
Enhancements on the hyperplane arrangements in mixed integer techniques

Florin Stoican†, Ionela Prodan†, Sorin Olaru†,‡

Abstract—The current paper addresses the prob-
lem of optimizing a cost function over a non-convex
and possibly non-connected feasible region. A classical
approach for solving this type of optimization problem
is based on Mixed integer technique. The exponential
complexity as a function of the number of binary vari-
ables used in the problem formulation highlights the
importance of reducing them. Previous work which
minimize the number of binary variables is revisited
and enhanced. Practical limitations of the procedure
are discussed and a typical control application, the
control of Multi-Agent Systems is exemplified.

I. Introduction

Collision avoidance plays an important role in the
context of managing multiple agents. In the same time is
known to be a difficult problem, since certain constraints
are non-convex. For example, the evolution of a dynami-
cal system in an environment presenting obstacles can be
modeled in terms of a non-convex feasible region. More
precisely, it is possible to set up an optimization problem
to optimize the agent state trajectory in order to avoid
a convex region, representing an obstacle (static con-
straints) or another agent (dynamic constraints - leading
in fact to a parametrization of the set of constraints with
respect to the current state).

A popular framework for the treatment of a such
optimization problem is represented by Mixed-Integer-
Programming (MIP), described in [1]. This method has
proved to be very useful due to the ability to include
non-convex constraints and discrete decisions in the op-
timization problem. Research on these types of problems,
using MIP techniques has focused on optimization of
agent trajectories [2], multi-vehicle target assignment
and intercept problems [3], or on coordinating the ef-
ficient interaction of multiple agents in scenarios with
many sequential tasks and tight timing constraints [4].
In [5], the authors used a combination of MIP and Model
Predictive Control (MPC) to stabilize general hybrid
systems around equilibrium points.

However, despite its modeling capabilities and the
availability of good solvers, MIP has serious numerical
drawbacks. As stated in [6], mixed-integer techniques are
in the NP-hard computation class. Consequently, these
methods may not be fast enough for real-time control of
systems with large problem formulations.
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There has been a number of attempts in the literature
to reduce the computational requirements of MIP for-
mulations in order to make them attractive for real-time
applications. In [7] an iterative method for including the
obstacles in the best path generation is provided. Other
works, like [8], consider a predefined path constrained
by a sequence of convex sets. In all of these papers
the original decision problems are reformulated in a
simplified MIP form.

The negative influence of the increased number of
binary variables in the problem formulation highlights
the importance of reducing them. In [9], we introduce
a novel linear constraints expression for reducing the
number of binary variables necessary in describing the
exterior of convex sets.

In the present paper, we revise these preliminary
results and introduce enhancements in the description
of non-connected convex sets (or their complement). We
list some of the noteworthy aspects of our approach
representing also the main contributions of this paper:
• a convex representation in the extended space of

state plus binary variables using a hyperplane ar-
rangement;

• reduced complexity of the problem upon merging
techniques;

• a notable property of optimal association between
regions and their binary representation leading to
the minimization of the number of constraints.

The method presented here can be used in several
fields of application. We choose to exemplify here with
the control of an agent operating in a dynamic environ-
ment with obstacles. The agent is required to maneuver
successfully in a hostile environment. The obstacles are
designed as convex polyhedral regions. In this context the
reduction technique is embedded within an MPC path
planning for multiple agents.

The rest of the paper is organized as follows. In
Section II the preliminaries are presented, the main idea
being detailed in Section III. Discussions based on the
control of multiple agents operating in a hostile environ-
ment are presented in Section IV, while the conclusions
are drawn in Section V.
Notation: The following notation will be used through-

out the paper. The closure of a set S, cl(S) is the intersec-
tion of all closed sets containing S. The collection of all
possible N combinations of binary variables will be noted
{0, 1}N = {(b1, . . . , bN ) : bi ∈ {0, 1} , ∀i = 1, . . . , N}.
The ceiling value of x ∈ R denoted as dxe is the smallest
integer greater than x. We denote |I| as the cardinal of
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set I. lp(n, d) (qp(n, d)) denotes the complexity of solving
a linear (quadratic) program with n constraints and d
variables.

II. Preliminaries
The main objective of this paper is to provide a

technique for solving an optimization problem over a
non-convex and possibly non-connected region of the
state space. We recall here methods from [9] which use
hyperplane arrangements and mixed integer techniques
in order to provide an equivalent (in an extended space
augmented with auxiliary binary variables) optimization
problem over a convex region.
A. Polyhedral notions

In the following we define a bounded polyhedral set,
P ⊂ Rn through its implicit half-space description:

P = {x ∈ Rn : hix ≤ ki, i = 1 . . . N} (1)
with (hi, ki) ∈ R1×n × R and its complement, as:

CX(P ) , cl(X \ P ) (2)
with the reduced notation C(P ) whenever X is presumed
known or is considered to be the entire space Rn.
By definition, every affine subspace which defines P

Hi = {x : hix = ki} (3)
will partition the space into two disjoint regions:

R+(Hi) = {x : hix ≤ ki} (4)
R−(Hi) = {x : −hix ≤ −ki} (5)

with i = 1 . . . N . R+
i and R−i denote simplified notation

for region (4) and (5), respectively, associated to the ith
inequality of (1).
B. Non-convex and non-connected region

Without restricting the problem let us consider our
non-convex and non-compact region as the complement
of an union of convex (bounded polyhedral ) sets P =⋃
l

Pl:

CX(P) = cl(X \ P) (6)

with Pl =
Kl⋂
kl=1

R+ (Hkl
) and N ,

∑
l

Kl.

This type of regions arises naturally in the context of
obstacle/collision avoidance when there is more than a
single object to be taken into account.

In order to deal with the complement of a non-convex
region in the context of mixed-integer techniques several
additional theoretical tools need to be introduced.

Definition 1 (Hyperplane arrangements – [10]). A col-
lection of hyperplanes H = {Hi}i=1:N will partition the
space in an union of disjoint cells defined as follows:

A(H) =
⋃

l=1,...,γ(N)


N⋂
i=1

Rσl(i)(Hi)︸ ︷︷ ︸
Al

 (7)

where σl ∈ {−,+}N denotes feasible combinations of
regions (4)–(5) obtained for the hyperplanes in H. �

Several computational aspects are of interest. The
number of feasible cells, γ(N), (in relation with the space
dimension – d and the number of hyperplanes – N) is
bounded by Buck’s formula ([11]):

γ(N) ≤
d∑
i=0

(
N

i

)
(8)

with equality satisfied if the hyperplanes are in general
position and X = Rn.

We note that there exists a subset {Bl}l=1,...,γb(N)
of feasible cells from (7) (with γb(N) ≤ γ(N)) which
describes region (6):

CX(P) =
⋃
l

Bl, (9)

such that, for any l there exists i such that Bl = Ai and

Bl ∈
{
Ai ∈ A(H) : Ai

⋂
P = ∅

}
. (10)

Mixed integer programming (MIP) allows to express the
union (9) as a polyhedra in an extended spaceX×{0, 1}N
of state + auxiliary binary variables as follows:

...
σl(1)h1x ≤ σl(1)k1 +Mαl

...
σl(N)hNx ≤ σl(N)kN +Mαl

 Bl

...

(11)

with M a positive scalar chosen appropriately (that is,
significantly bigger than the rest of the variables in the
right hand side of the inequalities) and (α1, . . . , αN ) ∈
{0, 1}N the auxiliary binary variables.
It is straightforward to note that any of the regions

Bl can be obtained from (11) with an adequate choice of
binary variables:

αl = (1, . . . , 1, 0︸︷︷︸
l

, 1, . . . , 1). (12)

The number of binary variables negatively influences
the computation time, in the worst case, an exponential
bound is reached. In [9] it was noted that a set

(λ1, . . . , λN0) ∈ {0, 1}N0 (13)

with N0 = dlog2(N)e permits a reduced representation
where any variable αl is written as a linear combination
in the space of variables (λ1, . . . , λN0) ∈ {0, 1}N0 :

αi = αi (λ1 . . . λN0) . (14)

As a prerequisite for explicitly defining relation (14) we
associate a tuple

λi ,
(
λi1 . . . λ

i
N0

)
(15)
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to each region Bi. We mention that this association is
not unique, and various possibilities can be considered;
in the following, unless otherwise specified, the tuples will
be appointed in lexicographical order. We can now recall
the next result:

Proposition 1. A mapping αi(λ) : {0, 1}N0 → R which
verifies that αi(λi) = 0 and αi(λj) ≥ 1 for any j 6= i is
given by:

αi(λ) =
N0∑
k=1

tik, where tik =
{
λk, if λik = 0
1− λk, if λik = 1

.

(16)
where λk denotes the kth variable and λik its value for the
tuple associated to region Ai.

Proof: See the proof of Proposition 1 in [9].
Note that Proposition 1 gives a linear mapping αi(λ)

which will have value 0 only for the tuple associated to
region Bi and values ≥ 1 for any other tuple. This proves
that (14) can be used to extract region Bi as in (12).
Note that if a tuple is unallocated (i.e., has no asso-

ciated region), the substitution of its binary values in
the extended polyhedra (11) will result in a degenerate
projection onto X which for all intents and purposes en-
compasses the entire space. To counteract this undesired
behavior we need to add constraints which will force the
unallocated tuples to be infeasible. This reasoning leads
the following corollary:

Corollary 1. Let there be a tuple λi ∈ {0, 1}N0 . The
point it describes is made infeasible with respect to the
constraint:

−
N0∑
k=1

tik ≤ −ε (17)

with tik defined as in Proposition 1 and ε ∈ (0, 1) a scalar
(for simplicity, in the rest of the paper we will use 0.5).

Proof: The left side of the inequality (17) will vanish
only at tuple λi and for the rest of the tuples in the
discrete set {0, 1}N0 will give values greater of equal to
1. Thus, the only point made infeasible by inequality (17)
is λi.

Using Corollary 1 it follows that by adding inequalities
of form (17) for each unallocated tuple in (11) we obtain
a complete representation of (6).

C. Exemplification
Consider the following example depicted in Fig. 1

where the complement of the union of two triangles
(P = P1 ∩ P2) represents the feasible region. We take
H = {Hi}i=1:4 a collection of N = 4 hyperplanes (given
as in (3)) which define P1, P2 as follows:

P1 = R+
1 ∩R

+
2 ∩R

+
3

P2 = R−1 ∩R
−
2 ∩R

+
4 .

We observe that the bound given in (8) is reached,
that is, we have 11 cells (obtained as in the arrangement

H1 H2

H3

H4

B1 → (0, 0, 0, 0)

B2 → (0, 0, 0, 1)B3 → (0, 0, 1, 0)B4 → (0, 0, 1, 1)

B5 → (0, 1, 0, 0)

B6 → (0, 1, 0, 1)

B7 → (0, 1, 1, 0)

B8 → (0, 1, 1, 1)

B9 → (1, 0, 0, 0)

P1

P2

Fig. 1: Exemplification of hyperplane arrangement

(7)). From them, a total of 9, which we denote here as
B1, . . . , B9, describe the non-convex region (6). To each
of them we associate a unique tuple from {0, 1}N0 as seen
in Fig. 1 with N0 = dlog29e = 4.
As per Proposition 1 and (11), we are now able to write

the following set of inequalities:

−h3x ≤ −k3

h4x ≤ k4
+M ( λ1 + λ2 + λ3 + λ4)

}
B1

−h2x ≤ −k2

−h3x ≤ −k3

h4x ≤ k4

+M (1 + λ1 + λ2 + λ3 − λ4)

 B2

h1x ≤ k1

h2x ≤ k2

−h3x ≤ −k3

+M (1 + λ1 + λ2 − λ3 + λ4)

 B3

−h1x ≤ −k1

−h3x ≤ −k3
+M (2 + λ1 + λ2 − λ3 − λ4)

}
B4

−h1x ≤ −k1

−h2x ≤ −k2

h3x ≤ k3

h4x ≤ k4

+M (1 + λ1 − λ2 + λ3 + λ4)

 B5

h2x ≤ k2

−h4x ≤ −k4
+M (2 + λ1 − λ2 + λ3 − λ4)

}
B6

h1x ≤ k1

h2x ≤ k2

−h4x ≤ −k4

+M (2 + λ1 − λ2 − λ3 + λ4)

 B7

h1x ≤ k1

h3x ≤ k3

−h4x ≤ −k4

+M (3 + λ1 − λ2 − λ3 − λ4)

 B8

h1x ≤ k1

h2x ≤ k2

h3x ≤ k3

h4x ≤ k4

+M (1 + λ1 − λ2 + λ3 + λ4)

 B9.

(18)

Note that in the above set we simplified the description
by cutting the redundant hyperplanes in a cell repre-
sentation(e.g., for cell A1, 2 hyperplanes suffice for a
complete description).

Since only 9 tuples, from a total number of 16 are
associated to cells, we need to add constraints to the
problem such that remaining 7 unallocated tuples will
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never be feasible:
− (2 − λ1 − λ2 + λ3 + λ4) ≤ −0.5
− (3 − λ1 − λ2 − λ3 + λ4) ≤ −0.5
− (3 − λ1 − λ2 + λ3 − λ4) ≤ −0.5
− (4 − λ1 − λ2 − λ3 − λ4) ≤ −0.5
− (2 − λ1 + λ2 − λ3 + λ4) ≤ −0.5
− (3 − λ1 + λ2 − λ3 − λ4) ≤ −0.5
− (2 − λ1 + λ2 + λ3 − λ4) ≤ −0.5. (19)

III. Main idea
As seen in [9], palliatives for reducing the computa-

tional load exist but ultimately, the computation time is
in the worst case scenario is exponentially dependent on
the number of binary variables which in turn depends
on the number of cells of the hyperplane arrangements
(see (8)). We conclude then, that the problem becomes
prohibitive for a relatively small number of polyhedra
in P and that any reduction in the number of cells is
worthwhile and should be pursued.

This can be accomplished in two complementary ways.
Firstly, we note that bound (8) is reached for a given
number of hyperplanes only if they are in general posi-
tion. As such, particular classes of polyhedra may some-
what reduce the actual number of cells in arrangement
(7) and consequently, the number of auxiliary binary
variables.

The other direction, which we chose to pursue in the
rest of the paper is the merging of adjacent cells into
possibly overlapping regions which describe the comple-
ment of our initial union of polyhedra. Using, the cells
of (7) and some well known notions of set theory we will
describe a reduced representation of (6), both in number
of cells and of interdicting constraints (similar to the ones
discussed in Corollary 1).
A. Cell merging

Recall that any of the cells of (9) is described by an
unique sign tuple (Bl ↔ σl). As such, we obtain that
the cells are disjunct and cover the entire feasible space.
For our purposes we are satisfied with any collection of
regions not necessarily disjoint which covers the feasible
space. In this context we may ask if it is not possible
to merge the existing cells of (9) into a reduced number
of regions which will still cover region (6). Note that by
reducing the number of regions, the number of necessary
auxiliary variables my also decrease substantially.

We can formally represent the problem by requiring
the existence of a collection of regions,

CX(P) =
⋃

k=1,...,γc(N)

Ck (20)

which verifies the next conditions:
• the new polyhedra are formed as unions of the old

ones (i.e., for any k there exists a set Ik which selects
indices from 1, . . . , γc(N) such that Ck =

⋃
i∈Ik

Bi)

• the union is minimal, that is, the number γc(N) of
regions is minimal

Existing merging algorithms are usually computation-
ally expensive but here we can simplify the problem by
noting two properties of the cells in (9):
• the sign tuples σl describe an adjacency graph since

any two cells whose sign tuples differ at only one
position are neighbors

• the union of any two adjacent cells is a polyhedra
Remark 1. Note that a region Ck is described by at most
N−d hyperplanes where d denotes the number of indices
in the sign tuples which flip the sign. It makes sense then
to, not only reduce the number of regions, but also to
maximize the number of disjoint cells that go into the
description of a region from (20). �

In order to construct (20) we may use merging al-
gorithms (see for example [12] which adapts a “branch
and bound” algorithm to merge cells of a hyperplane
arrangement) or we can pose the problem in the boolean
algebra framework [13].

B. Constraint reduction
Note that,

Nint , 2dlog2γ
c(N)e − log2γ

c(N), (21)

the number of unallocated tuples, may have significant
values. If we associate to each tuple an inequality in-
tended to discard the combination from the set of feasible
points as in Corollary 1, we negatively influence the speed
of the associated optimization algorithm. This can be
alleviated by noting (as previously mentioned) that the
association between feasible cells in (7) and tuples is
arbitrary. One could then chose favorable associations
which will permit more than one tuple to be removed
through a single inequality. To this end, we present the
following proposition.

Proposition 2. Let there be a collection of tuples{
λi
}
i∈1,...,2d ∈ {0, 1}

N0 which completely spans a d-facet
of hypercube {0, 1}N0 . Let I be the set of the N0 − d
indices which retain a constant value over all the tuples{
λi
}
i∈1,...,2d composing the facet. Then there exists the

constraint
−
∑
k∈I

t∗k ≤ −ε, (22)

which renders the tuples of the given facet (and only these
ones) infeasible.
Variables t∗k and ε are taken as in Corollary 1 with t∗k

associated to λ∗k, the common value of variable λk over
the set of tuples

{
λi
}
i∈1,...,2d .

Proof: Geometrically, the tuples are extreme points
on the hypercube {0, 1}N0 and the inequalities we are
dealing with are half-spaces which separate the points
of the hypercube. If a set of tuples completely spans a
d-facet it is always possible to isolate a half-space that
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separates the points of the d-facet from the rest of the
hypercube.
By a suitable association between feasible cells and

tuples we may label as unallocated the extreme points
which compose entire facets on the hypercube {0, 1}N0

which permits to apply Proposition 2 in order to obtain
constraints (22).
Remark 2. By writing Nint as a sum of consecutive pow-

ers of 2 (Nint =
dlog2Ninte−1∑

i=0
bi2i), an upper bound Nhyp

for the number of inequalities (22) can be computed:

Nhyp =
dlog2Ninte−1∑

i=0
bi ≤ dlog2γ

c(N)e − 1 (23)

where bi ∈ {0, 1}. �

C. Exemplification
By applying the merging algorithm of Subsection III-

A we obtain that the feasible region (6) is expressed by
an union as in (11) and we depict the result in Fig. 2.

H1 H2

H3

H4

B1

B2B3B4

B5

B6

B7

B8

B9

C1 → (0, 0)

C2 → (0, 1)

C3 → (1, 0)

C4 → (1, 1)

P1

P2

Fig. 2: Exemplification of hyperplane arrangement with
merged regions

As it can be seen, we obtain 4 overlapping regions:
C1 = B1 ∪B2 ∪B3 ∪B4, C2 = B4 ∪B5 ∪B6, C3 = B6 ∪
B7∪B8∪B1 and C1 = B8∪B9∪B1∪B2. Consequently,
we note that N0 = 2 auxiliary binary variables suffice
in coding the regions. As per Proposition 1 and (11), we
are now able to write the following set of inequalities (we
attach to each of the regions a tuple in lexicographical
order):

−h3x ≤ −k3 +M ( λ1 + λ2)
}

C1

−h1x ≤ −k1

−h4x ≤ −k4
+M (1 + λ1 − λ2)

}
C2

−h4x ≤ −k4 +M (1− λ1 + λ2)
}

C3

h1x ≤ k1

−h2x ≤ −k2
+M (2− λ1 − λ2)

}
C4

(24)

In the reduced representation (24) there are no unal-
located tuples, since the number of tuples coincides with

the number of regions. For the sake of the presentation
we take the construction from (18) where there remain
7 unallocated tuples and consider Proposition 2. In the
original formulation (19) we required 7 constraints to
discard these tuples. We apply now the results of Sub-
section III-B and observe the following improvements.
For the 7 unallocated tuples, we observe that 4 of them,
(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0) and (1, 1, 1, 1) form a
2-facet of the hypercube {0, 1}4. Tuples (1, 0, 1, 0) and
(1, 0, 1, 1) form an edge and (1, 0, 0, 1) is on a vertex. We
can now apply Proposition 2 and obtain the following
constraints

− (2− λ1 − λ2 ) ≤ −0.5
− (2− λ1 + λ2 − λ3 ) ≤ −0.5
− (2− λ1 + λ2 + λ3 − λ4) ≤ −0.5. (25)

Note that we were able to diminish the number of
inequalities from 7 in (19) to only 3 in (25): the first
4 constraints of (19) are replaced by the 1st constraint
of (25). The same holds for the next 2 that correspond
to the 2nd and for the last that is identical with the 3rd.

IV. Collision avoidance example

A number of commonly found situations in the control
related to Multi-Agent Systems imply a cost function has
to be minimized, while in the same time, the agent avoids
collision with obstacles and other agents.

In this illustrative example we will describe an agent
that has to navigate its way around a group of fixed ob-
stacles. We consider the dynamics of the agent described
by a LTI system as follows:

ξk+1 = Aξk +Buk. (26)

The agent model is used in a predictive control context
which permits the use of non-convex state constraints for
obstacle avoidance behavior.

An optimal control action u∗ is obtained from the
control sequence u ,

{
uk|k, uk+1|k, · · · , uk+N−1|k

}
as a

result of the optimization problem:

u∗ = arg min
u

(ξTk+Nh|kPξk+Nh|k +
Nh−1∑
l=1

ξTk+l|kQξk+l|k+

+
Nh−1∑
l=0

uTk+l|kRuk+l|k)

subject to:
{
ξk+l|k = Aξk+l−1|k +Buk+l−1|k

ξk+l|k ∈ C(P), l = 1, . . . , Nh
(27)

Here Q ≥ 0, R > 0 are the weighting matrices, P ≥ 0
defines the terminal cost, Nh the prediction horizon and
P is an union of polytopes describing the obstacles.
As a practical application we consider a linear system

(vehicle, pedestrian or agent in general form) whose
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dynamics are described by:

A =


0 0 1 0
0 0 0 1
0 0 − µ

m 0
0 0 0 − µ

m

 , B =


0 0
0 0
1
m 0
0 1

m

 (28)

where ξ = [x y vx vy]T , u = [ux uy]T are the state and the
input of the system. With the components of the state
being (x, y), the position, and (vx, vy) the velocities of
the agent, m is the mass of the agent and µ its damping
factor.

We consider the position component of the agent state
to be constrained by 4 obstacles as shown in Fig. 3 (in
blue). Considering the 14 hyperplanes which describe
the polyhedra associated with the obstacles we have
γ(14) = 106 regions obtained as in (7). Additionally we
observe that 10 of the cells will describe the interdicted
regions and the rest, γb(14) = 96 will describe the feasible
region, as shown in (9). Further, we apply the notions
from Subsection III-A (in this particular situation, the
problem is “small” enough to be solved using a Karnaugh
map) to obtain a reduced representation for the feasible
region as in (20). We observe that the number of cells is
substantially reduced, from γb(14) = 96 to γc(14) = 11
which warrants in turn a reduction of the auxiliary binary
variables from 7 to 4 that, for a worst case scenario,
equals to an eightfold speed up. In Fig. 3 (a) we depict
the cells of (9) and the obstacles while in Fig. 3 (b) we
show the covering (20) of merged cells.

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

15

x1

x
2

(a) Partitioning with disjoint cells
obtained as in (9)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x
2

(b) Partitioning with merged cells
(20)

Fig. 3: Cell partitionings of the feasible region.

We apply the predictive control strategy for horizon
N = 3 and cost matrices Q = 105 · I4, R = I2 and
P = 105 · I4 and obtain the trajectory depicted in Fig. 4.

V. Conclusions
In this paper we revisit a technique which transforms

a non-convex and possibly non-connected region into a
polyhedra in an augmented space (state and auxiliary
binary variables) through the use of hyperplane arrange-
ments. With respect to previous results we minimized
the number of cells describing the feasible region through
merging methods and discussed an improvement of the
optimization problem such that the number of additional
constraints is minimized. These numerical improvements

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x
2

Fig. 4: Simulations of agent trajectories.

were presented and tested in an obstacle avoidance con-
trol problem.
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