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Abstract— The aim of this paper is to present some results on
the control synthesis of time-delay linear systems. Our objective
is to find linear controllers able to increase the first stability
window imposing that the delay-free system is stable. Our
method treats time-delay systems control design with numeric
routines based on Linear Matrix Inequalities (LMI) arisen
from classical linear time invariant system theory coupled
together with a unidimensional search. The proposed algorithm
is simple, efficient and easy to be numerically implemented.
Some examples illustrating state and output feedback design
are solved and discussed in order to shed the light on the most
relevant characteristic of the theoretical results. The paper ends
with some discussion on further theoretical extensions of the
proposed methodology.

Index Terms— Time-delay Systems, Linear Systems, State
Feedback Design, Output Feedback Design.

I. INTRODUCTION

Most dynamical systems present delays in their inner
structure [1], due to phenomena as, for example, transport,
propagation or communication, but, most of the time, for
the sake of simplicity, they are ignored. On the other hand,
those delays can be the cause of bad performance or even
instability, and therefore, in order to proper analyze and
design controllers for such systems, it is mandatory to take
into account their effects. Another important source of delay
is the feedback loop itself, with this delay induced by the
sensors, actuators and, in more modern digital controllers, the
time of calculation. Finally, among the recent applications,
we cite networked control systems [2].

Starting from the studies of [3] and [4], many results
regarding the analysis and control of such systems have been
achieved, specially over the last decades, as it is discussed,
among many others, in the books [5], [6], [7], the survey
paper [8], and references therein.

When dealing with any dynamical systems, one of the
basic questions we need to answer concerns the stability. For
systems with delay, we can go even further, and be interested
on this property as a function of the delay itself [9]. It is
well known that the phenomenon of stability windows might
happen, meaning that the system can lose and recover its
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stability when we start to increase the numerical value of
the delay.

The numerical determination of the limits of stability of a
linear time-delay system with respect to the delay is a well
known research subject [10]. In the case of commensurate
delays, all the stability windows can be directly and reliably
obtained with a small computational effort [11], [12], [13],
whereas in the non-commensurate case, although still feasi-
ble, the determination even of only the first window is much
more involved [14], [15].

Our goal is to present explicit delay-dependent design
procedures for state and output feedback control design. We
end to provide a controller able to increase as much as
possible τ⋆ such that the closed-loop system remains stable
for any τ ∈ [0, τ⋆). To this purpose, we will rely on some
properties that relates the norm of the matrices appearing in
the state-space description, the position where the crossings
of poles over the imaginary axis appear and the rate of
displacement of those poles as a function of an increasing
delay.

To the best of the authors’ knowledge, such an approach
is completely new and it allows to better exploit the intrinsic
features of the roots of the corresponding characteristic
equation. Furthermore, the numerical design procedure is
entirely based on the solution of LMIs together with a line
search.

The paper is organized as follows. Section II is devoted
to the problem statement and the presentation of some
existing results that will be used in sequel. Section III brings
a numerical procedure for the state feedback, whereas in
section IV we are concerned with the output feedback design
problem. Each section presents some academic examples to
put in evidence the more relevant aspects of the results. The
paper ends with a conclusion in Section V where the main
contributions are briefly discussed.

The notation used throughout the paper is standard. More
precisely, capital letters denote matrices and small letters
denote vectors. For scalars, small Greek letters are used.
R(R+) and C are the set of real (positive real) and complex
numbers, and  =

√
−1 is the imaginary unit. For complex

scalars, ℜ(·) and ℑ(·) denote real and imaginary parts,
respectively. For complex vector x ∈ C

n, x∼ indicates its
conjugate transpose. For real matrices or vectors (′) indicates
transposition. The spectrum of a complex matrix Q is de-
noted by σ(Q) with each eigenvalue being denoted by σi(Q),
and its spectrum radius is given by ρ(Q) = maxi |σi(Q)|.
The identity matrix of any dimension is denoted simply by
I . Finally, for partitioned Hermitian matrices, the symbol (•)
denotes generically each of its symmetric blocks.
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II. PROBLEM STATEMENT

In this section, we consider linear time-delay systems of
retarded type described by the following delay differential
equation

ẋ(t) =
N
∑

i=0

Aix(t− τi), (1)

where x(t) ∈ Rn is the state variable, Ai ∈ Rn×n for all
i ∈ {0, 1, . . . , N} are real matrices and 0 = τ0 < τ1 < τ2 <

. . . < τN are the delays. It is important to stress that τ0 = 0
making the time delay model of general form.

It is clear that system (1) is exponentially stable if and
only if all roots of its characteristic equation:

det∆(s) = 0, (2)

where ∆ : C→ C
n×n,

∆(s) = sIn −
N
∑

i=0

Aie
−sτi , (3)

are in the open left half-plane [4]. The characteristic equation
of system (1) given by (2) can be rewritten as

C(s, τ1, . . . , τH) = p(s) +
H
∑

i=1

qi(s)e
−sτi = 0; (4)

where p(s), qi(s) are polynomials with real coefficients, H ≤
n∗N and τ i for all i ∈ {1, . . . , H} depend on Ai and τi for
all i ∈ {0, . . . , N} in a complicated but well-known way.

If (s, τ1, . . . , τH) is a simple root of (4), then a small
perturbation on one of the elements of the delay, τ j ← τ j+ǫ

keeping all the other delays the same, will provide a solution
of (4) with the form (s⋆, τ1, . . . , τ j + ǫ, . . . , τH), where

s⋆ = s+

∞
∑

k=1

αkǫ
k (5)

and

α1 = s
qj(s)e

−sτj

p′(s) +
∑H

i=1(q
′
i(s)− τiqi(s))e−sτi

. (6)

Here, p′(s) and q′i(s) denote the derivative of the polynomials
p(s) and qi(s) with respect to s, respectively.

Even if we consider a small change in an element τj of
the original equation (1), the important point is that we still
have the complex scalar variable “s” which factors out of
the expression. This implies that, when crossing through the
imaginary axis, the roots closer to the real axis will tend to
move less when we increase some of the elements of the
delay, even though certainly, in some cases, the other terms
might change this characteristic.

The next proposition, stated in [16], provides an envelope
curve around the roots of the characteristic equation (2)
that will be essential to our purposes. As it will be seen
afterwards, it is easy to calculate and provides precise results
whenever the state variable x(t) ∈ Rn of the time-delay
system has relatively small dimension.
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Fig. 1. Envelop and zeros of ∆(s) = s+ 1− 2e−s

Proposition 1 If s0 is a characteristic root of the system (1),

then it satisfies

|s0| ≤
N
∑

i=0

‖Ai‖2e−ℜ(s0)τi . (7)

Proof: We follow the steps of [16]. The expression

∆(s0) = 0 is alternatively expressed as

s0 ∈ σ

(

N
∑

i=0

Aie
−s0τi

)

. (8)

But since the spectral radius of a matrix is the infimum of

all its induced norms, it follows that

|s0| ≤
∥

∥

∥

∥

∥

N
∑

i=0

Aie
−s0τi

∥

∥

∥

∥

∥

2

≤
N
∑

i=0

‖Ai‖2|e−s0τi |, (9)

from where (7) follows directly.

In the following example we will illustrate this key result
of reference [16], which bounds every characteristic root
inside the envelope given in (7).

Example 1 Let us consider the scalar system

ẋ(t) = −x(t) + 2x(t− 1). (10)

Its characteristic equation is given by ∆(s) = s+ 1− 2e−s

which yields p(s) = s+1, q1(s) = −2 and τ̄1 = 1. Applying

(7) with equality, we obtain the envelop given by the solid

line in Figure 1, whereas the dots show the exact location of

the poles of system (1) calculated by the QPmR algorithm,

see [15]. As it can be seen, the result is remarkably precise

in this particular case.

Other envelops have been considered in [17] and [18],
which could provide less conservative results. But, in our
case, if we consider a root in the imaginary axis, that is
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s0 = ω0, equation (7) provides the upper bound

|ω0| ≤
N
∑

i=0

‖Ai‖2, (11)

meaning that the interval over the imaginary axis where we
can find a root of the characteristic equation is independent
of the numerical value of the delay.

The next results will show how the 2-norm can be changed
for any induced matrix Q-norm

‖A‖2Q = max
i

σi(A
′QA) (12)

where Q = Q′ ∈ Rn×n is an arbitrary positive definite real
matrix.

Proposition 2 Let Q = Q′ > 0 ∈ Rn×n be given. If µ ∈ R+

is such that

µQ > A′QA (13)

then ρ(A) <
√
µ.

Proof: Multiplying the inequality (13) by any eigenvec-

tor xℓ ∈ Cn associated to some eigenvalue σℓ(A) through

the right and its conjugate transpose x∼

ℓ through the left we

see that the inequality

µx∼

ℓ Qxℓ > |σℓ(A)|2x∼

ℓ Qxℓ (14)

holds for all ℓ = 1, . . . , n proving thus the condition on the

spectral radius ρ(A).

Lemma 1 Let Q = Q′ > 0 ∈ R
n×n be given. If µ ∈ R+ is

such that

µQ >

N
∑

i=0

A′

iQAi (15)

then any solution of the characteristic equation (2) of system

(1) on the imaginary axis s = ω satisfies |ω| ≤
√

µ(N + 1).

Proof: We start by noting that for any i ∈ {0, . . . , N},
the relation

[

A′
iQAi A′

ie
ωτi

• Q−1

]

≥ 0 (16)

is always verified by application of the Schur Complement

with respect to the second column and row. We can sum up

all the N + 1 terms to achieve
[

∑N
i=0 A

′
iQAi

∑N
i=0 A

′
ie

ωτi

• (N + 1)Q−1

]

≥ 0 (17)

where we recall that τ0 = 0 in order to easy the notation.

Applying again the Schur Complement with respect the

second column and row, we obtain

N
∑

i=0

A′

iQAi ≥
1

N + 1

(

N
∑

i=0

A′

ie
ωτi

)

Q

(

N
∑

i=0

Aie
−ωτi

)

(18)
and therefore, using (15)

(N + 1)µQ >

(

N
∑

i=0

A′

ie
ωτi

)

Q

(

N
∑

i=0

Aie
−ωτi

)

. (19)

Now we take into account that since ω is a characteristic

root of the system, it is an eigenvalue of the complex matrix
∑N

i=0 Aie
−ωτi , as is has been shown in (8). Therefore,

considering the eigenvector x of that matrix related to the

eigenvalue ω, we have

ωx =

(

N
∑

i=0

Aie
−ωτi

)

x. (20)

From this point we multiply both sides through the left

by Q1/2 and calculate the square 2-norm of both vectors,

resulting in

|ω|2x∼Qx = x∼

(

N
∑

i=0

A′

ie
ωτi

)

Q

(

N
∑

i=0

Aie
−ωτi

)

x.

(21)
Using (19) this implies that

|ω|2x∼Qx < (N + 1)µx∼Qx (22)

allowing us to complete the proof.

So, our strategy to increase the limit of stability is two-
fold. At the same time that we will minimize the left side of
(15) in order to limit the crossing frequencies, and therefore
their velocities, we will try to place the poles for the delay-
free system ẋ(t) = (

∑N
i=0 Ai)x(t) further away from the

imaginary axis. For that, we will do an iterative process,
where we will increase the minimum distance from the
imaginary axis of the poles of the delay-free system and
minimize the corresponding induced Q-norm of the state-
space matrices. For each point of the iterative process, we
can compute explicitly the limit of stability.

III. STATE FEEDBACK DESIGN

We now move our attention to the time delay system

ẋ(t) =
N
∑

i=0

Aix(t− τi) +Bu(t), (23)

which is controlled by means of a state feedback control law
u(t) =

∑N
i=0 Kix(t− τi) ∈ Rm to be designed. Connecting

it to (23), we get a closed-loop system state space realization
of the form

ẋ(t) =

N
∑

i=0

(Ai +BKi)x(t− τi) (24)

and we will try to maximize the first delay interval where
the system remains stable. For the commensurate case, the
maximum delay can be easily defined, whereas for the non-
commensurate one, we will consider that the delays are
homogeneously modified accordingly to τi = γTi where
Ti > 0 for all i ∈ {0, . . . , N} and our goal is to maximize
the positive scalar γ.

The first part of the procedure involves imposing some
desired location of the poles for the closed-loop delay-free
system

ẋ(t) =

(

N
∑

i=0

Ai +BKi

)

x(t). (25)
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We recall that all eigenvalues σi(A) of a matrix A are such
that ℜ(σi(A)) < −α, α > 0, if and only if there exists a
matrix Q = Q′ > 0 satisfying the inequality, see [19]

A′Q+QA < −2αQ. (26)

Hence, multiplying (26) by P = Q−1 to the left and to
the right, the condition for the closed-loop delay-free system
(25) to have all its poles in the region ℜ(s) < −α can be
assured by the existence of matrices P = P ′ > 0 and Yi for
all i ∈ {0, . . . , N} such that

AP + PA′ +BY + Y ′B′ < −2αP (27)

where A =
∑N

i=0 Ai and Y =
∑N

i=0 Yi. In the affirmative
case, the state-feedback gains can be obtained from the
simple formulas

Ki = YiP
−1 (28)

for all i = {0, . . . , N}. We notice that whenever α > 0 is
fixed, (27) is a linear matrix inequality with respect to all
involved matrix variables, that is P > 0 and Y .

Now we move to the second part of the algorithm. From
this point, we will try to minimize the right hand-side of the
relation

|ω| ≤
√

(N + 1)µ (29)

To this end, applying the Schur complement in (15) with
Ai replaced by the closed-loop matrices Ai + BKi for all
i ∈ {0, . . . , N} and multiplying each row and column by
P = Q−1 we get








µP PA′
0 + Y ′

0B
′ . . . PA′

N + Y ′
NB′

• P . . . 0
• • . . . 0
• • • P









> 0. (30)

Therefore, even though we cannot minimize directly the
upper bound (11) using LMIs, this is possible for the upper
bound indicated in (29) a fact that puts in evidence its
intrinsic theoretical importance. Notice that the minimization
with respect to the positive scalar µ > 0 is done by
unidimensional search.

In the end of the process, if it was successful to find any
solution, we achieve that the closed-loop delay-free system is
stable and that any crossing of poles through the imaginary
axis will happen at |ω| ≤

√

(N + 1)µ, and therefore, pos-
sibly with a low speed. Repeating this strategy for different
values of α > 0, and for each one of those calculating the
maximum value of the delay which guarantees the stability
of the system, completes the strategy.

Hence, the procedure can be summarized by the determi-
nation of the function

µ(α) = inf
µ,P,Y0,...,YN

{µ : (27), (30)} (31)

for increasing α > 0 and calculating the associated value
of the maximum first interval delay preserving closed-loop
stability τ (α). The existence of τ (α) > 0 for some α > 0
requires that the delay-free system be stabilizable.
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Fig. 2. Maximum stability margin for closed-loop system (32).

Remark 1 Notice that some restrictions on the controller

can be easily applied. For example, if we are searching

for a finite dimension linear controller of the form u(t) =
K0x(t), initially we have only to impose Yi = 0 for all

i ∈ {1, . . . , N} and apply the same procedure.

Example 2 To illustrate the results obtained until now, let us

consider a second-order example borrowed from [20], where

the matrices corresponding to the state space realization (23)

are as follows:

[

A0 A1 B
]

=

[

0 0 −1 −1 0
0 1 0 −0.9 1

]

. (32)

We notice that although the pair (A0, B) is not controllable,

the pair (A0 + A1, B) is, which is our requirement for the

applicability of the procedure.

Figure 2 shows in solid line the case u(t) = K0x(t) +
K1x(t−τ ) and in dashed line the memoryless case, for which

we have imposed K1 = 0. For the first case, the maximum

interval such that the system is asymptotic stable we were

able to get was τ ∈ [0, 2.6644), whereas in the second case

it was τ ∈ [0, 2.1605). The corresponding gains, for the first

case, were

K0 =
[

−0.2540 −2.0267
]

,

K1 =
[

−0.2540 −0.1267
]

.

and, for the second case (memoryless controller), the proce-

dure provided the gain

K0 =
[

−0.3148 −1.7284
]

.

It is interesting to mention that, in [20], considering only

asymptotic stability which is possible to be obtained by set-

ting theH∞-level large enough, the maximum value assuring

the existence of a state feedback stabilizing controller is

τmax = 1.28. Also, as expected, in Figure 2, the maximum

value of the delay provided by the solid curve is clearly

greater than the one provided by the dashed one.
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IV. OUTPUT FEEDBACK DESIGN

We now turn our attention to the design of a dynamic
full-order output feedback controller to time-delay systems
whose state space realization is given by

ẋ(t) =

N
∑

i=0

Aix(t− τi) +Bu(t) (33)

y(t) =

N
∑

i=0

Cyix(t− τi) (34)

where, in addition to the assumptions and the variables
defined in the previous section, y(t) ∈ Rp is the measured
signal. Hence, in this section we design a full-order dynamic
output feedback controller with the following structure

˙̂x(t) =
N
∑

i=0

Âix̂(t− τi) + B̂y(t) (35)

u(t) =
N
∑

i=0

Ĉix̂(t− τi) + D̂y(t) (36)

where x̂(t) ∈ Rn. When connected to (33)-(34) the closed-
loop system rewrites as:

ξ̇(t) =
N
∑

i=0

Fiξ(t− τi) (37)

where ξ(t) = [x(t)′ x̂(t)′]′ ∈ R2n is the state variable and
the indicated matrices stand for

Fi =

[

Ai + BD̂cCyi BĈi

B̂iCyi Âi

]

(38)

for all i ∈ {0, . . . , N}.
As in the state feedback case, we first consider the delay-

free problem. For that, we need to find a matrix P = P ′ > 0,
with P and its inverse partitioned as [21]

P =

[

X U

• X̂

]

, P−1 =

[

Y V

• Ŷ

]

(39)

such that FP + PF ′ < −2αP , with F =
∑N

i=0 Fi. In
order to linearize this constraint, we introduce the following
nonsingular matrix

T =

[

I Y

0 V ′

]

, (40)

and multiply the mentioned constraint by T to the right and
T ′ to the left, arriving at T ′FPT + T ′PF ′T < −2αT ′PT ,
and we notice that

T ′PT =

[

X I

• Y

]

. (41)

Also, considering the traditional one-to-one change of
variables, see [21] for details
[

Mi F

Li R

]

=

[

V Y B

0 I

]

K̂ci

[

U ′ 0
CyiX I

]

+

[

Y

0

]

Ai

[

X 0
]

(42)

where

K̂ci =

[

Âi B̂

Ĉi D̂

]

(43)

for all i ∈ {0, . . . , N}, we get

T ′FPT =

[

AX + BL A+BRCy
M YA+ FCy

]

(44)

where M =
∑N

i=0 Mi, L =
∑N

i=0 Li and Cy =
∑N

i=0 Cyi.
Continuing as we did in the second part of the state feedback
control design, we see that, applying the Schur complement
and multiplying each row and column of (15) by T ′P and
PT respectively, we achieve









µT ′PT T ′PF ′
0T . . . T ′PF ′

NT

• T ′PT . . . 0
• • . . . 0
• • • T ′PT









> 0. (45)

where the terms T ′PF ′
iT for all i ∈ {0, . . . , N} have the

same form as T ′PF ′T given in (44), and to get the exact
expression we only need to substitute A, M, L and Cy by
Ai, Mi, Li and Cyi, respectively. As before, we have to
handle two coupled LMIs in order to minimize µ for a given
α > 0.

One might notice that no choice about U or V was
made. Indeed, in order to recover the state-space realization
matrices of the controller (35)-(36), one of those matrices
must be imposed and the other calculated from the relation
XY + UV ′ = I . But if we rewrite equation (42) as

[

Âi B̂

Ĉi D̂

]

=

[

V −1 0
0 I

]

Si

[

(U ′)−1 0
0 I

]

(46)

where the matrix Si

Si =

[

S1i S2

S3i S4

]

=

[

S1i F − Y BR

Li − CyiX R

]

(47)

with S1i = Mi − Y AiX − S2CyiX − Y BLi, we can
immediately see that Si does not depends on V and U . On
the other hand, if we consider the controller transfer function
given by

C(s) =
N
∑

i=0

Ĉyie
−sτi

(

sI −
N
∑

i=0

Âie
−sτi

)−1

B̂ + D̂

=
N
∑

i=0

S3ie
−sτi

(

sV U ′ −
N
∑

i=0

S1ie
−sτi

)−1

S2 + S4

=

N
∑

i=0

S3ie
−sτi

(

s(I − Y X)−
N
∑

i=0

S1ie
−sτi

)−1

S2 + S4

which does not depend on V and U and not even on X̂ or
Ŷ . This implies that, as long as the choice of V or U be
an invertible matrix, with the other being calculated by the
relation XY + UV ′ = I , it can be made arbitrary. In our
numerical example, we have chosen U = −X . Notice that
the minimization of µ > 0 subject to all involved constraints
can be done by any LMI solver coupled together with a line
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Fig. 3. Root-loci of the closed-loop system.

search.

Example 3 Let us now consider the same second-order

example from [20] in order to illustrate the output feedback

control design. The time-delay system (33)-(34) matrices are

the same as in the previous example and
[

Cy0 Cy1

]

=
[

0 1 0 0
]

.

For this system we have applied the proposed algorithm

to generate a sequence of stabilizing controllers imposing

that the delay-free system had poles further away of the

imaginary axis and minimizing t in (45) in order to limit

the frequency of crossings. The best result was obtained for

α = 0.9620, where the associated controller matrices were

given by

Â0 =

[

0 1.0805
−0.0097 −0.6673

]

, Â1 =

[

−1 −1.0004
0.0327 −0.8061

]

Ĉ0 =
[

0.0097 0.5997
]

, Ĉ1 =
[

−0.0327 −0.0939
]

B̂ =

[

1.0805
−0.5494

]

, D̂ = −0.5182

and stability is guaranteed for all τ ∈ [0, 1.5708). In [20],

the maximum delay obtained reported was τmax = 1.28,

which implies that our procedure provides to an improvement

of more than 20%.

Figure 3 shows the root-loci of the closed-loop system with

respect to τ ∈ [0, 1.5708). It is interesting to observe that the

upper bound in (29) given by |ω| ≤ 1.3802 is represented in

the same figure by the two dashed lines. It is apparent that

the ω-crossing is approximately ω ≈ 1 indicating a good

precision of the proposed method.

V. CONCLUSIONS

In this paper, we have proposed a new design procedure
for time-delay state and output feedback design. It is based
on the norms of the matrices of the state-space realization,
since it was shown how these norms can affect the rate of
displacement of the poles around the imaginary axis as we
increase the numerical value of the delay.

One important feature of this method is that it makes
possible the control design by manipulating classical LMIs
coupled together with a line search. As a consequence,
it opens the possibility to handle time-delay systems with
high number of state variables and number of delays. Some
simple examples illustrate the theoretical results. There are
problems still open that deserve future research efforts, as
for instance the use of some less conservative envelops and
the generalization of the procedure to neutral systems.
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