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Abstract— The nervous system encodes and processes infor-
mation with the activities of neurons. The response of a single
neuron is complex and depends on the interactions between
its previous state, its intrinsic properties, and the stimuli it
receives. Experimentally, we utilize the patch clamp technique
to monitor neural membrane voltages, but the underlying
stimuli, including the external current or synaptic current
from other neurons, cannot be fully observed. In this paper,
we used computational models as an alternative to tackle
these challenges. We employed an ensemble Kalman filter to
reconstruct unobserved intracellular variables and parameters
only from measured membrane potentials in a CA1 pyramidal
neuron model that follows Hodgkin-Huxley dynamics. We found
that the tracking of intracellular neuronal voltage and current
was close to their true values whether the observations are from
model generated data or real experimental data. In addition,
we retrieved the experimentally inaccessible dynamics of the
neuron, such as the changes of sodium and potassium gating
variables, which helps to understand their roles in generating
action potentials. Our study provides a powerful framework
for observing dynamics underlying neural activity and seeking
better real-time neuronal control.

I. INTRODUCTION

The neuron, an electrically excitable cell, is the funda-
mental biological unit in the brain [1]. The response of a
single neuron is complex and depends on the interactions
between its previous state, its intrinsic properties, and the
external stimuli or synaptic currents it receives [2]. Although
we can measure single neuron properties via patch clamp
techniques, the underlying input current and neural dynamics
are not directly measurable. Computational models have been
increasingly used as an alternative to tackle these chal-
lenges that are encountered in such experiments. Previous
studies on the input-output relationship of a neuron have
been carried out by conventional filters [4], artificial neural
networks [2], and a numerical model [3]. These approaches
are helpful to establish a quantitative relationship between
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neuron response and input stimulus. However, in a typical
computational model, we obtain a solution from integration
without considering its uncertainty. The measurements of
real experimental data may contain noise from recording
equipment, and there are ubiquitous sources of neuronal
noise including membrane channel stochasticity, branch point
conduction failure, and probabilistic transmitter release [26].
Therefore, brain measurements are always uncertain.

The Kalman filter has emerged as an effective way to
infer experimentally inaccessible variables from noisy mea-
surements [5][6]. Although the Kalman filter was origi-
nally derived for linear systems, the various modification
of Kalman filter, such as the ensemble Kalman filter [7],
and the unscented Kalman filter [8][9] are more suitable for
complex nonlinear neural dynamics. Such techniques have
led to great successes in many other complex areas, such as
aircraft engine health estimation, aircraft model estimation,
robot navigation, financial forecasting, and weather predic-
tion before they were applied to neurons [10][11][12][16].
Recently, our laboratory extended such approaches in as-
similating spatiotemporal neuronal data [12], and tracking
seizure dynamics with real experimental data [14][15]. To
our knowledge, the ensemble Kalman filter has not yet
been used to model the input-output relationship in a single
neuron.

In this paper, we aim to reconstruct input current and
neural dynamics from a neuron model using only the mem-
brane potential measurement from a CA1 pyramidal cell.
We experimentally applied input current to the neuron and
recorded its membrane potential. The pyramidal neuron
model is described as a nonlinear dynamic system that fol-
lows modified Hodgkin-Huxley equations. We assumed the
input stimulus is unknown, and reconstructed the underlying
stimulus and the neural dynamics using the intracellular
recordings from single neuron by an ensemble Kalman filter,
in particular the unscented Kalman filter (UKF). This paper is
organized as follows. Section II presents the neuron model
of the pyramidal cell and the implementation of the UKF
algorithm. Section III presents the main results of this work.
Finally, section IV presents conclusions and the future work.

II. MATERIALS AND METHODS

A. The Neuron Model

We modeled the pyramidal cell using a single compart-
ment model. The dynamics of the compartment is modeled
as a nonlinear system following a modified Hodgkin-Huxley
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formalism that describes how action potentials in neurons are
generated [17]. This model reveals the key dynamics of ion
flow across the cell membrane underlying the action potential
by four coupled nonlinear ordinary differential equations:

dV

dt
=

1

C
(Iext − INa − IK − Il) (1)

dm

dt
= αm(1 −m) − βmm (2)

dh

dt
= αh(1 − h) − βhh (3)

dn

dt
= αn(1 − n) − βnn (4)

where Iext is the external injected current or synaptic current
from other neurons, INa and IK are the sodium and potas-
sium currents across the voltage-gated ion channels, Il is the
leak current that is linearly related to the leak conductance.
These currents can be expressed as:

INa = GNam
3h(V − ENa) (5)

IK = GKn
4(V − EK) (6)

Il = Gl(V − El) (7)

where the variables and parameters can be found in table I.

TABLE I: Model Variables and Parameters

Symbol Units Description

V mV Membrane potential
m Activating sodium gate
h Inactivating sodium gate
n Activating potassium gate

C 1uF/cm2 Membrane capacitance
GNa 32mS/m2 Maximal conductance of sodium current
GK 10mS/m2 Maximal conductance of potassium current
Gl 0.1mS/m2 Conductance of leak current
ENa 55mV Reversal potential of sodium current
EK −90mV Reversal potential of potassium current
El −70mV Reversal potential of leak current

The activation and inactivation variables m, h, and n range
between 0 and 1 representing the fraction of channels in
closed and open states. The parameters αm, βm, αh, βh,
αn, βn are rate constants of the ion channel state transitions
that are dependent on V [18][19].The equations of these rate
constants are from the pyramidal cell model of Gloveli(2005)
[18], as shown in Table II.

TABLE II: The Opening and Closing Rate Constants

αm =
0.32(54+V )

(1−exp(−(V +54)/4))
βm =

0.28(V +27)
(exp((V +27)/5)−1)

αh = 0.128exp(−(50 + V )/18) βh = 4
(1+exp(−(V +27)/5))

αn =
0.032(V +32)

(1−exp(−(V +52)/5))
βn = 0.5exp(−(57 + V )/40)

B. The Unscented Kalman Filter

The Kalman filter is the most well known data assimilation
tool that estimates the internal system states x from observa-
tions y for linear systems [5][6]. Estimating the stimuli and
unobserved states in a neuron model is a nonlinear estimation
problem. The unscented Kalman filter (UKF) provides an
optimized framework to reconstruct and predict model state
for nonlinear systems [8][9]. Let the nonlinear estimation
problem be

xk = F (xk−1, uk) + qk (8)

yk = H(xk−1) + rk (9)

where q and r are the process and measurement zero mean
Gaussian noises with covariance matrices Q and R respec-
tively. F and H are the process and observation functions
with system states x, input u, and output y.

The Kalman filter works in two steps (Fig1): first it
estimates the system state and covariance from model only
(prediction); then it assimilates noisy measurements to up-
date the system state and covariance (correction). The key
of the UKF is to produce several sigma points around
the current state estimate based on its covariance, and to
propagate these points through the nonlinear map and capture
an estimation of the mean and covariance (Fig1) [10]. The
procedure of the UKF is shown as follows:

, xxx P, xx

y

x P ˆ xxx P, xxx P , xxx P
t time1t+

Fig. 1: Iterative diagram of the unscented Kalman Filter

1) First, suppose x is a N-element vector, and choose the
sigma points from their mean x̄ and covariance Pxx at
time t.

Xi = x̄+ (
√
NPxx)Ti (i = 1, 2, . . . , N) (10)

Xi = x̄− (
√
NPxx)Ti (i = N + 1, . . . , 2N) (11)

2) Propagate each sigma point from time step t to t +
1 through the known nonlinear functions F and H
yielding transformed points and the observations.

X̃i = F (Xi) Ỹi = H(Xi) (12)

3) Estimate the new mean and covariance based on trans-
formed points.

x̃ =
1

2N

2N∑
i=1

X̃i ỹ =
1

2N

2N∑
i=1

Ỹi (13)
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P̃xx =
1

2N

2N∑
i=1

(X̃i − x̃)(X̃i − x̃)T +Q (14)

P̃xy =
1

2N

2N∑
i=1

(X̃i − x̃)(Ỹi − ỹ)T (15)

P̃yy =
1

2N

2N∑
i=1

(Ỹi − ỹ)(Ỹi − ỹ)T +R (16)

4) Update the a posteriori state estimate mean and co-
variance matrix at time t + 1 using the Kalman filter
equations:

K = P̃xyP̃
−1
yy (17)

x̂ = x̃+K(y − ỹ) (18)

P̂xx = P̃xx −KP̃T
xy (19)

Here, K is the Kalman gain matrix and y is the
measurement. Then the updated x̂ and P̂xx will be
used for the next iteration.

C. The Implementation of UKF

To implement the UKF into the neuron model, we set the
augmented state vector x as a N = p+ n dimension vector
composed of p parameters and n dynamic variables. If p
parameters are tracked in the system, then the first p rows
of state vector x follow the parameter function λk = λk−1.
In this paper, to reconstruct the input current of the neuron,
we consider Iext as a time-varying parameter and insert it
into the state vector. Therefore, the process equations of the
Kalman filter would be:

ẋ =


İext
V̇
ṁ

ḣ
ṅ

 =


0

(Iext − INa − IK − Il)/C
αm(1 −m) − βmm
αh(1 − h) − βhh
αn(1 − n) − βnn

+ q (20)

Since the only measured variable is the membrane potential
(V ) of the pyramidal cell, the measurement equations would
be:

y = Cx+ r (21)

where C =
[
0 1 0 0 0

]
By augmenting the observed state variables with unob-

served state variables and system parameters, the UKF can
estimate and track both unobserved variables and system
parameters.

The covariance matrix for process noise Q and observation
noise R should be positive semi-definite symmetric matrixes
with off-diagonal elements valued as zero. In our case, Q is
a 5×5 matrix as shown in Eq.(22) , where Q1 is the process
noise covariance for parameters and Q2 is the process noise
covariance for variables. We suppose the process noise of
variables is uncorrelated with each other. Therefore, the off-
diagonal elements are set to be zero. R is a 1× 1 matrix for
the measurement noise covariance.

Q =


Q1 0 0 0 0
0 Q2 0 0 0
0 0 Q2 0 0
0 0 0 Q2 0
0 0 0 0 Q2

 (22)

The tracking results are highly dependent on Q, R and
initial values. We chose Q and R that gave us the best results
in two ways:

1) The Chi-squared (χ2 ) test is often used as a diagnostic
of the statistical model that gives information about Q
and R in the KF [21]. Based on the definition of χ2

in KF [21], the χ2 in this paper can be defined by

χ2 = (y − ỹ)T (P̃yy)−1(y − ỹ) (23)

The mean of χ2 should be around 1, reflecting the
innovation is consistent with the innovation covariance.
It tests whether there is model data mismatch.

2) Although the χ2 test works well on model generated
data, the model cannot be perfect for the real experi-
mental data. We seek to minimize the root mean square
error (RMSE), which reflects how well the predicted
values fit the experimental data.

RMSE =

√√√√ N∑
i=1

(xi − x̂i)2/N (24)

We plotted RMSE as a function of Q and R, and chose
the set that gave us the lowest RMS errors for both
voltage and current, suggesting the best fitting.

All simulations were carried out using MATLAB. The
integration time-step is 0.01ms while the membrane potential
of the neuron was measured each 0.1ms.

D. Experimental Data

Cells to be patched were identified based on morphological
characteristics and the location of the cell body within
hippocampal layers. After being patched, cells were injected
with negative current to hold them at -75 to -80 mV. Negative
and positive square wave current pulses were injected in
increments of 50-100 pA for 500 ms to determine the
membrane properties of the cells [18][20][24].

III. RESULTS

In our study, we tracked the input stimuli and neu-
ral dynamics, within UKF framework by assimilating the
membrane potential measurements in two cases: 1) model
generated data; 2) real experimental data.

A. Model Generated Measurements

In this section, the observations are based on simulation
only, generated by corrupting membrane potentials (V) with
white Gaussian noise to mimic experimental data. By com-
paring the estimated values with the true values, we can
evaluate the performance of the tracking.
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1) Step Current: typically, in the experiment, negative and
positive step current are injected into a neuron to determine
the passive and active properties of the cells and confirm
the cell-type, such as excitatory pyramidal cell or inhibitory
basket cell [20][24].
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Fig. 2: Assimilating noise-free (a) and noisy observations (b)
with unknown step current injection: measured membrane
potentials (blue dots), true value of membrane potentials
(red) and input current (pink), reconstructed membrane po-
tentials and input current (black).

When the pyramidal cell is stimulated by positive step
current, it generates a series of action potentials. Here, the
observations are the membrane potential and simulated by
injecting positive current into the cell. We first showed
the tracking performance from noise-free observation (Fig
2a). The intracellular voltage and input current were recon-
structed with excellent accuracy from noise-free observation
(Fig 2a). The RMS errors of membrane voltage and input
current are close to zero, suggesting the reconstruction is
comparable to previous studies [3].

We then showed that the UKF can successfully reconstruct
the input current from noisy measurements. In Fig 2b,
the observations are corrupted by 20% measurement noise,
corresponding to noise strength d = 1.5. Therefore, the
covariance of measurement noise R = d2 is 2.25. The choice
of Q1 = 0.0625 and Q2 = 0.0001 gives us a χ2 close to 1.
When the observation is noise-corrupted, the reconstructed
voltage and input current still have a good approximation to
their true values. The RMS errors of voltage and input current
are also very small, reflecting high estimation accuracy.

2) Periodic Current: we mimic background oscillatory
drive by injection of sinusoidal current waveforms. When
the neuron is stimulated by an unknown sinusoidal current,
it generates a periodic firing pattern of response spikes. The
effect of periodic current can modulate the firing frequency
of the neuron.
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Fig. 3: Assimilating the noisy observation with unknown
periodic current injection. (a). measured membrane potentials
(blue dots), true value of membrane potentials (red) and input
current (pink), reconstructed membrane potentials and input
current (black). (b). estimated neural dynamics correspond-
ing to the first spike in (a).

Intracellular sinusoidal currents were injected in the neu-
ron model. The frequency of the waveform was 2 Hz
and the intensity was 1 µA/cm2. The observed membrane
voltage was corrupted by 20% measurement noise with noise
strength d = 1.9. Therefore, the covariance of measurement
noise R = d2 is 3.61. The choice of Q1 = 0.16 and
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Q2 = 0.0001 gives us a χ2 close to 1.
Results showed that the reconstructed voltage and current

from the noisy observation approximates their true values
(Fig 3a). We also reconstructed the inaccessible neural
dynamics, such as the voltage gated ionic channels, Na+

and K+ (Fig 3b). Once the unobserved neural dynamics is
available, we can establish a closed loop feedback controller
to manipulate the membrane voltage based on such estimates
[22].

B. Real Experimental Measurements
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Fig. 4: Assimilating intracellular experimental data with
unknown step current injection. The neuron response in
pyramidal cell is generated by injecting negative (a) or
positive (b) step current from 15.5ms to 515.5ms. Measured
experimental data at the pyramidal cell (blue dot); estimated
trajectory of membrane voltage and input current (black).

We have shown that the UKF can be used to reconstruct
the global dynamics of the biophysical neuron model using
model generated data as the observation. However, the model

is always an imperfect representation of nature. The real
experimental data is also more complicated than the model
generated noisy data. Here, we tracked the real experimental
data from in vitro patch clamp recordings by the UKF
approach.

In Fig 4, after a whole cell patch, the pyramidal cell was
held at -83 mV by negative current. Negative and positive
square wave current pulses were injected in increments of
70pA for 500ms. Here, we chose R = 0.0001, Q1 = 0.001
and Q2 = 0.0001 that gave us the best tracking results.

Results showed that the UKF framework can successfully
reconstruct membrane voltage and input current from ex-
perimental data with this simple neuron model. The recon-
structed input currents are a good approximation of negative
(Fig 4a) and positive (Fig 4b) step currents injected into the
neuron in the experiment. We noticed that the reconstructed
positive current decreased (Fig 4b) during 500ms injection.
This is because the model is not ideal for the pyramidal
cell. The drift comes from the lack of frequency adaptation
current in the model, such as M-type current or medium
afterhyperpolarization (mAHP) current. The decrease in the
frequency of spiking in the experiment is mostly due to
this kinds of current. Since the goal of this study was to
assimilate complex neuronal dynamics using the simplest
model, we have ignored this feature in the model for this
preliminary report. The filter compensate for this current by
the drift in the estimated current as shown. Such knowledge
would be constructive in further optimizing similar models
in the future. In addition, the sodium and potassium gating
variables were also reconstructed. We have noticed that these
reconstructed gating variables sometimes are not within their
physiological range of 0 and 1. Since the model is simple,
the tracking still works very well. However, it is useful to
employ constrained Kalman filtering techniques [23][25] to
project the gating variables in the range of 0 and 1 for a
more complex model.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper, the Kalman filter was introduced to recon-
struct the input stimulus and neural dynamics from noisy
neuronal measurements. This method has successfully recon-
structed the input-output relationship in a single neuron with
both model generated data and experimental data from in
vitro patch clamp recordings. The marriage of the ensemble
Kalman filter and the neuron model in this paper also
provides a powerful strategy to generate control signals based
on the measured and estimated variables. A discussion of
the use of ensemble Kalman filtering in dynamic clamp
was presented in [14]. By setting a reference voltage, we
can estimate the current required to inject. For example,
if the reference voltage is set to a constant value below
the threshold of the action potential, then the controller can
annihilate the action potential propagation from one neuron
to others. This preliminary study provides an intriguing set
of results towards future observing and controlling neuron
dynamics.
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