,κ, τ)|
= |(ξ, x, t)|A , ∀ξ ∈ Rq.

(16)

Moreover, for κ ∈ Q let

P(κ) := {z ∈ Rq : |h(κ)− hd(z)| = 0} . (17)

Then for each pair (ξo,κo) such that ξo ∈ P(κo) the
following bound also holds,

|(ξo, x, t)|A = inf{(z,κ,τ)∈A} |(ξo, x, t)− (z,κ, τ)| (18)
= inf{(z,κ):z∈P(κ)} |(ξo, x)− (z,κ)| ≤ |x− κo| .

For the closed loop system (9) and (12) we get ∀t ≥ t0,
|(x(t), t)|Qt ≤ |(ξ(t), x(t), t)|A

≤ βA (|(ξ0, x0, t0)|A , t− t0) ,
(19)

which for each r > 0 shows attractivity of x to Q that is uni-
form over sets of initial conditions having |(ξ0, x0, t0)|A ≤ r.
Define the set

H(k, ρ) := {(ξ, x, τ) : x ∈ Hx(ρ), ξ ∈ Bξ(k)} (20)

in which we are guaranteed by Assumption 3 that there
exists a global minimizer with a non-vanishing region of
convergence. Letting ε := 1

µ then in the fast time scale
tf := 1

ε t we get with z′ := dz
dtf

= εż that the motion of
ξ is approximately described by the boundary layer system
in the limit as ε = 0,

(x′, τ ′) = (0, 0), ξ′ = −σ(ξ)V ξ(ξ, x, τ) (21)

for which it follows from Assumption 3 that the set
{(ξ, x, τ) : ξ = ξV (x, τ)} is LAS for (ξ(0), x(0), τ(0)) ∈
H(k, ρ). The fast state ξ will therefore rapidly converge to a
small neighborhood of the manifold defined by V ξ(ξ, x, τ) =
0 where V (ξ, x, τ) is minimized. With ξ ≡ ξV (x, τ) we get
the reduced system

ẋ = f(x, α(ξV (x, t), x, t), t) (22)

for which we consider the Lyapunov function W (x, τ) :=
V (ξV (x, τ), x, τ). Since (7) holds for all (ξ, x, τ) and
V ξ(ξV (x, t), x, τ) = 0 by the first order optimality condition,
the time derivative of W (x, τ) along the solutions of the
reduced system becomes

Ẇ (x, τ) ≤ −α3

(
α−1

2 (W (x, τ))
)
. (23)

This implies there exists βW ∈ KL such that W (x(t), t) ≤
βW (W (x0, t0), t− t0), which gives

|(x(t), t)|Qt ≤ |(ξV (x(t), t), x(t), t)|A
≤ α−1

1 (W (x(t), t))
≤ α−1

1 (βW (W (x0, t0), t− t0))
≤ α−1

1

(
βW

(
V (ξ̄(κ̄(x0)), x0, t0), t− t0

))
≤ α−1

1

(
βW

(
α2

(
|(ξ̄(κ̄(x0)), x0, t0)|A

)
, t− t0

))
≤ α−1

1 (βW (α2 (|x0 − κ̄(x0)|) , t− t0))
= β1 (|(x0, t0)|Qt , t− t0) , ∀t ≥ t0,

(24)
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where β1 (s, t) := α−1
1 (βW (α2 (s) , t), and (18) with

ξ̄(κ̄(x0)) ∈ P(κ̄(x0)) was used. This shows that the set Qt
is UGAS for the reduced system. By the derivation above
and the results in [16], the following theorem follows:

Theorem 4: Suppose the conditions of Proposition 2 are
satisfied with ω(ξ, x, τ) := σ(ξ)V ξ(ξ, x, τ). Then by (19)
the set Qt is uniformly globally attractive. By Assumption 3
there exists a class-KL function β such that for each δ > 0
there exist µ∗ > 0 for which µ ≥ µ∗ and (ξ0, x0, t0) ∈
H(k, ρ), then

|(x(t), t)|Qt ≤ β (|(x0, t0)|Qt , t− t0) + δ. ♦ (25)

This theorem shows that output invariance of the desired
manifold is “nearly” achieved with a maximum offset bound
δ. The disadvantage of not achieving perfect output invari-
ance is, on the other hand, compensated by other advantages
of the design, such as the ability to follow curves not being
regularly parametrized or even self-intersecting curves [17].
Perhaps the most practical advantage, however, is that the
desired parametrized manifold and the desired dynamics
on the manifold can typically be constructed in a separate
guidance system without redesign of the control law. This
will be illustrated in the following example.

III. MANEUVERING A VESSEL BY THE LOS METHOD

Path-following problems for vessels are often addressed by
using so-called Line-Of-Sight (LOS) algorithms. Contrary to
direct position control, where the vessel may be driven both
in the longitudinal and transversal directions to converge to
the path, the LOS methods give more natural motions in the
longitudinal direction by using the heading to steer the vessel
to the path. An advantage is that the LOS algorithms work
both in the fully actuated case and for underactuated vessels
that only possess steering capability during forward motion.

A. Problem setup

In this case we consider the LOS methodology for control-
ling a vessel to a path being a regular curve in R2 according
to the design presented by [3]. where we approach the control
problem as a maneuvering problem.

For the sake of illustration, consider a vessel represented
simply by the kinematic equation

η̇ = R(ψ)ν (26)

where η = col(x, y, ψ) is the position and heading with
respect to an inertial reference frame, ν = col(u, v, r) is the
velocity vector in the vessel’s body frame, and R(ψ) is the
corresponding 3× 3 rotation matrix; see [18] for details. We
assume the vessel has no sideslip and set correspondingly
v = 0. Similarly, we assume the vessel moves forward at
a desired speed u(t) = Ud(t) ≥ U0 > 0. The underlying
maneuvering problem, according to [1], is then to steer the
vessel onto and along a path given by the set

P =
{
η ∈ R2 × S1 : ∃θ ∈ R s.t. η = ηd(θ)

}
(27)

where θ 7→ ηd(θ) is a continuous parametrization of the path.
Accordingly, let p = col(x, y) be the vessel’s position and

pd(θ) the parametrized path in R2 such that η = col(p, ψ)
and ηd(θ) = col(pd(θ), ψd(θ)), where

ψd(θ) := arctan

(
yθd(θ)

xθd(θ)

)
(28)

is in the direction of the tangent vector along the path. The
dynamic task is limt→∞

∣∣∣θ̇(t)− υs(θ(t), t)∣∣∣ = 0, where the
speed assignment υs corresponds to the desired surge speed,
that is,

υs(θ, t) :=
Ud(t)∣∣pθd(θ)∣∣ . (29)

The following assumption is made to the path.
Assumption 5: The parametrization θ 7→ pd(θ) is abso-

lutely continuous, bounded, and ∃(p1, p2) > 0 such that
∀θ ∈ R, p1 ≤

∣∣pθd(θ)∣∣ ≤ p2. ♦
If the objective was direct position control to converge

to P , the traditional maneuvering design would continue by
directly stabilizing the set

A = {(η, θ) : η = ηd(θ)} , (30)

which is a subset of P×R. However, since the vessel in this
case has steering capability only by using the yaw rate r as
control input, the dynamic system is redefined into a SISO
system where the vessel heading ψ will be controlled to a
desired heading ψlos given by the LOS algorithm, which
in turn will steer the vessel towards the path. The LOS
algorithm is generally given by a map ψlos = ᾱlos(x, y)
where ᾱlos : R2 → S1. Different methods for constructing
this map exist in the literature; see for instance [6], [19],
[7], [8] for straight-line paths. In this example we adopt the
algorithm by [3] for path-following of regularly parametrized
curves.

Fig. 1. Reference frames for the LOS path following setup.

1) LOS algorithm: Given a value θ, then pd(θ) is an
auxiliary point on the path. Similarly, let q ∈ R2 be a virtual
point representing the position of a vessel. Define a moving
path reference frame centered at pd(θ) with its x-axis along
the tangent vector at pd(θ) and y-axis in the orthogonal
direction according to the right-hand-rule. Then

ε(q, θ) = R2(ψd(θ))
> (q − pd(θ)) =: col(s, e) (31)
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is the position offset of the virtual point q relative to the path
reference frame, where

R2(ψd) =

[
cos(ψd) − sin(ψd)
sin(ψd) cos(ψd)

]
is the rotation matrix, s(q, θ) is the along-track error, and
e(q, θ) is the cross-track error. In the path reference frame,
the LOS algorithm is constructed to point the vessel at a
lookahead distance ∆ along the tangent vector to the path;
see Figure 1.

With the definitions

V (q, θ) :=
1

2
ε(q, θ)>ε(q, θ), (32)

ωs(q, θ) :=
µ∣∣pθd(θ)∣∣V θ(q, θ) = −µp

θ
d(θ)

>∣∣pθd(θ)∣∣ (q − pd(θ))

(33)

ψr(q, θ) := − arctan

(
e(q, θ)

∆

)
, (34)

where µ > 0 is a constant gain, the LOS heading for the
vessel is given by the dynamic algorithm

θ̇ = fθ(q, θ, t) :=
∆√

e(q, θ)2 + ∆2
υs(θ, t)− ωs(q, θ)

(35a)
ψlos = αlos(q, θ) := ψd(θ) + ψr(q, θ). (35b)

The update law for θ̇ consists of two terms. The first
term is the feedforward speed assignment term corresponding
to the surge speed, but modified by a gain dependent on
the cross-track error. The second term, ωs, is a gradient
algorithm that according to Section II makes pd(θ) converge
rapidly to a point that minimizes θ 7→ V (q, θ) for µ � 1.
Assuming the path is constructed such that for a given
position q, this map has a global minimum and that θ(0)
is within the region of convergence of this minimum, then
Figure 1 indicates that V (q, θ) is minimum where the along-
track error is zero and the cross-track error is minimized.
It follows that ωs is a stabilizing term for s(q, θ) = 0. The
following proposition shows the effectiveness of the method.

Proposition 6: For (26) with motion constrained to u(t) ≡
Ud(t), v(t) ≡ 0, q := p, and ψ(t) ≡ αlos(p(t), θ(t)),
with pd(θ) satisfying Assumption 5, then the dynamic LOS
algorithm (35) with υs(θ, t) assigned as in (29), renders the
set (30) UGAS and ULES. ♦

Proof: The proof is sketched in [3] but stated here in
detail for completeness. Let V (p, θ) be a Lyapunov function
and note the equivalence relations

|(η, θ)|A ≤ |η − ηd(θ)| ≤
√

2 max {1, L} |(η, θ)|A (36a)
1

(1 + 1/∆)
|η − ηd(θ)| ≤ |ε(p, θ)| ≤ |η − ηd(θ)| , (36b)

where L > 0 is the global Lipschitz constant that follows
from the absolute continuity property and boundedness of∣∣pθd(θ)∣∣. The result is the bounds

c1 |(η, θ)|2A ≤ V (p, θ) ≤ c2 |(η, θ)|2A , (37)

where c1 = 1
2(1+1/∆)2 and c2 = max

{
1, L2

}
. Notice also

the relationships

V =
1

2
ε>ε =

1

2
(p− pd(θ))> (p− pd(θ)) (38)

pθd(θ) =
∣∣pθd(θ)∣∣ [ cos(ψd(θ))

sin(ψd(θ))

]
(39)

ṗ = Ud

[
cos(ψ)
sin(ψ)

]
(40)

R2(ψd(θ))
>pθd(θ) =

∣∣pθd(θ)∣∣ col(1, 0) (41)

where col (cos(ψd(θ)), sin(ψd(θ))) is the unit tangent vector
along the path at pd(θ). Differentiating V along the solutions
of (40) and (35a), this gives

V̇ = − Ud(t)√
e2 + ∆2

e2 − µ∣∣pθd∣∣V θ(p, θ)2

= − Ud(t)√
e2 + ∆2

e2 − µ∣∣pθd∣∣ (p− pd)> pθd
(
pθd
)>

(p− pd)

= − Ud(t)√
e2 + ∆2

e2 − µ∣∣pθd∣∣ε>
∣∣pθd∣∣ [ 1

0

] [
1
0

]> ∣∣pθd∣∣ ε
≤ − U0√

e2 + ∆2
e2 − µp1s

2 =: −ϕ3(|ε|) (42)

where ϕ3 (·) is a class-K∞ function and we used
sin (− arctan (x)) = − x√

1+x2
and cos (− arctan (x)) =

1√
1+x2

. Using (36), this implies that there exists a class-
KL function β such that for all t in the maximal interval of
existence [0, T ),

|(η(t), θ(t))|A ≤ β (|(η(0), θ(0))|A , t) . (43)

From this and Assumption 5 it follows that the right-hand
side of (ṗ, θ̇) is bounded on [0, T ), which rules out finite
escape time giving T =∞, and thus A is UGAS. To show
ULES, notice for |ε| ≤M <∞, then ∃c3 > 0 such that

− U0√
e2 + ∆2

e2 − µp1s
2 ≤ − U0√

M2 + ∆2
e2 − µp1s

2

≤ −c3 |ε|2 , (44)

which for each M > 0 such that |(η, θ)|A ≤ (1 + 1/∆)M
gives the necessary quadratic bound on V̇ .

2) Problem statement: Having shown the effectiveness of
the LOS algorithm, the control problem becomes to stabilize
the set in which the LOS algorithm is activated. For the
vessel (26), this set is given by

Q = {(p, ψ, θ) : ψ = αlos(p, θ)}

which due to the constraint ψ = αlos is a 3-dimensional
manifold in the state-space R2 × S1 × R. At this point it
would be straightforward to develop a control law for r to
stabilize {ψ−αlos(p, θ) = 0} with θ̇ = fθ(p, θ, t). However,
in order to exemplify the maneuvering methodology, we
propose to parametrize the 3-dimensional manifold by the
variables (q, α) ∈ R2 × S1 according to

Q = {(p, ψ, θ) : ∃(q, α) s.t. p = q, ψ = α, α = αlos(q, θ)}
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Next, we include (q, α) as dynamic variables for (p, ψ) to
track and propose as the geometric task to stabilize the set

B = {(p, ψ, q, α, θ) : p = q, ψ = α, α = αlos(q, θ)} ,
(45)

which is a subset of Q×R2 × S1. In doing so the result
becomes a reference filter that we later will show to have
certain optimizing properties, taking the vessel states as input
and providing the LOS heading as output.

The dynamic task should represent the desired behavior
of the system when constrained to the set B. First of all,
using the parametrization variable q as a position state, the
dynamics of θ should be governed by θ̇ = fθ(q, θ, t), as
defined in (35a), and ψlos = αlos(q, θ) according to (35b). In
addition, for q(t) ≡ p(t) and α(t) ≡ ψ(t) in B, the dynamic
tasks become

lim
t→∞

|q̇(t)− υq (ψ(t), t)| = 0 (46)

lim
t→∞

|α̇(t)− υα (q(t), ψ(t), α(t), θ(t), t)| = 0, (47)

where the dynamic assignments υq and υα are designed as

υq (ψ, t) =

[
cos(ψ)
sin(ψ)

]
Ud(t), (48)

υα(q, ψ, α, θ, t) = −Kα (α− αlos(q, θ)) (49)

+ αqlos(q, θ)υq (ψ, t) + αθlos(q, θ)fθ(q, θ, t),

Kα > 0, adhering to the motion of ṗ and the desired motion
of α̇los (including a stabilizing feedback term).

A remark is here necessary on the choice of the dynamic
assignment for q̇. In the fully actuated case, meaning that
there are enough control inputs for the vessel (26) such
that the vector ν = col(u, v, r) can be assigned a control
law in all degrees-of-freedom, then the preferable dynamic
assignments would be q̇ = υq (α, t) and α̇ = υα(q, α, θ, t)
making (q, α) behave like a virtual vessel, and then use ν to
control p to q and ψ to α, identically. In the underactuated
case, on the other hand, the motion of ṗ is constrained and
only the steering control input r is available. In this case,
we must rather control q to p, identically, and consequently
υq (ψ, t) must adhere to the motion of ṗ.

B. Control design

For the task of stabilizing B, let q̇ = υq (ψ, t) − ωq and
α̇ = υα(q, ψ, α, θ, t) − ωα, where ωq and ωα will be used
as design variables. Define the control Lyapunov function

W (p, ψ, q, α, θ) =
(1− λ)

2
(p− q)> (p− q) (50)

+
(1− λ)

2
(ψ − α)

2
+
λ

2
(α− αlos(q, θ))2

where λ ∈ (0, 1) is a tuning weight. Differentiating W gives

Ẇ = (1− λ) (p− q)> (ṗ− υq) + (1− λ) (ψ − α) (r − υα)

−Kαλ (α− αlos(q, θ))2

+
[
(1− λ) (p− q)> + λ (α− αlos(q, θ))αqlos(q, θ)

]
ωq

+ [(1− λ) (ψ − α)− λ (α− αlos(q, θ))]ωα. (51)

Since ṗ = υq (ψ, t) , the first term vanishes. The second
term is made negative definite by selecting a proper con-
trol law for r. The third term is already negative def-
inite by the feedback term in υα. The fourth term is
recognized as −W q(p, ψ, q, α, θ)ωq and the fifth term as
−Wα(p, ψ, q, α, θ)ωα, and according to the maneuvering
design methodology in Section II-C we select ωq and ωα to
make these terms negative by gradient feedbacks. The result
is summarized in the following theorem.

Theorem 7: For (26) with motion constrained to u(t) ≡
Ud(t) and v(t) ≡ 0, and pd(θ) satisfying Assumption 5,
define the error coordinates p̃ := p − q, ψ̃ := ψ − α,
α̃ := α − αlos(q, θ) and apply the global diffeomorphism
(p, ψ, q, α, θ) 7→ (p̃, ψ̃, q, α̃, θ). Then the control law

q̇ = υq (ψ, t)− γqW q(p, ψ, q, α, θ)>, γq > 0 (52a)
α̇ = υα(q, ψ, α, θ, t)− γαWα(p, ψ, q, α, θ), γα > 0 (52b)

r = −Kψ (ψ − α) + υα(q, ψ, θ, t), Kψ > 0 (53)

with υq and υα as defined in (48) and (49), renders the set

B′ =
{

(p̃, ψ̃, q, α̃, θ) : p̃ = 0, ψ̃ = 0, α̃ = 0
}

(54)

UGES. In this set the dynamic tasks (46) and (47) are
satisfied, and with (35) it follows from Proposition 6 that
the original path-following objective (27) is solved. ♦

Proof: For the noncompact set (54) we have∣∣∣(p̃, ψ̃, q, α̃, θ)∣∣∣
B′

=
∣∣∣(p̃, ψ̃, α̃)

∣∣∣. According to Lemma 8, let

x1 := col(p̃, ψ̃, α̃), x2 := col(q, θ), and (u1, u2) = 0. For∣∣∣(p̃, ψ̃, α̃)
∣∣∣ bounded, it follows from the fact that αqlos(q, θ) =

− ∆
e(q,θ)2+∆2 row (− sin(ψd(θ)), cos(ψd(θ))) is bounded by
√

2
∆ and Assumption 5 that the right-hand sides of (52a)

and (35a) satisfy the sector growth condition in Lemma
8 and the system is finite escape-time detectable through∣∣∣(p̃, ψ̃, q, α̃, θ)∣∣∣

B′
. For (50) we have the following bounds

d1

∣∣∣(p̃, ψ̃, α̃)
∣∣∣2 ≤W (p, ψ, q, α, θ) ≤ d2

∣∣∣(p̃, ψ̃, α̃)
∣∣∣2

where d1 = min
{
λ
2 ,

1−λ
2

}
and d2 = 1

2 . With the control
law (52) and (53) inserted in (51), we get

Ẇ ≤ −Kψ(1− λ)ψ̃2 −Kαλα̃
2

− γq
∣∣(1− λ)p̃> + λαqlos(q, θ)α̃

∣∣2
= −γqx>1 H(q, θ)x1 < 0 (55)

where

H(q, θ) = (1− λ)2I 0 λ(1− λ) (αqlos)
>

0
Kψ
γq

(1− λ) 0

λ(1− λ)αqlos 0 Kα
γq
λ+ λ2 (αqlos) (αqlos)

>


is a symmetric positive definite matrix. Since αqlos(q, θ)

is bounded by
√

2
∆ , it follows that there exists d3 > 0,

2472



d3 ≤ γq inf(ζ,π) λmin (H(ζ, π)) such that γqx>1 H(q, θ)x1 ≥
d3x
>
1 x1, ∀(q, θ), and hence

Ẇ ≤ −d3

∣∣∣(p̃, ψ̃, α̃)
∣∣∣2 . (56)

By application of Theorem 9, UGES of (54) follows.

C. Simulations

Investigation of the closed-loop equations shows that (35)
and (52) form a dynamic guidance filter, taking the vessel
states (p, ψ) as input and providing the signals (α, υα) as
outputs to the feedback control law (53) that correspondingly
steers the vessel towards and along the path. This filter
possesses three gradient tuning functions. The first for θ̇
ensures for µ � 1 that θ(t) rapidly minimizes (32) by
driving the along-track error rapidly to zero with respect
to the virtual position q. The second for q̇ and third for α̇
ensures for γq, γα � 1 a rapid minimization of (50) with
respect to q and α, respectively. With λ chosen small, this
typically ensures that q(t) rapidly approaches p(t) and α(t)
rapidly approaches ψ(t). The dynamics for θ̇ should be the
fastest, since this needs to rapidly respond to the motion
of q(t). Then the convergence q(t) → p(t) ensures that the
LOS angle becomes correctly calculated. Finally, we see that
the minimization of (α(t) − ψ(t))2 quickly eliminates the
feedback term in the control law (53) such that the control
signal r(t) is mainly governed by the feedforward signal
υα(t).

Fig. 2. Ship voyage, showing convergence to and along the path.

A simulation has been conducted to emulate a vessel
with length L = 80 m, forward speed Ud = 10 m/s, and
maximum speed of rotation |r| ≤ rmax = 2 deg/s. The path
is parametrized as

xd(θ) = xc + k arctan(

(
θ

κ

)
, yd(θ) = yc + θ, (57)

where κ = 100, k = 200, xc = 100π, yc = 1000, and
the LOS parameter ∆ = 50. The feedback gains are Kα =
Kψ = 0.025, and the gradient gains are µ = 10, γq = γα =
2, and λ = 0.05. The vessel is initialized at p0 = (150, 100)
and ψ0 = 90◦, while (θ0, q0, α0) = (0, 0, 0, 0).

Figures 2 and 3 show the overall response in position and
heading, where the heading slowly converges to the LOS
heading and the ship moves correspondingly to and along
the track. In Figure 4 the transients in the dynamic guidance
states are shown. In the fast time scale it is seen how the
vessel position and heading remains fairly constant, while

(θ, q, α) rapidly responds in accordance to their gradient
tuning functions.

Fig. 3. The desired heading α(t) converges rapidly to ψ(t) and then slowly
to αLOS(t).

Fig. 4. Transients during first 4 sec. Upper plot shows the rapid transient
of θ(t) resulting in s(t) → 0. The middle plot and lower plot show the
rapid transients of q(t) and α(t) to p(t) and ψ(t), respectively.

IV. CONCLUSION

In this paper the maneuvering problem, as previously
defined for stabilizing 1-dimensional manifolds, have been
generalized by considering q-dimensional manifolds to be
rendered UGAS in the geometric task of the control problem.
The other task, termed the dynamic task, was to assign a
desired dynamic behavior to the closed-loop system when
constrained to the manifold. As in earlier works, parametriz-
ing the desired manifold by a variable ξ ∈ Rq gives an
extra degree of freedom for design that can be utilized to
achieve other objectives in addition to the dynamic behavior
on the manifold. In particular, the dynamics of ξ̇ was allowed
to take feedback from the system states in order to shape
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the transients. It was shown that the gradient update law, as
earlier reported for the 1-dimensional case, could be utilized
with success also in this case of higher order manifolds in
order to rapidly minimize the distance of the state x to the
manifold. However, also other tuning functions are allowed
if properly designed according to Proposition 2.

A case study was conducted for a simplified vessel, where
the objective was to control the vessel to and along a path
by using only the steering input and the LOS method. The
geometric task was then to control the vessel position and
heading to the 3-dimensional manifold in the state space
where the LOS method becomes activated. Once on this
manifold, then the LOS method ensures as a dynamic task
that the vessel converges to and follows the path as intended.
Simulation have been done to illustrate the effectiveness and
properties of the resulting dynamic control law.

V. APPENDIX

For the interconnected system

ẋ1 = f1(x1, x2, u1)
ẋ2 = f2(x1, x2, u2)

(58)

where x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the states, u1(t) ∈
U1 ⊂ Rm1 and u2(t) ∈ U2 ⊂ Rm2 are inputs where U1,U2

are compact sets, and the vector fields f1, f2 are smooth, let
the set of interest be

A := {(x1, x2) ∈ Rn1 × Rn2 : |x1|A1
= 0} , (59)

where A1 ⊂ Rn1 is compact. This gives |(x1, x2)|A =
|x1|A1

. The following lemma and theorem are given in [1,
Appendix A.5]:

Lemma 8: If for each compact set X ⊂ Rn1 there exist
L > 0 and c > 0 such that:

|f2(ξ, x2, υ)| ≤ L |x2|+ c, ∀x2 ∈ Rn2 , (60)

uniformly for all (ξ, υ) ∈ X × U2, that is, f2 satisfies a
sector growth condition in x2, then the system (58) is finite
escape-time detectable through | · |A.

The following theorem shows stability of (59) in the sense
of Lyapunov with respect to (58):

Theorem 9: Assume that the sector bound (60) in Lemma
8 holds for (58). If, in addition, there exist a smooth function
V : Rn1 × Rn2 → R≥0 and K∞-functions αi, i = 1, . . . , 4,
such that

α1 (|x1|A1) ≤ V (x1, x2) ≤ α2 (|x1|A1) (61)

and

V x1(x1, x2)f1 (x1, x2, u1) + V x2(x1, x2)f2 (x1, x2, u2)
≤ −α3 (|x1|A1

) + α4 (|u|)
(62)

hold, where u := col(u1, u2) ∈ U1 × U2, then the system
(58) is ISS with respect to the closed, 0-invariant set (59).
In the case when u1 = 0 and u2 = 0 then the closed,
forward invariant set (59) is UGAS with respect to (58), and
if αi(|x|A1

) = ci |x|rA1
for i = 1, 2, 3, where c1, c2, c3, r are

strictly positive reals with r ≥ 1, then (59) is UGES with
respect to (58).

See [1, Appendix A.5] or [13] for the proof.
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