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Abstract— This paper considers linear quadratic
team decision problems where the players in
the team affect each others information structure
through their decisions. It shows that linear deci-
sions are optimal and can be found by solving a
linear matrix inequality.

Index Terms— Team Decision Theory, Game The-
ory, Convex Optimization.

I. INTRODUCTION

The team problem is an optimization problem,
where a number of decision makers (or players)
make up a team, optimizing a common cost func-
tion with respect to some uncertainty representing
nature. Each member of the team has limited infor-
mation about the global state of nature. Furthermore,
the team members could have different pieces of
information, which makes the problem different from
the one considered in classical optimization, where
there is only one decision function that has access
to the entire information available about the state of
nature.

Team problems seemed to possess certain proper-
ties that were considerably different from standard
optimization, even for specific problem structures
such as the optimization of a quadratic cost in the
state of nature and the decisions of the team mem-
bers. In stochastic linear quadratic decision theory,
it was believed for a while that separation holds be-
tween estimation and optimal decision with complete
information, even for team problems. The separation
principle can be briefly explained as follows. First
assume that every team member has access to the
information about the entire state of nature, and find
the corresponding optimal decision for each member.
Then, each member makes an estimate of the state of
nature, which is in turn combined with the optimal
decision obtained from the full information assump-
tion. It turns out that this strategy does not yield an
optimal solution (see [9]).

A general solution to similar stochastic quadratic
team problems was presented by Radner [9]. Rad-
ner’s result gave hope that some related problems
of dynamic nature could be solved using similar
arguments. But in 1968, Witsenhausen [11] showed
in his well known paper that finding the optimal
decision can be complex if the decision makers affect
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Fig. 1. Coding-decoding diagram over a Gaussian channel.

each other’s information. Witsenhausen considered
a dynamic decision problem over two time steps to
illustrate that difficulty. The dynamic problem can
actually be written as a static team problem:

minimize E
{
k0u

2
0 + (x+ u0 − u1)2

}
subject to u0 = µ0(x), u1 = µ1(x+ u0 + w),

where x and w are Gaussian with zero mean and
variance X and W , respectively. Here, we have two
decision makers, one corresponding to u0, and the
other to u1. Witsenhausen showed that the optimal
decisions µ0 and µ1 are not linear because of the
coding incentive of u0. Decision maker u1 measures
x + u0 + w, and hence, its measurement is affected
by u0. Decision maker u0 tries to encode information
about x in its decision, which makes the optimal
strategy complex. The problem above is actually an
information theoretic problem. To see this, consider
the slightly modified problem

minimize E (x− u1)2

subject to u0 = µ0(x), E u20 ≤ 1, u1 = µ1(u0 + w)

The modification made is that we removed u0 from
the objective function, and instead added a constraint
E u20 ≤ 1 to make sure that it has a limited variance
(of course we could set an arbitrary power limitation
on the variance). The modified problem is exactly
the Gaussian channel coding/decoding problem (see
Figure 1)! The optimal solution to Witsenhausen’s
counterexample is still unknown. Even if we would
restrict the optimization problem to the set of linear
decisions, there is still no known polynomial-time
algorithm to find optimal solutions.

In this paper, we consider the problem of dis-
tributed decision making with information con-
straints under linear quadratic settings. For instance,
information constraints appear naturally when mak-
ing decisions over networks. These problems can be
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formulated as team problems. Early results consid-
ered static team theory in stochastic settings [8],
[9], [6]. In [3], the team problem with two team
members was solved. The solution cannot be easily
extended to more than two players since it uses the
fact that the two members have common information;
a property that doesn’t necessarily hold for more than
two players. Also, a nonlinear team problem with two
team members was considered in [1], where one of the
team members is assumed to have full information
whereas the other member has only access to partial
information about the state of the world. Related
team problems with exponential cost criterion were
considered in [7]. Optimizing team problems with
respect to affine decisions in a minimax quadratic
cost was shown to be equivalent to stochastic team
problems with exponential cost, see [4]. The connec-
tion is not clear when the optimization is carried
out over nonlinear decision functions. In [5], a gen-
eral solution was given for an arbitrary number of
team members, where linear decision were shown
to be optimal and can be found by solving a linear
matrix inequality. In the deterministic version of
Witsenhausen’s counterexample, that is minimizing
the quadratic cost with respect to the worst case
scenario of the state x (instead of the assumption that
x is Gaussian), the linear decisions where shown to
be optimal in [10].

We will show that for static linear quadratic min-
imax team problems in general, where the players
in the team affect each others information structure
through their decisions, linear decisions are optimal,
and can be found by solving a linear matrix inequal-
ity.

II. NOTATION

Sn The set of n× n symmetric matrices.
Sn+ The set of n× n symmetric positive

semidefinite matrices.
Sn++ The set of n× n symmetric positive

definite matrices.
C The set of functions µ : Rp → Rm with

µ(y) = (µ1(y1), µ2(y2), ..., µN (yN )),
µi : Rpi → Rmi ,

∑
imi = m,

∑
i pi = p.

K {K ∈ Rm×p|K = ⊕
∑
Ki,Ki ∈ Rmi×pi}

A† Denotes the pseudo-inverse of the
square matrix A.

A⊥ Denotes the matrix orthogonal to A.
Ai The ith block row of the matrix A.
Aij The block element of A in position

(i, j).
� A � B ⇐⇒ A−B ∈ Sn+.
� A � B ⇐⇒ A−B ∈ Sn++.
Tr Tr[A] is the trace of the matrix A.
N (m,X) The set of Gaussian variables with

mean m and covariance X.

III. STOCHASTIC TEAM DECISION THEORY

In this section we will review some classical results
in stochastic team theory. In the stochastic team
decision problem, one would like to solve

min
µ

E

x
u

T Qxx Qxu
Qux Quu

x
u


subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N,

(1)

where x ∼ N (0, Vxx), ui takes values in Rmi , Ci ∈
Rpi×n, for i = 1, ..., N . We assume that Quu ∈ Sm++,
m = m1 + · · ·+mN , andQxx Qxu

Qux Quu

 ∈ Sm+n. (2)

µ(·) is a function, which represents the decision func-
tion or decision of the team.

The following result by Radner [9] shows that
linear decisions are optimal:

Proposition 1: Let x be a Gaussian variables with
zero mean, taking values in Rn. Also, let ui be a
stochastic variable taking values in Rmi , Quu ∈ Sm++,
m = m1 + · · ·+mN , Ci ∈ Rpi×n, for i = 1, ..., N . Then,
the optimal decision µ to the optimization problem

min
µ

E

x
u

T Qxx Qxu
Qux Quu

x
u


subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N,

is unique and linear in y.

Proof: Consult Radner [9].

IV. MAIN RESULTS

The deterministic problem considered is a
quadratic game between a team of players and
nature. Each player has limited information that
could be different from the other players in the team.
This game is formulated as a minimax problem,
where the team is the minimizer and nature is
the maximizer. We show that if there is a solution
to the static minimax team problem, then linear
decisions are optimal, and we show how to find a
linear optimal solution by solving a linear matrix
inequality.
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A. Deterministic Team Decision Problems with a
Quadratic Fractional Objective

Consider the following team decision problem

inf
µ

sup
06=x∈Rn

J(x, u)

F (x, u)

subject to yi = Cix

ui = µi(yi)

for i = 1, ..., N

(3)

where ui ∈ Rmi , m = m1 + · · ·+mN , Ci ∈ Rpi×n.
We will consider the case where J(x, u) and F (x, u)
are quadratic costs given by

J(x, u) =

x
u

T

Q

x
u

 , F (x, u) =

x
u

T

R

x
u

 ,

(4)
Q,R ∈ R(m+n)×(m+n). The players u1,..., uN make up
a team, which plays against nature represented by
the vector x, using µ ∈ C, that is

µ(Cx) =


µ1(C1x)

...
µN (CNx)

 .

The next theorem shows that if the game above has a
finite value, then there are linear decisions achieving
that value. That is, an optimal decision function µ ∈ C
can be taken to be linear:

µi(yi) = Kiyi,

for i = 1, ..., N .
Theorem 1: Let J(x, u) and F (x, u) be quadratic

forms given by (4) with F (x, u) > 0 for all x 6= 0,
and suppose that

inf
µ∈C

sup
06=x∈Rn

J(x, µ(Cx))

F (x, µ(Cx))
= γ? <∞.

Then, there exist linear decisions µi(Cix) = KiCix,
i = 1, ..., N , where the value of the game γ? is
achieved.

Proof: See Appendix.

B. Computation of Optimal Team Decisions
In Theorem 1, we showed that for the minimax

team problem with a quadratic cost, the linear policy
u = KCx is optimal, where K is given by K =
diag(K1, ...,KN ). We will now show how to pose the
problem of finding a structured matrix K, where the
same technique as that of the proof Theorem 1 will
be used. For a given value of γ, we would like to find
a K ∈ K such that x

KCx

T

Q

 x
KCx

 x
KCx

T

R

 x
KCx

 ≤ γ,
for all x.

Theorem 2: The feasibility problem

find K = diag(K1, ...,KN )

subject to

 x
KCx

T

Q

 x
KCx

 x
KCx

T

R

 x
KCx

 ≤ γ,
is equivalent to the set of linear matrix inequalities

find K = diag(K1, ...,KN )

Zxx Zxu
Zux Zuu

 = Q− γR, Zxx ∈ Rn×n

Mww Mwy Mwu

Myw Myy Myu

Muw Muy Muu

 =

 CT⊥ZxxC⊥ CT⊥ZxxC
† CT⊥Zxu

(C†)TZxxC⊥ (C†)TZxxC
† (C†)TZxu

ZuxC⊥ ZuxC
† Zuu


Qγ =

Qxx(γ) Qxu(γ)
Qux(γ) Quu(γ)


Qxx(γ) = CT (Myy −MywM

†
wwMwy)C

Qux(γ) = (Muy −MuwM
†
wwMwy)C

Quu(γ) =Muu −MuwM
†
wwMuw.Qxx(γ) +Qxu(γ)KC + CTKTQux(γ) CTKT

KC −Q†uu(γ)

 � 0.

Proof: See Appendix.

Example 1: Consider the min-max team problem

inf
µ1,µ2

sup
06=x∈R3

J(x, µ1, µ2)

‖x‖2
,

where

J(x, µ1, µ2) = (µ1(x1+x3)+µ2(x2+x3)−x3)2+4µ2
2(x2+x3).

Comparing with the problem formulation in (3), we
get

Q =


0 0 0 0 0
0 0 0 0 0
0 0 1 −1 −1
0 0 −1 1 1
0 0 −1 1 5

 ,

Rxx = I, Rxu = 0, Ruu = 0, C1 =
1 0 1

T

,

C2 =
0 1 1

. From Theorem 1, we know that
it is enough to look for linear decision functions
µi(xi + x3) = ki(xi + x3), i = 1, 2. Hence, we pose
it as an LMI, and obtain that an optimal solution
is k1 = 0.5, k2 = 0.2, and the value of the game is
γ = 0.4.
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V. DETERMINISTIC TEAM PROBLEMS WITH
SIGNALING

Consider the following team decision problem

inf
µ

sup
v∈Rp,06=w∈Rq

L(w, u)

||v||2 + ‖w‖2

subject to yi =

N∑
j=1

Dijuj + Eiw + vi

ui = µi(yi)

for i = 1, ..., N,

(5)

where ui ∈ Rmi and Ei ∈ Rpi×q, for i = 1, ..., N , p =
p1 + · · ·+ pN .
L(w, u) is a quadratic cost given by

L(w, u) =

w
u

T Qww Qwu
Quw Quu

w
u

 ,

Quu ∈ Sm+ , m = m1 + · · ·+mN , andQww Qwu
Quw Quu

 ∈ Sm+n.

The players u1,..., uN make up a team, which plays
against nature represented by the vector w, using µ ∈
C. This problem is more complicated than the static
team decision problem studied in [5], since it has the
same flavor as that of Witsenhausen’s counterexam-
ple that was presented in the introduction. We see
that the measurement yi of decision maker i could
be affected by the other decision makers through the
terms Dijuj , j = 1, ..., N .

Theorem 3: Assume that the value of the game (5)
is finite, γ? < ∞. Then, there exist linear decisions
µi(yi) = Kiyi, i = 1, ..., N , where the value γ? is
achieved. For any value of the game γ ≥ γ?, a feasible
linear decision Ky, K ∈ K, that achieves γ can be
obtained by solving the linear matrix inequality

find K

subject to K = diag(K1, ...,KN )

C =
I 0

 ∈ Rp×(p+q), Zuu ∈ Rm×m

Zxx Zxu
Zux Zuu

 =

Qww 0 Qwu
0 0 0

Quw 0 Quu


− γ

 ETE −ET −ETD
−E I −D
−DTE −DT DTD


Mww Mwy Mwu

Myw Myy Myu

Muw Muy Muu

 =

 CT⊥ZxxC⊥ CT⊥ZxxC
† CT⊥Zxu

(C†)TZxxC⊥ (C†)TZxxC
† (C†)TZxu

ZuxC⊥ ZuxC
† Zuu


Qxx(γ) +Qxu(γ)KC + CTKTQux(γ) CTKT

KC −Q†uu(γ)

 � 0,

Qγ =

Qxx(γ) Qxu(γ)
Qux(γ) Quu(γ)


Qxx(γ) = CT (Myy −MywM

†
wwMwy)C

Qux(γ) = (Muy −MuwM
†
wwMwy)C

Quu(γ) =Muu −MuwM
†
wwMuw.

Proof: First, note that

y = Du+ Ew + v ⇐⇒ v = y −Du− Ew ⇒

⇒ L(w, u)

||v||2 + ‖w‖2
=

L(w, u)

||y −Du− Ew||2 + ‖w‖2
.

Now introduce x ∈ Rn, n = p+ q, such that

x =

w
y

 ,

and

Q =

Qww 0 Qwu
0 0 0

Quw 0 Quu

 ,

R =

 ETE −ET −ETD
−E I −D
−DTE −DT DTD

 .

(6)

Then,

J(x, u) :=

x
u

T

Q

x
u

 = L(w, u),

F (x, u) :=

x
u

T

R

x
u

 = ||y −Du− Ew||2 + ‖w‖2,

and y = Cx. Hence, we have that

L(w, u)

||v||2 + ‖w‖2
=

L(w, u)

||y −Du− Ew||2 + ‖w‖2
=
J(x, u)

F (x, u)
.

Also, w 6= 0 implies that x 6= 0 and F (x, u) > 0. Thus,
the game in (5) can be formulated as

inf
µ∈C

sup
06=x∈Rn

J(x, µ(Cx))

F (x, µ(Cx))
.

Applying Theorem 1, we conclude that linear deci-
sions are optimal, which proves the first part of our
theorem. Theorem 2 now gives that the minimizing γ
subject to linear decision functions can be posed as a
quasi-convex optimization problem given by (3), with
respect to Q and R in equation (6), and the proof is
complete.

VI. LINEAR QUADRATIC CONTROL WITH
ARBITRARY INFORMATION CONSTRAINTS

Consider the dynamic team decision problem

inf
µ

sup
w,v 6=0

∑M
k=1

x(k)
u(k)

T Qxx Qxu
Qux Quu

x(k)
u(k)

∑M
k=1 ‖w(k)‖2 + ‖v(k)‖2

subject to x(k + 1) = Ax(k) +Bu(k) + w(k)

yi(k) = Cix(k) + vi(k)

ui(k) = [µk]i(yi(k)), i = 1, ..., N.
(7)
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Now write x(k) and y(k) as

x(k) =

M∑
k=1

AkBu(M − k) +
M∑
k=1

Akw(M − k),

yi(k) =

M∑
k=1

CiA
kBu(M − k) +

M∑
k=1

CiA
kw(M − k) + vi(k).

It is easy to see that the optimal control problem
above is equivalent to a static team problem of the
form (5). Thus, linear controllers are optimal.

VII. CONCLUSIONS

We have considered the static team problem in
deterministic linear quadratic settings where the
team members may affect each others information.
We have shown that decisions that are linear in the
observations are optimal and can be found by solving
a linear matrix inequality.
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APPENDIX

A. Proof of Theorem 1
Proof: From the definition of the infimum, it

follows that if γ? is the value of the game, then for
any given real number γ > γ?, there exists a decision
µ ∈ C such that

J(x, µ(Cx))− γF (x, µ(Cx)) ≤ 0,

for all x. Introduce the matrix Z = Z(γ) = Q − γR,
partitioned according to

Z =

Zxx Zxu
Zux Zuu

 ,

where Zxx ∈ Rn×n. Then for every γ > γ?, there is a
decision µ ∈ C such that x

µ(Cx)

T

Z

 x
µ(Cx)

 ≤ 0, (8)

for all x. Write x = C⊥w + C†y, which implies that
y = Cx will serve as the observable part of x to the
decision function µ. Then we have thatx

u

T

Z

x
u

 =wy
u


T C⊥ C† 0

0 0 I

T

Z

C⊥ C† 0
0 0 I


wy
u

 .

To simplify the exposition, define

M : =

C⊥ C† 0
0 0 I

T

Z

C⊥ C† 0
0 0 I


=

 CT⊥ZxxC⊥ CT⊥ZxxC
† CT⊥Zxu

(C†)TZxxC⊥ (C†)TZxxC
† (C†)TZxu

ZuxC⊥ ZuxC
† Zuu


=

Mww Mwy Mwu

Myw Myy Myu

Muw Muy Muu

 .

(9)

The inequality (8) is equivalent towy
u


T

M

wy
u

 ≤ 0.

Since w is unobservable for µ, we must have

CT⊥ZxxC⊥ =Mww � 0, (10)(
I − CT⊥ZxxC⊥(CT⊥ZxxC⊥)†

)CT⊥ZxxC† CT⊥Zxu

 =(
I −MwwM

†
ww

)Mwy Mwu

 = 0,

(11)
otherwise we can always find a w such thatwy

u


T

M

wy
u

 > 0,

for all u (see e. g. [2], pp. 650-651). If the two condi-
tions (10) and (11) hold, then by standard completion
of squares, we getwy

u


T

M

wy
u

 = (w − v)T Mww (w − v)+

y
u

T (Myy Myu

Muy Muu

−Myw

Muw

M†ww

Myw

Muw

T)y
u
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with
v =M†ww

Mwy Mwu

y
u

 .

Considering the completed form above, and substi-
tuting y = Cx, we get

sup
w

wy
u


T

M

wy
u

 =

x
u

T

Qγ

x
u

 ,

where

Qγ =

Qxx(γ) Qxu(γ)
Qux(γ) Quu(γ)


Qxx(γ) = CT (Myy −MywM

†
wwMwy)C

Qux(γ) = (Muy −MuwM
†
wwMwy)C

Quu(γ) =Muu −MuwM
†
wwMuw.

(12)

If Quu(γ) is indefinite, then the inequality above is
trivial. Therefore, we will assume that there is a γ >
γ? for which Quu(γ) � 0; otherwise the value of the
game is γ? = −∞.

Now for any Gaussian variable x, we have that

E

 x
µ(Cx)

T

Qγ

 x
µ(Cx)

 ≤ 0.

Proposition 1 implies that for every Gaussian vari-
able x ∼ N (0, X), the optimal decision µ(Cx) is linear
µ(Cx) = KXCx with KX ∈ K. That is

E

{
xT
 I
KXC

T

Qγ

 I
KXC

x

}
≤ 0.

Since E{xxT } = X, we get

0 ≥ E

{
xT
 I
KXC

T

Qγ

 I
KXC

x

}

= Tr

 I
KXC

T

Qγ

 I
KXC

X.

Hence, for every X � 0, there is a KX ∈ K such
that

0 ≥ Tr

 I
KXC

T

Qγ

 I
KXC

X. (13)

Now introduce the compact set

X = {X : X � 0,Tr{X} = 1}.

The fact that for every covariance matrix X there is
a matrix KX such that (13) holds implies

α := max
X∈X

min
K∈K

Tr

 I
KC

T

Qγ

 I
KC

X ≤ 0.

The above max-min problem is convex in K and
linear (hence concave and continuous) in X. Thus,
there is a saddle point (Kγ , Xγ) ∈ K× X, and

min
K∈K

max
X∈X

Tr

 I
KC

T

Qγ

 I
KC

X = α ≤ 0.

This implies that there must be a Kγ ∈ K such that I
KγC

T

Qγ

 I
KγC

 � αI � 0.

Since for each γ > γ? there is Kγ such that the
inequality above holds, then by compactness, it must
hold for γ = γ? and some K? ∈ K. Hence, there is a
K? ∈ K such that

xT
 I
K?C

T

Q

 I
K?C

x ≤ γ?xT
 I
K?C

T

R

 I
K?C

x

for all x. This shows that there exists a linear decision
µ(Cx) = K?Cx with K? ∈ K, such that

sup
x 6=0

 x
K?Cx

T

Q

 x
K?Cx

 x
K?Cx

T

R

 x
K?Cx

 ≤ γ
?.

Since the value of the game is γ?, the inequality
above is an equality, and the proof is complete.

B. Proof of Theorem 2
Proof: Walking along the same lines as the proof

of Theorem 1 we find that the inequality

sup
x 6=0

 x
K?Cx

T

Q

 x
K?Cx

 x
KCx

T

R

 x
K?Cx

 ≤ γ,

is equivalent to x
KCx

T Qxx(γ) Qxu(γ)
Qux(γ) Quu(γ)

 x
KCx

 ≤ 0,

where Qxx(γ), Qxu(γ), Quu(γ), are defined by (9) and
(12). If Quu(γ) � 0, the inequality above is trivial.
Therefore, assume that Quu(γ) � 0. Multiplying the
factors in the inequality above yields

Qxx(γ) +Qxu(γ)KC + CTKTQux(γ) + CTKTQuu(γ)KC � 0
(14)

Using the Schur complement, and the fact that
Quu � 0 the inequality in (14) can be written as a
linear matrix inequality:Qxx(γ) +Qxu(γ)KC + CTKTQux(γ) CTKT

KC −Q†uu(γ)

 � 0.

Hence, the search for a block diagonal K and min-
imal γ can be written as the following semidefinite
program:

min
γ,K

γ

subject to K = diag(K1, ...,KN )Qxx(γ) +Qxu(γ)KC + CTKTQux(γ) CTKT

KC −Q†uu(γ)

 � 0,

and the proof is complete.

5534


