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Abstract— Leakage and increased friction are common faults
in hydraulic cylinders that can have serious consequences if
they are not detected at early stage. In this paper, the design
of a fault detector for a nonlinear hydraulic mechanical system
is presented. By considering the system in steady state, two
residual signals are generated and analysed with a composite
hypothesis test which accommodates for unknown parameters.
The resulting detector is able to detect abrupt changes in
leakage or friction given the noisy pressure and position
measurements. Test rig measurements validate the properties of
residuals and high fidelity simulation and experimental results
demonstrate the performance and feasibility of the proposed
method.

I. INTRODUCTION

Hydraulic pistons are indispensable in industrial fields

that require high actuation forces. The high difference of

pressure needed inside the cylinder chambers in order to

deliver the necessary force can be realised only if the

leakage between the two chambers is kept small, involving

considerable friction against the piston displacement. These

two parameters, friction and leakage, play an important role

in the reliability of hydraulic systems and their changes are a

direct consequence of components’ wear. To reduce the cost

of maintenance and to prevent such systems from failures,

a fault detection for leakage and friction must be consid-

ered. However, due to significant nonlinearities in hydraulic

systems and the large uncertainties in their parameters, fault

detection is difficult to implement in practice.

Numerous techniques have been developed in order to

generate residuals for nonlinear hydraulic systems, using

artificial neural network in [1], extended Kalman filtering

in [2] and robust observers in [3]. Once the residual signal

is generated, the fault detector must analyse and process

the signal to decide on the presence of a fault. This paper

focusses on the design of residual generators for an hydraulic

actuator system using statistical change detection algorithms

[4], [5], [6]. Diagnosis and fault-tolerant control of a similar

system was demonstrated in [7] where a differential geomet-

ric approach for fault diagnosis was succesfully demonstrated
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but the statistical properties of diagnosis were not pursued.

A model was developed in [8] that is representative for a

typical nonlinear hydraulic-mechanical system (NHMS) used

in a commercial off-shore drilling equipment. The system is

used for drilling pipe handling and for operations such as

making up a string of drilling pipe. Leakage or increased

friction in an actuator could lead to pipe damage or to

hazards in operation, so both are essential to diagnose. Resid-

ual generation is investigated for this highly nonlinear and

parameter-uncertain system, and residuals are determined

from which the two high severity faults could be diagnosed.

Statistical change detection methods are employed for hy-

pothesis testing about faults and results are validated against

a high fidelity simulation model and against experiments.

II. MODEL DESCRIPTION

The nonlinear hydraulic-mechanical system (NHMS) in

[8] was further decomposed, in [9], in a linear hydraulic actu-

ator connected to a mechanical mass-spring-damper system,

which could be analysed separately to reduce the complexity

of the initial system.

The reduced NHMS is hence considered in this paper

with two modifications arising from experience: control valve

dynamics can be neglected and system input is then valve

opening u = xv; the friction model need be extended to

better describe static and dynamic friction phenomena.

Fig. 1 shows a drawing of the system. Pressure sensors

provide measurement of pressure difference between the two

cylinder chambers pL, also referred to as the load pressure,

and displacement sensors measure the position y of the mass

element. Total load mass is M , equivalent spring coefficient

is k and damping is d. These parameters are time varying

and very uncertain. Before the tool engages with a drilling

tube, spring coefficient and damping are literally nil. At

engagement, load mass and the k and d parameters jump

to high values, and during operation of the tool, plasticity

can decrease k.

In the real offshore application of the system, too high

forces from the cylinder would damage the drilling pipe and

too low forces could cause loss of grip of the pipe. High

cylinder friction could cause lower forces than needed, but

if interpreted by a pressure feedback loop as if the necessary

engagement force had been obtained, loss of grip would be

at risk. Undetected leakage (change in the leakage coefficient

cL) could also cause loss of grip. Therefore, hazardous

conditions and associated risks are pertinent for this crucial

hydraulic gripping element in an offshore drilling operation,
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unless friction and leakage faults can be reliably diagnosed,

and better: reliably prognosed.
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Fig. 1. Nonlinear hydraulic-mechanical system with control valve and
hydraulic cylinder exerting forces on the object to be handled. Total load
mass M , equivalent spring coefficient k and damping d are time varying
and very uncertain.

The following equations in hydraulic units (for example

pL in bar instead of Pa) govern the NHMS:

c1 : QL = 6000
√
10Cd w xv

√

1

ρ
(p− sign(xv)pL)

(1)

c2 : ÿ =
1

M

(

ApL

10
− ky − dẏ − Ffric(z, ẏ)

)

(2)

c3 : ṗL =
4β

Vt

(

QL
50

3
−Aẏ − cLpL

)

(3)

m1 : y1 = y + w1n (4)

m2 : y2 = pL + w2n (5)

a1 : u1 = xv (6)

a2 : u2 = p (7)

d1 : ẏ =
dy

dt
(8)

d2 : ÿ =
ẏ

dt
(9)

d3 : ṗL =
dpL

dt
(10)

Eq.(1) represents flow, QL, through the valve orifice,

where p is the supply pressure, ρ is the hydraulic fluid

density, Cd is the orifice discharge and w is the opening

width. Eq.(2) is acceleration of the actuator tool and the

load mass, where A is the cylinder effective area. Eq.(3)

is pressure dynamics, where β is the hydraulic fluid bulk

modulus and Vt is the effective cylinder volume. Eqs.(4) and

(5) are position and load pressure measurements where w1n

and w2n are measurement noise generated by the electronic

devices, considered as thermal noise and modelled as an

additive white gaussian noise (WGN) with zero mean.

Friction inside the cylinder has significant effects in the

performances of position tracking and change in one of

its parameter could have severe consequences. In order for

the friction model to accurately represent static phenomena

such as Coulomb friction and the Stribeck effect, as well as

dynamic friction phenomena, including pre-sliding displace-

ment and hysteresis, a LuGre model [10] was chosen, which

is described by the following equations:

c4 : Ffric = σ0z + σ1ż + σ2ẏ (11)

c5 : ż = ẏ − |ẏ|
g(ẏ)

z (12)

c6 : g(ẏ) =
Fc

σ0
+

Fs − Fc

σ0
e−|ẏ|/vs (13)

d4 : ż =
dz

dt
(14)

Here, Ffric is friction force, z is an internal state variable,

and material dependent parameters are Fc, the Coulomb

friction, Fs, the stiction, vs, the Stribeck velocity, σ0 and σ1,

stiffness and damping coefficients, and σ2, a viscous friction

coefficient.

Parameters and variables in this model are listed in Tables

I and II, respectively.

TABLE I

VALUES OF THE SYSTEM PARAMETERS IN HYDRAULIC UNITS

Parameter Value Parameter Value

M = 41 kg

k = 11400 N/m d = 200 Ns/m

A = 946 mm2 β = 12665 bar

ρ = 900 kg/m3 Vt = 782 cm3

Cd = 0.65 w = 7 mm
p = 80 bar cL = 0 cm3/s/bar
σ0 = 5880 N/m σ1 = 108 Ns/m
σ2 = 500 Ns/m Fc = 270 N
Fs = 500 N vs = 0.05 m/s

TABLE II

LIST OF SYSTEM VARIABLES IN HYDRAULIC UNITS

Variables Unit Variables Unit

y m ẏ m/s

pL bar xv mm
QL L/min r L/min

III. RESIDUAL GENERATION

A formal analysis of analytic redundancy relations, which

can be used for residual generation, is obtained from the

constraints of the system, Eqs.(1 - 14),

C ={c1, c2, c3, c4, c5, c6,m1,m2, a1, a2,

d1, d2, d3, d4} (15)
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The unknown variables in these constraints are

X = {QL, xv, Ffric, z, ż, y, ẏ, ÿ, pL, ṗL, p} (16)

and the known variables are

K = {y1, y2, u1, u2} (17)

A standard structural analysis [11] reveals that the maximal

number of analytical redundancy relations are |C|−|X | where

| · | denote the number of elements in the set, also referred to

as cardinality. The three resulting residual generators were

found to be quite difficult to work with in practice due to

the complex nature of the LuGre model of friction. Instead,

a simplified, steady state model is considered.

A. Steady state model

In steady state, when the mass velocity ẏ is constant,

Eqs.(11, 1-3) become s1 to s4 below,

s1 : Ffric = g(ẏ)sign(ẏ) + σ2ẏ (18)

s2 : QL = 6000
√
10Cd w xv

√

1

ρ
(p− sign(xv)pL)

(19)

s3 : 0 =
ApL

10
− ky − dẏ − Ffric (20)

s4 : 0 = QL
50

3
−Aẏ − cLpL (21)

m1 : y1 = y + w1n (22)

m2 : y2 = pL + w2n (23)

a1 : u1 = xv (24)

a2 : u2 = p (25)

d1 : ẏ =
dy

dt
(26)

In the set of steady state equations, C = {s1, s2, s3, s4,m1,

m2, a1, a2, d1}, X = {QL, xv, Ffric, y, ẏ, pL, p} and K =
{y1, y2, u1, u2}. Therefore there are a maximum of two

residuals. This gives the possibility to detect and isolate the

leakage and friction faults.

Two unmatched constraints, that can be used for residual

generation, are Eqs. 20 and 21.

Eq. (21) is sensitive to detect a leakage, but it is sensitive

also to possible faults related to a1, a2, m1 and m2. In a

similar way Eq.(20) can be used to detect a fault in friction,

if the pressure and position measurements are available, but

it is sensitive also to sensor faults in m1 and m2. In the rest

of the paper only the leakage detection is considered but the

fault detection in friction can be designed using the same

methods. Fault isolation is not directly obtainable through

passive diagnosis, i.e. by just observing the residuals. Instead

active fault diagnosis can be employed where perturbation

signals on u1 and u2 cause response signatures in y1, y2
and the two residuals, which depend on the type of fault

that is present, see [12], [13] and [14] and references herein.

B. Residual for leakage detection

During operation, when the system is gripping a drilling

pipe, velocity is zero, valve opening xv is positive and the

load pressure is high. Eq.(21) gives in this case the following

residual r:

0 = QL
50

3
− cLpL (27)

r = 105
√
10Cd w xv

√

p− y2

ρ
− cLy2

r = 105
√
10Cd w xv

√

p− pL

ρ

√

1− w2n

p− pL
− cL(pL + w2n)

(28)

Considering wn

p−pL

<< 1 an Euler approximation gives:

r = 105
√
10Cd w xv

√

p− pL

ρ
− cLpL + w′ (29)

where

w′ = −
(

105
√
10Cd w xv

√

1

ρ

1

2
√
p− pL

+ cL

)

w2n

(30)

From Eq.(30) it follows that the noise w′ in the residual

is also white with gaussian distribution. This assumption

will held in the following sections when designing the fault

detectors.

The goal of the leakage detector is to decide between two

hypothesis. The null hypothesis (H0), when only noise w′ is

present in the residual, characterises an acceptable leakage,

whereas the alternative hypothesis (H1), when a constant

signal and noise is present in the residual characterises a too

high leakage. The probability of false alarm (PFA) is chosen

by the designer.

IV. DETECTOR DESIGN FOR UNKNOWN

PARAMETERS

A. Unknown DC levels and noise parameters

In a first step, the time n0 when the fault occurs is

supposed to be known. This assumption will be relaxed in

a second step. Since the leakage in the cylinder as well

as the valve parameters Cd, w and ρ are uncertain, the

DC level of residual (29) before and after the jump time,

respectively A1 and A2 are unknown. The variance of the

WGN in the residual depends on the leakage in the cylinder

as shown in Eq.(30). It is hence considered as another

unknown parameter. The hypothesis testing problem is

H0 : A1 = A2

H1 : A1 6= A2

Since this is a composite hypothesis test, the usual general

generalised likelihood ration test (GLRT) is applied, which

for a signal with unknown parameter vector θ in WGN, is

to decide H1 if the log-likelihood L(x) exceeds a threshold

γ,

L(x) =
p(x; θ̂,H1)

p(x;H0)
> γ (31)
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where γ is determined by the desired false alarm probability

PFA and θ̂ is the maximum likelihood estimator (MLE) of

θ (maximises p(x; θ,H1)).
The probabilities for false-alarm PFAand detection PD are

PFA =

∫

{x:L(x)>γ}

p(x;Ho)dx (32)

PD =

∫

{x:L(x)<γ}

p(x;H1)dx. (33)

The MLEs of the DC levels and the variances of the

residual before and after the jump time under H0 (i.e. Â

and σ̂2
0) and under H1 (i.e. Â1, Â2, σ̂2

1 and σ̂2
2 respectively)

are determined as follows [4], [5]:

Â =
1

N

N−1
∑

n=0

x[n] = x̄

Â1 =
1

n0

n0−1
∑

n=0

x[n]

Â2 =
1

N − n0

N−1
∑

n=n0

x[n] (34)

σ̂2
0 =

1

N

N−1
∑

n=0

(x[n]− Â)2

σ̂2
1 =

1

n0

n0−1
∑

n=0

(x[n]− Â1)
2

σ̂2
2 =

1

N − n0

N−1
∑

n=n0

(x[n]− Â2)
2

The GLRT decides H1 if

LG(x) =
p(x; Â1, Â2, σ̂

2
1 , σ̂

2
2)

p(x; Â, Â, σ̂2
0 , σ̂

2
0)

> γ (35)

Assuming Gaussian distributions, which will be verified

experimentally in Section V,

p(x; Â1, Â2, σ̂
2
1 , σ̂

2
2)

p(x; Â, σ̂2
0)

=

n0−1
∏

n=0

√

√

√

√

σ̂2
0

σ̂2
1

exp

[

1

2

(

(x[n]− x̄)2

σ2
0

− (x[n]−A1)
2

σ2
1

)]

×

N−1
∏

n=n0

√

√

√

√

σ̂2
0

σ̂2
2

exp

[

1

2

(

(x[n]− x̄)2

σ2
0

− (x[n]−A2)
2

σ2
2

)]

,

hence,

2 lnLG =
n0−1
∑

n=0

[

ln

(

σ̂2
0

σ̂2
1

)

+
(x[n]− x̄)2

σ̂2
0

− (x[n]− Â1)
2

σ̂2
1

]

+

N−1
∑

n=n0

[

ln

(

σ̂2
0

σ̂2
2

)

+
(x[n]− x̄)2

σ̂2
0

− (x[n]− Â2)
2

σ̂2
2

]

and by using the estimates in Eq. 34,

2 lnLG = N ln(σ̂2
0)− n0 ln(σ̂2

1)− (N − n0) ln(σ̂2
2)

Since the logarithm is a monotonic function, the GLRT

decides H1 if :

2 lnLG(x) = N ln

(

σ̂2
0

(σ̂2
1)

n0

N (σ̂2
2)

N−n0

N

)

> γ′ (36)

where γ′ = 2 ln γ.

B. Unknown DC levels and noise parameters and jump time

To accommodate with unknown jump time, the transition,

if it occurs, is assumed not too close to the endpoints of

the observation interval. n0min
≤ n0 ≤ n0max

, where

presumably n0min
≫ 1 and n0max

≪ N − 1

LG(x) =
p(x; n̂0, Â1, Â2, σ̂

2
1 , σ̂

2
2)

p(x; Â, σ̂2
0)

> γ (37)

where n̂0 is the MLE under H1. Or equivalently,

LG(x) =
maxn0

p(x;n0,H1)

p(x;H0)
(38)

Since the PDF under H0 does not depend on n0 and is

nonnegative, the test is also:

max
n0

(

2 ln
p(x;n0,H1)

p(x;H0)

)

> 2 ln γ (39)

The GLRT decides H1 if

max
n0

(

N ln

(

σ̂2
0

(σ̂2
1)

n0

N (σ̂2
2)

N−n0

N

))

> γ′ (40)

where, again γ′ = 2 ln γ.

C. Adaptive threshold

In order to reduce the time to detect the leakage, to reduce

the false alarm rate and to revert to non-faulty case when a

fault disappears, a recursive cumulative GLRT with adaptive

threshold and upper bounded is implemented. Following is

the algorithm for an upper bound h = 90 and an initial

threshold γ0 = 30.

a) Initialisation:

h = 90

γ0 = 30

b) Loop:

gk = xk − γk−1

γk = xk − sign(gk)min(|gk|,∆)

gk = max(0, gk−1 + gk)

gk = min(h, gk) (41)
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