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Abstract— Motivated by a deeper understanding of the mech-
anisms involved in neuronal synchronization, we extend an
input/output approach recently proposed to analyze networks
of nonlinear dynamical operators defined in the extended L2

space. This extension allows to cover a wider class of systems,
by tolerating some heterogeneity among the operators involved.
We apply this result to a network of heterogeneous Hindmarsh-
Rose neurons and provide an analytical justification of rather
counter-intuitive synchronization phenomena observed in sim-
ulation.

I. INTRODUCTION

Synchronization in a network of agents can be interpreted as
the appearance of a correlated behavior among its constituting
dynamical systems. It finds applications in many physical,
engineering, medical, and biological fields. The problem of
finding sufficient conditions under which synchronization can
be guaranteed is particularly challenging when the compo-
nents of the network are heterogeneous. Nonetheless, such a
heterogeneity is common in many biological applications, in
particular in the study of neuronal synchronization. Recently,
a promising method has been developed [17] to provide explicit
conditions on the agents’ dynamics and on their interconnection
topology for a network of identical systems to synchronize.
This approach relies on the input/output properties of the agents
involved, and thus requires little knowledge on the individual
dynamics. This feature is of particular interest for neuronal
synchronization, in which parameter identification is often hard
to achieve in a precise manner. However, this result imposes
for the time-being that all agents composing the network have
the same dynamics, which constitutes a restrictive constraint in
view of the typical heterogeneities between neuronal cells. The
aim of this paper is therefore to extend this method to make it
cope some heterogeneity between the agents and to apply it to a
population of heterogeneous Hindmarsh-Rose neuronal models
[8].

In networks of neuronal cells, signaling occurs both inter-
nally, through the interaction of the different ionic currents, and
externally, through synaptic coupling. Following the framework
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same address, antoine.chaillet@supelec.fr

Luca Scardovi is with the Department of Electrical Engineering and
Information Technology, Technische Universität München (TUM), Munich,
Germany scardovi@tum.de

introduced in [17], the model we rely on explicitly takes into
account internal and external interconnections by viewing each
component of the network (referred to as a compartment) as
an interconnection of subsystems (referred to as species) rep-
resented by operators in the extended L2 space. The input to
each operator includes both the influence of the other species
within the same compartment, and a diffusive coupling term
between the same species in different compartments, as well
as exogenous disturbances. Similarly to [17], [2], [18], [1], the
dynamical properties of the isolated subsystems as well as the
algebraic properties of the interconnection are summarized in
the so-called dissipativity matrix, whose diagonal stability im-
plies the robust synchronization of the network. This approach
is similar to classical works on large-scale systems such as
[22], [11]. The robustness property is quantified through L2

gain conditions that can be explicitly computed for particular
interconnection structures.

Other recent related works have used different approaches
to study synchronization in networks of nonlinear systems. In
[20], [6], [19] the authors exploits the incremental passivity
of the underlying dynamics. In [14], [13] the authors use a
convergent dynamics approach. All these works heavily use a
state-space formalism, which requires a detailed knowledge of
the underlying dynamics, as opposed to the purely input-output
approach used in this note.

This paper generalizes the results in [17] in the following
ways: i) the elements belonging to the same species are not
required to be identical, ii) the obtained synchronization con-
ditions are weaker, and iii) the bound on the synchronization
error is explicitly computed, thus paving the way to the study of
interconnected systems forced by external inputs (e.g. control
signals).

The paper is organized as follows. In Section II, we recall the
formalism of [17] and adapt it to heterogenous compartments.
In Section III, the needed input/output properties are defined
and illustrated through some academic examples. The main
result is provided in Section IV, and its application to a network
of Hindmarsh-Rose neuronal models is presented in Section V.
All the proofs are available in the online available extended
version [4].

II. PRELIMINARIES AND PROBLEM STATEMENT

Let Lm2e denotes the extended L2 space [21] of signals w :
R≥0 → Rm, such that the truncation wT := w|[0,T ] is in
Lm2 ([0, T ]), for all T ≥ 0. In other words, Lm2e is made of all
signals that are square-integrable on any finite interval. Given
any T ≥ 0, for all w, v ∈ Lm2e, the scalar product of wT and
vT is denoted by 〈w, v〉T . We write ‖w‖T for the Lm2 norm of
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Fig. 1. An illustration of the interconnection structure

w|T . Given any square matrix A, spect(A) denotes the set of
its eigenvalues.

The system under analysis is given by the diffusive intercon-
nection of n compartments, each composed of N subsystems
that we refer to as species [17]. The compartments are struc-
turally identical, in the sense that they contain the same number
of species, and that the internal interconnection is common
to all compartments. The heterogeneity comes into play at
the level of the species, i.e. the members of one species in
different compartments are allowed to be different. The class of
heterogeneities that we can take into account with the present
approach will be detailed in the following sections.
Each species k ∈ {1, . . . , N} in the compartment j ∈
{1, . . . , n} is described through a nonlinear operator Hk,j :
Lm2e → Lm2e, and its input-output behavior is given by

yk,j = Hk,jvk,j , vk,j ∈ Lm2e. (1)

The inputs are given by

vk,j = wk,j +
N∑
i=1

σk,iyi,j +
n∑
z=1

akj,z(yk,z − yk,j), (2)

where wk,j models exogenous disturbances,
∑N
i=1 σk,iyi,j

models the input-output coupling among different species in the
same compartment j, and

∑n
z=1 a

k
j,z(yk,z−yk,j) represents the

diffusive coupling between the same species k in different com-
partments (see Figure 1). The coefficients aki,j , k = 1, . . . , N ,
i, j = 1, . . . , n are non-negative. They represent the intercon-
nection structure among different compartments. We assume
no self-loops, that is akj,j = 0, for all k = 1, . . . , N and all
j = 1, . . . , n. As highlighted by the species superscript k, the
coefficient aki,j may vary from species to species, allowing for
different interconnection topologies between different species.

The internal interconnection structure is quantified by the
N ×N matrix

Σ := [σk,i]k,i=1,...,N . (3)

Moreover, for all η ∈ RN , we let

Eη := Σ− diag(η1, . . . , ηN ). (4)

We respectively denote by Yk := col(yk,1, . . . , yk,n), Vk :=
col(vk,1, . . . , vk,n), Wk := col(wk,1, . . . , wk,n), the vectors
of outputs, inputs, and exogenous disturbances of the same
species k. Given a set of vectors Zk, k = 1, . . . , N , we

indicate the stacked vector by Z := col(Z1, . . . , ZN ), for
example we indicate the stacked vector of outputs by Y :=
col(Y1, . . . , YN ) ∈ LnN2e .

The closed-loop input (2) can then be condensed as

Vk = Wk +
N∑
i=1

σk,iYi − LkYk, ∀k = 1, . . . , N, (5)

where Lk :=
[
lki,j
]
i,j=1,...,n

∈ Rn×n is the Laplacian matrix
associated to the k-th diffusive interconnection, defined as

lki,j :=

{ ∑n
z=1 a

k
i,z, i = j

−aki,j , i 6= j.
(6)

The connectivity properties of the diffusive interconnection can
be associated to the algebraic properties of Lk [5]. In particular,
the algebraic connectivity λk can be extended to the case of
directed graphs [23] as

λk := min
z∈~1⊥

n ,|z|=1
zTLkz. (7)

To analyze the synchronization of the interconnected system
(1)-(2), we compare the outputs of the same species in different
compartments. The mean output Y k ∈ Lm2e of a species k is
defined as

Y k :=
1

n

n∑
j=1

yk,j , k = 1, . . . , N. (8)

By defining the vector of synchronization error

Y ∆
k := col(yk,1 − Y k, . . . , yk,n − Y k), (9)

we have that Y ∆
k = 0 if and only if the outputs are synchro-

nized, meaning that yk,1 = yk,2 = . . . = yk,n. A natural
quantity to characterize the degree of synchronization of the
species k over the time window [0, T ], T ≥ 0, is thus given
by ‖Y ∆

k ‖T . In the sequel, the same notation is used to define
the vectors V ∆

k and W∆
k .

III. DEFINITIONS AND FIRST EXAMPLES

In order to study the synchronization of (1)-(2) we introduce
some operator properties that will be extensively used in the
paper.

The next definition characterizes an incremental input-output
property that relates output differences to input differences for
pairs of operators. It thus constitutes a natural instrument to
study synchronization of input-output operators. This definition
is the natural generalization of [17, Definition 1] to the case of
heterogeneous populations.

Definition 1 (Mutual relaxed co-coercivity) Given γ ∈ R
and I ⊂ N, a family H of input-output operators Hi : Lm2e →
Lm2e, i ∈ I , is said to be γ-mutual relaxed co-coercive if, for all
i, j ∈ I , there exists βi,j ∈ R, such that, for all ui, uj ∈ Lm2e,
and all T ≥ 0,

γ‖Hiui −Hjuj‖2T ≤ 〈(Hiui −Hjuj) , (ui − uj)〉T + βi,j .
(10)

The constants βi,j are called the biases.

Let us illustrate Definition 1 through some examples that will
be helpful for the development of Section V.

Example 1 (Scalar systems affine in the inputs) With the
same computation as in (cf. [17, Section V.A]), a scalar
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dynamical system ẋ = −f(x) + u with arbitrary initial
conditions and output y = x can be shown to define mutually
relaxed co-coercive operators, provided its right-hand side
satisfies a one sided Lipschitz condition as the one studied in
[13]. In particular, a scalar linear dynamics ẋ = −ax + bu,
with arbitrary initial conditions defines mutually co-coercive
operators with co-coercivity constant γ = a

b .
For state space models Definition 1 is satisfied by incrementally
output feedback passive systems [20], [12] with small hetero-
geneities as shown in the following proposition.

Proposition 1 (Incremental passivity with small hetero-
geneity) Consider a family of input-output dynamics

ẋj = f(xj , uj) + δfj(xj , vj)
xj(0) = x0

j

yj = hk(xj)
(11)

where uj , yj ∈ Rm, xj ∈ Rp, and vj ∈ Rq , for all all j =
1, . . . , n. Note that f : Rp × Rm → Rp is common to all xj ,
while the heterogeneity comes from the term δfj : Rp × Rq →
Rp. Suppose that the input-output operators associated to (11)
are well defined. Suppose that there exists a smooth function
V : Rp → R≥0 and a constant γ ∈ R such that along the
trajectories of (11), for all i, j = 1, . . . , n,

V̇ (xi − xj) ≤ −γ(yi − yj)2 + (ui − uj)T (yi − yj)+[
∂V

∂x
(xi − xj)

]T
(δfi(xi, vi)− δfj(xj , vj)). (12)

Given two functions vi, vj : R≥0 → Rq , suppose that, for all
initial conditions x0

i , x
0
j , there exists a constant C ≥ 0 such

that, for all input functions ui, uj ∈ Lm2e, along the trajectories
of (11),∥∥∥∥∥

[
∂V

∂x
(xi − xj)

]T
(δfi(xi, vi)− δfj(xj , vj))

∥∥∥∥∥
T

≤ C,

(13)
for all T ≥ 0. Then the input-output operators associated
to (11) are mutually relaxed co-coercive with co-coercivity
constant γ and biases βi,j = V (x0

i − x0
j ) + C.

The heterogeneity δfj(xj , vj) depends both on the state of the
system, and on the (possibly time varying) parametric uncer-
tainties vj . The right hand side of (13) represents the energy
added to incremental storage function V by the presence of
heterogeneities. Relation (13) requires this energy to be finite
and independent from the systems inputs. When δfj = 0, for
all j = 1, . . . , n, the only heterogeneities are due to different
initial conditions. In this case Proposition 1 says that identical
incrementally passive systems define a family of mutually re-
laxed co-coercive operators. The following example illustrates
a particular situation in which condition (13) can be checked

Example 2 (Passive linear system with heterogeneous non-
controllable part) Consider a family of non-controllable pas-
sive system with (possibly nonlinear) heterogeneities in the non-
controllable part of the form

ẋcj = Acx
c
j +Buj +Aucxu,

ẋuj = Aux
u
j + δfj(x

u
j )

xj(0) = x0
j

yj = Cxcj

(14)

where yj , uj ∈ Rm, xcj ∈ Rpc , xuj ∈ Rpu , and [Ac, B] is
controllable, for all all j = 1, . . . , n. Suppose that the non-
controllable part exponentially synchronizes, that is there exists
αi,j , bi,j > 0 such that, for all initial condition xuj (0), xui (0),

|xuj (t)− xui (t)| ≤ bi,j |xuj (0)− xui (0)|e−αi,jt, ∀t ≥ 0, (15)

for all i, j = 1, . . . , n. By picking a suitable quadratic incre-
mental Lyapunov function, it is possible to show that (12) and
(13) are satisfied, and thus (14) defines a family of mutually
co-coercive operators. Intuitively, this comes from the fact that
the controllable part is linear and output feedback passive, and
thus output feedback incrementally passive, while the derivative
along the incremental trajectories of the non-controllable part
has finite integral due to the exponential synchronization prop-
erty. Detailed computations are omitted due to space constraint,
but can be found in the on-line available preprint [4].

IV. ROBUST SYNCHRONIZATION RESULTS

A. Statement
The following theorem is an extension of [17, Theorem 1] to

the case of heterogeneous dynamics. Its proof follows the steps
of [17, Theorem 1] and is omitted due to space constraints.

Theorem 1 Consider the network (1)-(2). Suppose that the
following assumptions are satisfied:

1) For each k = 1, . . . , N , the family of operators Hk :=
{Hk,j}j=1,...,n is γk-mutually relaxed co-coercive, γk ∈
R.

2) For each k = 1, . . . , N , γ̃k := γk + λk > 0, where λk is
the algebraic connectivity (7) of the interconnection graph
associated to the species k.

3) The dissipation matrix Eγ̃ , as defined in (4), is diagonally
stable.

Then, there exist ρ, β > 0, such that

‖Y ∆‖T ≤ ρ‖W∆‖T + β, ∀T ≥ 0. (16)

In particular, letting di > 0, i = 1, . . . , N , be such thatDEγ̃+
ETγ̃ D < 0, where D = diag(d1, . . . , dN ), the L2-gain ρ in
(16) is given by

ρ :=
maxi=1,...,N{di}

min
{

spect(−DEγ̃ − ETγ̃ D)
} . (17)

Theorem 1 ensures that the synchronization error Y ∆ of the
system is small (in the L2 norm) provided that the input dis-
persion W∆ is small. In particular the closed-loop system has
finite incremental L2-gain from the incremental input W∆ to
the incremental output Y ∆. With respect to [17], apart from the
less conservative assumptions, Theorem 1 provides an explicit
expression for the L2-gain. Notice that the gain can be made
arbitrarily small, by reducing the eigenvalues of the matrix
DEγ̃ + ETγ̃ D.

B. L2-gain for particular interconnection topologies
In the following lemmas, we give the explicit computation

of the incremental L2-gain ρ, appearing in Theorem 1 for two
particular compartmental interconnection topologies.

Lemma 1 (L2 gain for cyclic feedback compartmental in-
terconnections [2]) Suppose that the compartmental coupling
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is given by a cyclic feedback. If γ̃i > 0, for all i = 1, . . . , N ,
and

1− r cos
( π
N

)
> 0, (18)

where

r := N

√√√√ N∏
i=1

1

γ̃i
, (19)

then the dissipativity matrix Eγ̃ is diagonally stable, and the
incremental L2-gain (17) of the closed-loop system is given by

ρ =
1(

1− r cos
(
π
N

))
mini=1,...,N γ̃i

δ̃ (20)

where

δ̃ =
max

{
1, (rγ̃2)

2
,
(
r2γ̃2γ̃3

)2
, . . . ,

(
rN−1γ̃2 . . . γ̃N

)2}
min

{
1, (rγ̃2)

2
, (r2γ̃2γ̃3)

2
, . . . , (rN−1γ̃2 . . . γ̃N )

2
} .

The form of the incremental L2-gain for a cyclic interconnec-
tion (20) can be readily used for synthesis purposes. It suggests
in particular that the algebraic connectivity of the interconnec-
tion topologies associated to different species must be chosen
in such a way that the secant condition (18) is satisfied with a
large margin, that is r cos(π/N) � 1, and that the minimum
closed-loop co-coercivity constant mini=1,...,N γ̃i should be
large. Noticing that r is given by the inverse of the geometrical
mean γ of the algebraic connectivities, that is

γ := N

√√√√ N∏
i=1

γ̃i, (21)

the term δ̃ imposes that the set {γ̃i}i=1,...,N should be as
homogeneous as possible, meaning that γ̃i

γ ∼ 1, for all i =
1, . . . , N . The last condition can be interpreted as avoiding
“bottle-necks” effects in the feedback cycle given by species
that synchronize with a slower rate than the others. This kind of
homogeneity condition is often encountered in the study of the
synchronizability of a given interconnection topology [10], [7].

In the following lemma we specialize the computation of the
incremental L2 gain to the case of antisymmetric input-output
interconnections.

Lemma 2 (L2 gain for antisymmetric compartmental inter-
connections) Suppose that the dissipativity matrix Eγ̃ has the
form

Eγ̃ = AN − diag(γ̃1, . . . , γ̃N ),

whereAN denotes an antisymmetricN ×N matrix and γ̃i > 0
for all i = 1, . . . , N . Then Eγ̃ is diagonally stable and the
incremental L2-gain (17) is given by

ρ :=
1

mini=1,...,N{γ̃i}
.

The L2 gain obtained for antisymmetric input-output inter-
connections is independent of the size of the system, and
takes into account the minimum co-coercivity constant only.
This fact reflects the observation that any antisymmetric input-
output interconnection can be decomposed into a family of
two-dimensional negative feedbacks. Notice that both Lemma 1
and Lemma 2 provide the same L2-gain for a two-dimensional
negative feedback.

C. Apllication to differential equations

The results of Theorem 1 can be used to analyze synchroniza-
tion in systems described with a state space formalism{

ẋk,j = fk,j(xk,j , vk,j),
yk,j = hk(xk,j)

(22)

where yk,j , vk,j ∈ Rm, xk,j ∈ Rpk , for all k = 1, . . . , N , and
all j = 1, . . . , n. Its proof is a straightforward application of
Theorem 1 and is omitted.

Corollary 1 Assume that the nonlinear operators Hk,j , k =
1, . . . , N , j = 1, . . . , n, associated to (22) with some initial
conditions x0

k,j ∈ Rpk are well defined. Consider the closed-
loop system defined by (22), with inputs as in (2), and suppose
that the conditions in Theorem 1 are satisfied. Then, there exists
ρ, β > 0, such that

‖Y ∆‖T ≤ ρ‖W∆‖T + β, ∀T ≥ 0, (23)

where ρ is given as in the statement of Theorem 1. If in addition
W∆ ∈ L2, then the output asymptotically synchronizes.

As opposed to [17, Corollary 1], the vector field and initial
conditions do not need to be identical among different compart-
ments. In particular, the requirement of zero-state reachability,
assumed in [17, Corollary 1] is not required.

V. ROBUST SYNCHRONIZATION IN NETWORKS OF
HINDMARSH-ROSE NEURONS

A. The Hindmarsh-Rose model and its input-output repre-
sentation

The Hindmarsh-Rose (HR) model, first introduced in [8], is
a qualitative model of neuronal bursting dynamics. That is, its
trajectories mimic the behavior of bursting neurons. The HR
dynamics is defined by the three following coupled differential
equations

ẋ = −ax3 + bx2 + I + y − zx,i + ux

ẏ = c− dx2 − y
ż = r(s(x+ z̄ + uz)− zi). (24)

The first variable x models the membrane voltage, the second
y models fast Na− and K+ currents through the membrane,
and the third z models slow Ca2+ currents. I is a parameter
that models external currents through the membrane. ux mod-
els other exogenous electrical inputs (heterogeneities, coupling
with other cells, noise, etc.), while uz models the diffusion
of Ca2+ ions in the cell. a, b, c, d, r, s, z̄ are free parameters
that change the qualitative behavior of the system by inducing
bifurcations in the underlying dynamics. The (x, y)-subsystem
accounts for the excitable spike generation mechanism. The
variable z provides a slow1 adaptation mechanism that let the
(x, y)-subsystem switch between resting and spiking, which
corresponds to a bursting behavior (see [8] for more details).
It is then natural to consider the (x, y)-subsystem as single bi-
dimensional biological species X := (x, y)T , that interacts in
an input-output fashion with the (slow) z species. Letting yX :=
x be the output of the X species, and yz := z be the output of
the z species, the HR neurons, with arbitrary initial conditions

1r � 1 in the Equation (24)

6507



(x0, y0, z0), can equivalently be modeled as the interconnection
of the input/output operators HX and Hz , modeling the X
and z species, respectively, defined by HX : vX 7→ yX and
Hz : vz 7→ yz , where Ẋ = F (X) +BvX

yX = x
X(0) = X0 := (x0, y0)T

(25)

 ż = r(s(z̄ + vz)− z)
yz = z
z(0) = z0

(26)

with F (X) :=

(
−ax3 + bx2 + y
c− dx2 − y

)
, B :=

(
1
0

)
, vX :=

I + wX − z and vz := wz + x are the inputs to the X
and z species, and wX and wz are the external current and
the external calcium diffusion, respectively. This configuration
corresponds to a compartmental input-output interconnection
matrix, as defined in (3),

ΣHR :=

(
0 −1
1 0

)
. (27)

In order to apply Corollary 1 to the synchronization of the
family of operators (25)-(26) according to the methodology
developed in the previous sections, we have to check that the
operators are well defined and study their mutual co-coercivity.

Since the operator associated to the slow z species is defined
by the one-dimensional linear system ż = r(s(z + vz) − z)
with input vz and output z, it is well defined [21]. Moreover,
it follows directly from Example 1 that an ensemble of input-
output operators (26) with arbitrary initial conditions defines a
family of mutually co-coercive operators with

γz := 1/s. (28)

The following propositions, whose proofs are provided in [4],
establish that the operators associated to the X species are well
defined, and form a family of mutually co-coercive operators.

Proposition 2 For all initial conditions X0 ∈ R2, the operator
HX defined in (25) is well defined.

Proposition 3 For all X10, X20 ∈ R2, the input-output oper-
ators associated to (25) with initial conditions X10 and X20

are mutually relaxed co-coercive with co-coercivity constant
γX := −d

2

2 − b
2.

B. Network of Hindmarsh-Rose neurons

In the following we consider the diffusive interconnection
of n ∈ N≥2 HR neuronal compartment (25)-(26). The initial
conditions specifying the input-output behavior of each com-
partment are assumed to be arbitrary. We let λX and λz be
the algebraic connectivity associated to the X and z species,
respectively. The dissipativity matrix Eγ̃ , as defined in (4), is
then given by

Eγ̃ =

[
γ̃X −1
1 γ̃z

]
, (29)

where γ̃X = γX + λX and γ̃z = γz + λz . From Lemma 1
or Lemma 2, Eγ̃ is diagonally stable provided λX > −γX .
Moreover, in the case of zero inputs, the boundedness of the

trajectories of each subsystem follows directly from [12, Propo-
sition 1]. Hence, from (28), Proposition 2, and Proposition 3, all
the conditions of Corollary 1 are satisfied, provided that

λX >
d2

2
+ b2. (30)

At the light of these considerations, we are able to provide
analytical results on the robust synchronization of a network of
HR neurons, as stated in the following proposition, whose proof
can be found in [4].

Proposition 4 Consider a network of n ∈ N≥2 HR neurons
(25)-(26). Let W∆

X and W∆
z be the incremental input of the X

and z species, respectively, and W∆ the resulting incremental
input of the network, as defined in Section II. Let Y ∆

X and Y ∆
z be

the synchronization errors (9) associated to theX and z species
respectively, and Y ∆ the resulting network synchronization
error. Suppose that (30) is satisfied. Then there exists β ≥ 0,
such that, for all T ≥ 0,

‖Y ∆‖T ≤ ρHR‖W∆‖T + β, (31)

where
ρHR :=

1

min(γ̃X , γ̃z)
. (32)

We point out that, as opposed to [17], our approach does not
require to check the zero-state reachability of the HR model.
C. Numerical simulation

To illustrate the results, we run numerical simulations on a
biologically meaningful interconnection topology. The param-
eters used in the simulation are as follows: a = 0.01, b =
0.3, c = 0.1, d = 0.5, r = 0.001, s = 4, z̄ = 7. We have
considered the interaction of two distinct neuronal populations.
Each population is composed by qualitatively identical neurons.
The first population contains the active neurons. By active
we mean neurons with an endogenous rhythmic activity. The
second population is composed of silent neurons, that is neurons
that are endogenously at rest. The two different behaviors are
obtained by fixing different values of wz , which models the
extracellular calcium concentration. A low value (wz = 2)
corresponds to the active population, while silent neurons are
characterized by a higher value (wz = 4). Moreover, each
neuron is affected by an heterogeneous electrical input wX .

We suppose that the electrical coupling between neurons
belonging to the same population is absent. On the contrary,
each active neuron is connected to all the silent neurons, and
vice-versa, with the same coupling strength KX . This kind of
interconnection represents a simplification of the interaction
between different brain neuronal subpopulations. Indeed, for
neurons in the sub-thalamic zone, most of the synapses of
a neuron belonging to some specific area project outside the
interested area [16]. On the contrary, neurons that are located
inside the same area, share the same physical medium. In this
way, the natural diffusion in the cellular surrounding of the
ions generating the currents in the neuron membrane constitutes
a further type of diffusive coupling [15]. In the HR neuron,
this can be modeled by a diffusive coupling in the z species,
describing the dynamics of Ca2+ ions concentration in the
cell. We thus suppose that each neuron belonging to a given
population is coupled to all the other neurons of this population
through diffusive coupling in the z species with homogeneous
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coupling strength Kz . If the two species have the same number
M ∈ N>0 of neurons, the Laplacian matrices associated to the
interconnection topologies among theX and z species are given
by

LX = −
[

0M×M 1M×M
1M×M 0M×M

]
+MIN , (33)

and
Lz = −

[
1M×M 0M×M
0M×M 1M×M

]
+MIN . (34)

The interconnection between the X species corresponds to a
complete bipartite graph. If KX is the coupling strength, the
algebraic connectivity is given by λX = MKX [3, page 5].
Since the graph associated to the z species is not connected
its algebraic connectivity is zero [3]. By picking KX >(
d2

2 + b2
)
/M and Kz ≥ 0, all the assumption of Proposition

4 are satisfied. In the simulation we have picked M = 10,
KX =

(
d2

2 + b2 + 0.5
)
/M and Kz = 0.25/M . With this

choice we get, from Lemma 1 or Lemma 2, ρHR = 4.
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Fig. 2. Evolution of the synchronization error ‖Y ∆‖T (solid line) and
of the predicted bound ρ‖W∆‖T (dashed line) after the diffusive coupling
between the active and silent populations is activated. The bias has been
removed for clarity.

Figure 2 shows the evolution of the synchronization error. When
the coupling is switched on at time t = 5000, The theoretical
integral bound predicted by Theorem 1 is satisfied. The predic-
tion of a robust synchronous behavior is associated to important
counterintuitive phenomena. Neurons belonging to the active
population are not synchronized before the coupling with the
silent population is not present, due to heterogeneities (Figure
3, left). Even though they are not directly coupled, they become
synchronized once they start to interact with the silent neuronal
population. At the same time, the silent neuronal population
starts to show global oscillations at the same frequency (Figure
3, right). This kind of mutually induced oscillations is typical
of the interaction between excitatory and inhibitory neuronal
populations [9].
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