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Abstract— A procedure for the stability analysis of discrete-
time piecewise affine systems is proposed, where a sequence
of finite-state symbolic models is constructed such that each
of these symbolic models simulates the given piecewise affine
system. For a fairly large class of piecewise affine systems, the
proposed procedure does not suffer from inherent conservatism,
and thus the sequence of symbolic models converges to the
original system. For a smaller, restricted class of systems, the
sequence of symbolic models is finite, and hence a finite-state
bisimulation of the original system is obtained.

I. INTRODUCTION

Hybrid systems constitute an important modeling frame-

work describing a large variety of situations where both dis-

crete and continuous dynamics interact with each other [1],

[2]. Important problems regarding hybrid systems include

verification, reachability, and stability analysis problems [3],

[4]. These problems are known to be NP hard or undecid-

able [5], and there remain major challenges in hybrid systems

analysis despite the progress made over the past decade.

A common approach to solving verification and reach-

ability problems is to build a finite-state symbolic model

that abstracts the original infinite-state hybrid system [3],

[6]–[8]. The main objective of such an approach is to

discover a symbolic model, called a bisimulation, which

possesses the same reachability properties as the original

hybrid system. The existence of a bisimulation guarantees

an efficient and exact reachability analysis, but only a small,

restricted class of hybrid systems admits bisimulations. In

the context of stability analysis, on the other hand, the

usual approach is to construct a single or multiple quadratic

Lyapunov functions, whose decay properties along the sys-

tem trajectory can be used to deduce the stability of the

original system [9]–[11]. However, not every hybrid system

admits such Lyapunov functions. What is common in these

approaches to reachability and stability analysis is that they

are inherently conservative. That is, if a given hybrid system

does not admit a bisimulation or common/multiple quadratic

Lyapunov functions, these approaches do not suggest an

alternative, potentially better, solution approach even if one

is willing to pay more computational cost.

In this paper, we focus on stability analysis of discrete-

time piecewise affine systems, which are a typical example

of hybrid systems. We present a nonconservative stability

analysis for a large class of such systems by following

the lead taken in [12]–[15], where the connection between
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symbolic models and Lyapunov functions is discovered and

exploited. The basic idea is to obtain a nested sequence

of finite-state symbolic models that simulate the original

piecewise affine system, so that the stability of each symbolic

model within the sequence is sufficient not only for the

stability of the next symbolic model within the sequence

but also for the stability of the original piecewise affine

system. Our algorithm can be considered as the classical

bisimulation algorithm [6], [16] enhanced and specialized

for the stability analysis of piecewise affine systems, and

hence yields stronger results than general algorithms. The

contributions of the paper are twofold:

• First, we show for a fairly large class of piecewise affine

systems that our sequence of simulations does not suffer

from inherent conservatism. That is, if one moves along

this sequence, one symbolic model at a time, then in the

limit one will obtain the largest subset of the state space

within which the original system is stable.

• Next, we show for a smaller, restricted class of piece-

wise affine systems that our sequence of symbolic mod-

els is finite and hence a bisimulation is guaranteed to

exist. The existence of a bisimulation was demonstrated

for, e.g., timed automata [17], [18], O-minimal hybrid

automata [19], and STORMED hybrid systems [20].

However, these systems define restricted classes of

hybrid systems in the continuous-time domain.

Notation: The sets of real numbers, positive integers,

and nonnegative integers are denoted by R, N, and N0,

respectively. For vectors x ∈ R
n, denoted by ‖x‖ is the

Euclidean norm of x. For matrices X ∈ R
n×n, we write

X ≺ 0 to mean X is symmetric and negative definite.

II. PROBLEM FORMULATION

A. Definitions: Stability of Piecewise Affine Systems

Given A1, . . . , AN ∈ R
n×n and b1, . . . , bN ∈ R

n, let

S = {(A1,b1), . . . , (AN ,bN )} .

Let

D = {D1, . . . , DN}

be a partition of the state space R
n into N nonempty

polyhedral cells; that is, each Di, i = 1, . . . , N , is convex,

but not necessarily closed or bounded, polyhedron (i.e.

an intersection of either closed or open half-spaces) such

that
⋃N

i=1 Di = R
n and Di∩Dj = ∅ whenever i 6= j. Then

the pair (S,D) defines the discrete-time piecewise affine

system represented by

x(t + 1) = Aθ(t)x(t) + bθ(t), (2a)
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for t ∈ N0 and x(0) ∈ R
n, where the switching sequence

θ = (θ(0), θ(1), . . . ) is such that

θ(t) = i if x(t) ∈ Di. (2b)

Each initial state x(0) ∈ R
n generates a switching se-

quence θ = (θ(0), θ(1), . . .) and a state sequence x =
(x(0),x(1), . . .), where θ(t) ∈ {1, . . . , N} and x(t) ∈ R

n

for t ∈ N0.

Given a switching sequence θ for (S,D), we have

x(t) = Φθ(t, t0)x(t0) + fθ(t, t0)

for t, t0 ∈ N0 with t ≥ t0, where the state transition matrix

Φθ(t, t0) ∈ R
n×n is defined as the matrix product

Φθ(t, t0) =

{
In if t = t0;

Aθ(t−1) · · ·Aθ(t0) if t > t0,

and the vector fθ(t, t0) ∈ R
n as the vector sum

fθ(t, t0) =
t−1∑

s=t0

Φθ(t, s + 1)bθ(s).

Definition 1: Let P ⊆ R
n. The piecewise affine system

(S,D) is said to be uniformly exponentially stable on P if

there exist c ≥ 1 and λ ∈ (0, 1) such that, for all switching

sequences θ generated by initial states x(0) ∈ P according

to (2), we have

‖Φθ(t, t0)‖ ≤ cλt−t0 , (3a)

‖fθ(t, t0)‖ ≤ c (3b)

for t, t0 ∈ N0 with t ≥ t0, and

‖fθ(t, t0)‖ → 0 (3c)

as t − t0 → ∞.

Definition 2: A set Θ of switching sequences is said to

be uniformly exponentially stabilizing for S if there exist

c ≥ 1 and λ ∈ (0, 1) such that (3a) is satisfied for all

θ = (θ(0), θ(1), . . . ) ∈ Θ and for all t0, t ∈ N0 with t ≥ t0.

In this case, each θ ∈ Θ will be said to be uniformly

exponentially stabilizing for S.

Our notion of stability, in a sense, imposes an additional

robustness requirement on the switching sequences against

unforeseen perturbations in the initial state. See [21] for an

example that illustrates this point.

B. Definitions: Simulation and Bisimulation

We will now construct a sequence of finite-state symbolic

models, and define the notion of simulation and bisimulation

with respect to these models. To do so, we will first obtain a

family of state-space partitions. For L ∈ N and for switching

paths (i0, . . . , iL) ∈ {1, . . . , N}L+1 of length L, define sets

D(i0,...,iL) ⊂ R
n recursively by

D(i0,...,iL) =
{
x ∈ D(i0,...,iL−1) :

Ai0x + bi0 ∈ D(i1,...,iL)

}
.

Each polyhedron D(i0,...,iL) is the set of all states in

D(i0,...,iL−1) which will evolve to a state in D(i1,...,iL) in

one step. Define the indexed family DL, L ∈ N0, where

D0 = D = {D1, . . . , DN} and

DL =
{
D(i0,...,iL) : (i0, . . . , iL) ∈ {1, . . . , N}L+1 }

for each L ∈ N. Each DL is a family of polyhedral cells that

form a partition of the state space and it is potentially finer

than DL−1. The polyhedral cells D(i0,...,iL) are intersections

of half-spaces, and hence they are convex and their interiors

are obtained simply by solving linear vector inequalities.

Let us associate a directed graph GL to each of the

families DL, so that each node of GL is a switching path of

length L. For path length L = 0, the nodes of G0 are the

modes i ∈ {1, . . . , N} such that Di ∈ D0 is nonempty, and

there is a directed edge from node i to node j in G0 if and

only if D(i,j) ∈ D1 is nonempty. For path lengths L ∈ N, a

switching path (i0, . . . , iL) ∈ {1, . . . .N}L+1 is a node of GL

if and only if D(i0,...,iL) ∈ DL is nonempty, and there is a

directed edge from node (i0, . . . , iL) to node (j0, . . . , jL)
in GL if and only if (i1, . . . , iL) = (j0, . . . , jL−1) and

D(i0,...,iL,jL) ∈ DL+1 is nonempty.

Definition 3: For L ∈ N0, a switching sequence θ =
(θ(0), θ(1), . . .) is said to be generated by GL if there is a

directed edge from (θ(t), . . . , θ(t+L)) to (θ(t+1), . . . , θ(t+
L + 1)) in GL for every t ∈ N0. The set of such switching

sequences is denoted by Θ(GL).

The sequences of state-space partitions DL and directed

graphs GL define a nested sequence of symbolic models

defined by the pairs (DL, GL), L ∈ N0. For each L ∈
N0, it is readily seen that Θ(GL+1) ⊆ Θ(GL) and more

importantly, GL generates all the switching sequences that

initial states x(0) ∈ R
n of the piecewise affine system

(S,D) generate according to (2). Therefore, in view of

terminology in algorithmic approaches to the analysis of

dynamical systems [22], we shall say that, for each L ∈
N0, the symbolic model (DL, GL) is a simulation of the

piecewise affine system (S,D).

The sequence of simulations (DL, GL) of the piecewise

affine system (S,D) is not finite in general. However, if for

some L ∈ N0, the state-space partition DL+1 turns out to

be as fine as the state-space partition DL in the following

sense, this sequence becomes finite.

Definition 4: Let L ∈ N0. A cell D(i0,...,iL) ∈ DL is

said to be (S,D)-invariant if D(i0,...,iL) ∈ DL is equal to

D(i0,...,iL+1) ∈ DL+1 for some iL+1 ∈ {1, . . . , N}. If every

D(i0,...,iL) ∈ DL is (S,D)-invariant, then the state-space

partition DL is said to be (S,D)-invariant.

It is shown in [14] that, if DL is (S,D)-invariant for some

L ∈ N0, then each switching sequence in Θ(GL) is generated

by some initial state x(0) ∈ R
n for the piecewise affine

system (S,D). Hence, in view of terminology in algorithmic

approaches to the analysis of dynamical systems [3], [22], we

shall say that the symbolic model (DL, GL) is a (finite-state)

bisimulation of the piecewise affine system (S,D) if DL is

(S,D)-invariant. It has been reported in [14], [15] that, if

(DL, GL) is a bisimulation of (S,D) for some L ∈ N0, one

can carry out exact analysis of the stability and performance
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of the piecewise affine system by checking the feasibility of

a system of linear matrix inequalities.

C. Problem Statement

In this paper, two problems are addressed:

• The first problem is to demonstrate that, for a large class

of piecewise affine systems, a stability analysis based

on our sequence of simulations does not suffer inherent

conservatism.

• The second problem is to present a condition under

which the piecewise affine system admits a bisimu-

lation; one should be able to check such a condition

before actually constructing a sequence of simulations.

III. NONCONSERVATIVE SEQUENCE OF SIMULATIONS

In this section, we will establish that the stability analysis

of piecewise affine systems (S,D) based on the sequence of

simulations (DL, GL), L ∈ N0, is nonconservative.

Definition 5: Let L ∈ N0. A nonempty subset N of

{1, . . . , N}L+1
is said to be an admissible set of L-paths

if for each (i0, . . . , iL) ∈ N there exists an integer M > L
and a switching path (iL+1, . . . , iM ) such that (iM−L,

. . . , iM ) = (i0, . . . , iL) and (it, . . . , it+L) ∈ N for

0 ≤ t ≤ M − L. Moreover, if there exists an indexed

family {X(j0,...,jL−1) : (j0, . . . , jL) ∈ N} of symmetric and

positive definite matrices X(j0,...,jL−1) ∈ R
n×n such that

A
T
i0
X(i1,...,iL)Ai0 − X(i0,...,iL−1) ≺ 0

for all switching paths (i0, . . . , iL) ∈ N of length L, then N
is said to be an S-admissible set of L-paths.

If N is an admissible set of L-paths, then each switching

path in N leads to itself via the switching paths in N .

The stability of a switching sequence θ is determined by

the switching paths that occur infinitely many times in θ,

and the set of all such switching paths of any length L is

necessarily admissible. If this set is S-admissible, then θ is

uniformly exponentially stabilizing for S [23]. Conversely,

if the directed graph GL is given for some L ∈ N0, and

if Θ(GL) is uniformly exponentially stabilizing for S, then

there exists a path length M ∈ N0 such that the largest

admissible subset of

{(θ(t), . . . , θ(t + M)) : θ ∈ Θ(GL), t ∈ N0}

is S-admissible [24]. Therefore, one can try to obtain all

admissible sets of M -paths that appear in Θ(GL) over

all M ∈ N0 to determine the stability of Θ(GL). We shall

see, however, that considering the case of M = L+1 suffices

for our purposes.

Definition 6: Let L ∈ N0. Let N be an admissible set of

L-paths. If the only admissible set Ñ of L-paths satisfying

Ñ ⊆ N is N itself, then N is said to be a minimal set of L-

paths. Moreover, if N is minimal and S-admissible, then N
is said to be an S-minimal set of L-paths.

It is readily seen that each admissible (resp. S-admissible)

set of L-paths is a finite union of minimal (resp. S-minimal)

sets. Hence, in order to obtain admissible sets, it suffices to

identify minimal sets. It is shown in [13] that, if M = L+1,

then there exists a one-to-one correspondence between the

family of minimal sets of M -paths that occur in Θ(GL) and

the family of elementary cycles in GL. A procedure to obtain

the minimal sets is given in [13].

Given an L ∈ N0 and D(i0,...,iL) ∈ DL, define

R(i0,...,iL) = {(θ(t), . . . , θ(t + L + 1)) :

θ ∈ Θ(GL), t ∈ N0, (θ(0), . . . , θ(L)) = (i0, . . . , iL)}.

Then R(i0,...,iL) can be said to be the set of all switch-

ing paths of length L + 1 that are reachable from node

(i0, . . . , iL) in GL. Define

I(i0,...,iL) =
⋃

{N ⊆ R(i0,...,iL) :

N is a minimal set of (L + 1)-paths},

so that I(i0,...,iL) is the maximal admissible set of (L + 1)-
paths reachable from node (i0, . . . , iL) in GL. All (L + 1)-
paths which occur infinitely many times in switching se-

quences θ ∈ Θ(GL) with (θ(0), . . . , θ(L)) = (i0, . . . , iL)
are contained in I(i0,...,iL).

Lemma 7: Let L ∈ N0 and D(i0,...,iL) ∈ DL. The

piecewise affine system (S,D) is uniformly exponentially

stable on D(i0,...,iL) if I(i0,...,iL) is S-admissible and if

bj0 = · · · = bjL
= 0 for all (j0, . . . , jL) ∈ I(i0,...,iL).

Proof: See [13, Theorem 2].

For L ∈ N0, let PL denote the union of all cells

D(i0,...,iL) ∈ DL such that the piecewise affine system

(S,D) is uniformly exponentially stable on D(i0,...,iL). Then

we necessarily have PL ⊆ PL+1 for all L ∈ N0. The

following theorem says that, for a large class of piecewise

affine systems (S,D), the union of PL over all L ∈ N0 is

the largest set, outside of which the system (S,D) is not

uniformly exponentially stable.

Theorem 8: Suppose that, for some i ∈ {1, . . . , N}, the

polyhedral cell Di is bounded, the origin belongs to the

interior of Di, the spectral radius of Ai is less than one, and

the affine term bi = 0. Then the piecewise affine system

(S,D) is not uniformly exponentially stable on any subset

of R
n \

( ⋃
∞

L=0 PL

)
.

The proof of this theorem is omitted due to space con-

straints. The significance of the theorem is that, for any path

length L ∈ N0, if a simulation (DL, GL) of the piecewise

affine system (S,D) does not give a satisfactory stability

analysis, then one has the option to pay more computational

cost (whenever one is able and willing to do so) and use the

next simulation (DL+1, GL+1) to obtain a potentially better

stability analysis. This point is illustrated by the following

example.

Example 9: Consider the piecewise affine system (S,D)
with N = 5,

A1 =

[
2 0
4 0

]
, A2 =

[
4 − 1

2
16 −1

]
, A3 =

[
1
4 0
0 1

2

]
,

A4 =

[
0 0
1
4

1
2

]
, A5 =

[
1 0
1 3

2

]
,

b1 =

[
1
0

]
, b2 = b3 = b4 =

[
0
0

]
, b5 =

[
0
1

]
,
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(a) State-space partition D0 (b) State-space partition D1 (c) State-space partition D2 (d) State-space partition D3

(e) Directed graph G0 (f) Directed graph G1 (g) Directed graph G2

Fig. 1. The sequence of simulations for Example 9. Directed graphs GL are obtained from DL and DL+1. Each symbolic model (DL, GL) simulates
the piecewise affine system (S,D). The system (S,D) is uniformly exponentially stable on the cells shaded in light grey in DL, and not uniformly
exponentially stable on any subset of the areas not shaded in DL. The stability of the system on the area shaded in dark grey in DL is not determined
based on (DL, GL).

and

D1 =
{
[x1 x2]

T ∈ R
2 : x1 < −1

}
,

D2 =
{
[x1 x2]

T ∈ R
2 : − 1 ≤ x1 < 1, 1 ≤ x2

}
,

D3 =
{
[x1 x2]

T ∈ R
2 : − 1 ≤ x1 < 1,−1 < x2 < 1

}
,

D4 =
{
[x1 x2]

T ∈ R
2 : − 1 ≤ x1 < 1, x2 ≤ −1

}
,

D5 =
{
[x1 x2]

T ∈ R
2 : 1 ≤ x1

}
.

The first few state-space partitions DL and directed

graphs GL are shown in Fig. 1. The partitions D0 and D1

give rise to the graph G0, from which we obtain I1 = {11},

I2 = {11, 22, 33, 44, 55}, I3 = {33}, I4 = {33, , 44},

and I5 = {55}. Among these sets, only I3 and I4 are

S-admissible. Thus we determine that the system (S,D)
is uniformly exponentially stable on P0 = D3 ∪ D4. On

the other hand, we can also determine that the system is

not uniformly exponentially stable on D1 ∪ D5 because the

spectral radii of A1 and A5 are not less than one and because

I1 = {11} and I5 = {55}. The stability of the system on D2

cannot be determined at the moment because I2 tells us

that some initial states in D2 will reach P0 and some other

initial states in D2 will reach D1 ∪ D5. In order to obtain

a better stability analysis, let us consider the case of L = 1
(i.e., the directed graph G1 obtained from D1 and D2), and

deduce that I21 = {111}, I22 = {111, 222, 333, 444, 555},

I23 = {333}, I24 = {333, 444}, and I25 = {555}. It is

readily seen that the sets I23 and I24 are S-admissible, and

hence the system (S,D) is uniformly exponentially stable

on P1 = P0 ∪ D23 ∪ D24. Similarly, we find that the

system is not uniformly exponentially stable on D21 ∪ D25.

Thus, we are now able to determine the stability of the

system on a large portion of D2. Nevertheless, whether

the system is uniformly exponentially stable on the D22,

which is a small bounded subset of D2 shown in Fig. 1(b),

remains undetermined. Incrementing the path length L once

more, we consider the case of L = 2 and obtain I221 =
{1111}, I222 = {1111, 2222, 3333, 4444}, I223 = {3333},

I224 = {3333, 4444}, and I225 = {5555}, where I223

and I224 are S-admissible. Hence the system is uniformly

exponentially stable on P2 = P1 ∪ D223 ∪ D224. Also, we

can determine that the system is not uniformly exponentially

stable on D221 ∪ D225. If it is deemed that the current

result is satisfactory or the computational burden to proceed

further is great, then we stop at this point and conclude

that the piecewise affine system is uniformly exponentially

stable on D3 ∪ D4 ∪ D23 ∪ D24 ∪ D223 ∪ D224, and that

it is not uniformly exponentially stable on any subset of

D1 ∪ D5 ∪ D21 ∪ D25 ∪ D221 ∪ D225. The only part of

the state space on which the stability of the system is not

determined for L = 2 is the thin bounded tube D222 shown

in Fig. 1(c).

IV. EXISTENCE OF FINITE-STATE BISIMULATION

In this section, we present a sufficient condition under

which the piecewise affine system (S,D) admits a finite-

state bisimulation (DL, GL).
Definition 10: Let θ = (θ(0), θ(1), . . . ) be a switching

sequence; let t ∈ N0. The pair (θ(t), θ(t + 1)) is called a

discrete transition in θ if θ(t) 6= θ(t + 1). If the number of

discrete transitions in θ is finite, then this number is denoted

by dθ .
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The following theorem provides a condition under which

there is a uniform bound on dθ over all switching sequences θ
generated by a piecewise affine system. This condition is the

discrete-time counterpart of the bounded-horizon property

for STORMED hybrid systems [20].

Theorem 11: Let Q ⊂ R
n be a bounded polyhedron such

that all state sequences generated by initial states in Q remain

in Q. Suppose the following hold true:

(a) There exists γ > 0 such that

‖Aix + bi − x‖ ≥ γ

whenever x ∈ Di ∩ Q and Aix + bi ∈ Dj ∩ Q with

i 6= j.

(b) There exist ǫ > 0, a−, a+ ∈ R, and φ ∈ R
n such that

φT (Aix + bi − x) ≥ ǫ‖Aix + bi − x‖

whenever x ∈ Di ∩ Q, and such that a− ≤ φT
x ≤ a+

for all x ∈ Q.

Then

dθ ≤
a+ − a−

ǫγ

for all switching sequences θ generated by initial states

x(0) ∈ Q according to (2).

The proof of this theorem is similar to that of [25,

Lemma 10]; the details are omitted due to space constraints.

If the conditions of the theorem are satisfied, then the number

of discrete transitions in any switching sequence generated

by the initial states in a bounded polyhedron is uniformly

bounded above. Consequently, every switching sequence will

be eventually constant in this case.

Example 12: Consider the system (S,D) with N = 4,

A1 =

[
1 0
0 1/4

]
, A2 =

[
1 0

1/2 1/4

]
,

A3 =

[
1 0

1/4 1/2

]
, A4 =

[
1 0
0 1

]
,

b1 =

[
1
0

]
, b2 =

[
3/2
1/4

]
, b3 =

[
1

1/4

]
, b4 =

[
0
0

]
,

and

D1 =
{
[x1 x2]

T ∈ R
2 : x1 < −1

}
,

D2 =
{
[x1 x2]

T ∈ R
2 : − 1 ≤ x1 < 0

}
,

D3 =
{
[x1 x2]

T ∈ R
2 : 0 ≤ x1 < 1

}
,

D4 =
{
[x1 x2]

T ∈ R
2 : 1 ≤ x1

}
.

Let Q ⊂ R
2 be the box whose vertices are at [−2 1]T ,

[−2 − 1]T , [2 1]T and [2 − 1]T . It is readily seen that all

state sequences x(t), t ∈ N0, generated by initial states in Q
remain in Q. For x ∈ D1∩Q, we have A1x+b1 ∈ D2∩Q
and 1 ≤ ‖A1x + b1 − x‖ ≤ 5/4. For x ∈ D2 ∩Q, we have

A2x+b2 ∈ (D3∪D4)∩Q and 3/2 ≤ ‖A2x+b2−x‖ ≤ 2.

Also, for x ∈ D3 ∩ Q, we have A3x + b3 ∈ D4 ∩ Q and

1 ≤ ‖A3x+b3−x‖ ≤ 2. Lastly, we have A4x+b4 ∈ D4∩Q
whenever x ∈ D4 ∩Q. Thus condition (a) in Theorem 11 is

satisfied with γ = 1. Let φ = [1 1/2]T . Then

φT (A1x + b1 − x) ≥ 5/8 ≥ 0.5‖A1x + b1 − x‖

for x ∈ D1 ∩ Q,

φT (A2x + b2 − x) ≥ 1/2 ≥ 0.25‖A2x + b2 − x‖

for x ∈ D2 ∩ Q,

φT (A3x + b3 − x) ≥ 7/8 ≥ 0.44‖A3x + b3 − x‖

for x ∈ D3 ∩Q, and ‖A4x + b4 − x‖ = 0 for x ∈ D4 ∩Q.

Moreover, −5/2 ≤ φT
x ≤ 5/2 for all x ∈ Q. Thus

condition (b) in Theorem 11 is satisfied with ǫ = 0.25,

a− = −5/2, and a+ = 5/2. Therefore, we conclude that

dθ ≤ (a+ − a−)/(ǫγ) = 20 for every switching sequence θ
generated by initial states x(0) ∈ Q according to (2).

Theorem 13: Suppose the number of discrete transitions

in any switching sequence generated by (S,D) is uniformly

bounded above by K ∈ N0. Suppose there exists an L̃ ∈ N0

such that for all i ∈ {1, . . . , N} the cell D(i,...,i) ∈ D
L̃

is either empty or equal to D(i,...,i,i) ∈ D
L̃+1. Then there

exists an L ∈ N0 with L ≤ KL̃ such that (DL, GL) is a

bisimulation of (S,D).
Proof: Due to space constraints, we only sketch the

proof. Since dθ ≤ K , the switching sequence θ is eventually

constant and θ(t) = θ(t + 1) for all t ≥ KL̃. Let L = KL̃.

Then clearly every cell in DL is (S,D)-invariant and hence

(DL, GL) is a bisimulation of (S,D).
Example 14: Let the system (S,D) be as in Example 12.

It has been shown in Example 12 that the number of discrete

transitions in any switching sequence generated by initial

states in Q is uniformly bounded by 20. Moreover, we have

also seen in Example 12 that A1x + b1 /∈ D1 ∩ Q for x ∈
D1 ∩ Q, A2x + b2 /∈ D2 ∩ Q for x ∈ D2 ∩ Q, and A3x +
b3 /∈ D3 ∩ Q for x ∈ D3 ∩ Q, but that A4x + b4 ∈ D4 ∩
Q for x ∈ D4 ∩ Q. Thus the conditions in Theorem 13

are satisfied with L̃ = 1 as well as K = 20; that is, the

symbolic model (DL, GL) is a bisimulation of (S,D) for

some L ≤ KL̃ = 20. The symbolic models (DL, GL) of

(S,D) for L = 0, 1, and 2 are shown in Fig. 2. Indeed, the

state-space partition D2 (restricted to Q) is (S,D)-invariant

and hence the symbolic model (D2, G2) is a bismulation of

(S,D) (restricted to Q).

V. CONCLUSIONS

We presented a stability analysis of piecewise affine sys-

tems based on a nested sequence of finite-state simulations.

It was shown that this analysis is nonconservative for a large

class of piecewise affine systems. Moreover, for the restricted

class of systems for which the number and time of discrete

transitions between affine models are uniformly bounded, it

was shown that the existence of bisimulations is guaranteed.

Considering that even simple problems regarding hybrid

systems are known to be undecidable, it is not surprising that

our class of systems admitting bisimulations is restricted.

Future research directions include application and ex-

tension of the results to realistic examples and controller

synthesis, respectively. Potential real-world examples include

power systems and power electronic circuits. On the other

hand, a starting point toward the extension to controller
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(a) Restriction of D0 to Q (b) Restriction of D1 to Q (c) Restriction of D2 to Q (d) Restriction of D3 to Q

(d) Restriction of G0 to Q (e) Restriction of G1 to Q (f) Restriction of G2 to Q

Fig. 2. The sequence of simulations for Example 14. All state sequences generated by initial states in the box Q remain in Q. The restriction of state-space
partition D2 to Q is as fine as the restriction of the next partition D3 to Q. Thus, restricted to Q, the symbolic model (D2, G2) is a bisimulation of the
piecewise affine system (S,D).

synthesis is to characterize the set of controllers under which

the closed-loop system admits a finite-state bisimulation.
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