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Abstract— In this work, by starting from the theoretical
framework proposed in [1], the problem of decentralized super-
vision of a Petri net through collaboration among supervisors
is addressed. Communication is assumed to be available but
limited to one-hop neighbors, i.e., supervisors reachable from
one another with respect to a certain communication radius r.
A sufficient condition to achieve decentralized admissibility by
focusing the attention on the communication topology of the
network of supervisors is provided. Furthermore, under the
assumption of control under concurrent firing, a protocol to
reach an agreement on the control input among the supervisors
is proposed. Finally, a feasibility analysis for the implementation
of the proposed decentralized control framework is discussed.

I. INTRODUCTION

A discrete event system (DES) is a dynamic system that

evolves in accordance with the abrupt occurrence, at possibly

unknown irregular intervals, of physical events. Such systems

arise in a variety of contexts ranging from computer operat-

ing systems to the control of complex multimode processes.

The supervisory control theory, introduced by Ramadge

and Wonham [2], is a method for automatically synthesizing

supervisors that restrict the behavior of a plant such that as

much as possible of the given specifications are fulfilled.

The plant is assumed to spontaneously generate events. The

events are in either one of the following two categories

controllable or uncontrollable. The supervisor observes the

string of events generated by the plant and might prevent

the plant from generating a subset of the controllable events.

However, the supervisor has no means of forcing the plant

to generate an event.

Although decentralized control of discrete event systems

using automata is a well explored topic, relatively few

contributions deal with the decentralized control of Petri

nets. Here we are concerned with the problem of enforcing

a special class of state specification, called Generalized

Mutual Exclusion Constraints, using monitor places [3], [4].

A monitor place ps controls a transition t if there exists an

arc (ps, t), and it detects a transition t′ if there exists either

an arc (ps, t
′) or an arc (t′, ps).

In [1] Iordache and Antsaklis introduced the concept of

decentralized admissibility (d-admissibility) as an extension

to the decentralized setting of the centralized admissibility
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concept for Petri nets. We believe this decentralized setting,

although inspirational for the present work, contains some

implicit assumptions that make it not immediately applicable

in real cases. These implicit assumptions are two. On one

hand, the basic notion of d-admissibility requires that each

local supervisor should observe all detectable transitions, i.e.,

all transitions that a centralized monitor should observe to

solve the given problem. Thus, while the supervisor proposed

in [1] is distributed, global observation is still required.

On the other hand, the solution proposed to go beyond

the previously mentioned issue requires that a local site

that can observe a detectable transition, should transmit this

information to all other sites that cannot observe it. However,

the control scheme used in [1] is correct only under the

assumption that this information is immediately available at

all sites, which is not realistic.

Note that to overcome this problem in [5], [6] a different

approach for constraint decomposition was proposed. The

advantage of this approach is that no communication among

distributed sites is necessary. However, this leads to overly

restrictive control laws.

The objective of this paper is proposing a general frame-

work for a truly decentralized control law with communica-

tions that can be effectively implemented.

The rest of the paper is organized as follows. In Section II

a example to introduce the problems related to the time-

delay of the communication channel under the assumption

of concurrent firing is described. In Section III related work

is presented. In Section IV the algebraic structure of bounded

lattices along with the consensus algorithm are introduced.

In Section V concepts regarding Petri nets along with its

centralized/decentralized supervision are given. In Section VI

the proposed consensus-based decentralized supervision of

Petri nets is described. In Section VII an example to cor-

roborate the theoretical analysis is proposed. Finally, in

Section VIII conclusions are drawn and future work is

discussed.

II. A MOTIVATING EXAMPLE

Let us first discuss the communication protocol used in this

paper. We assume that the local supervisors are synchronized

through a global clock, while no assumption is made on the

firing of the plant transitions, that may occur asynchronously.

During each control cycle the following steps are sequen-

tially executed.

a) Each supervisor blocks all its controlled transitions.

b) Each supervisor determines the status of the detectable

transitions it can observe, i.e., it determines if they have

fired since the previous observation.
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c) The information on the detected transitions spreads in

the network. We call this step observation consensus.

d) The supervisors agree on a control input that satisfies

the specification. We call this step control consensus.

e) Each supervisor sends to its controlled transitions the

updated control input valid for the rest of the cycle,

i.e., specifies how many times the transition is allowed

to fire during the period.

f) The supervisors stay idle for the rest of the cycle while

the plant evolves.

Three issues deserve some further comments:

First we observe that between steps b) and e) detectable

but uncontrolled transitions may fire asynchronously. How-

ever, the firing of these transitions will not affect the admis-

sibility of the control law determined at step d).

Secondly, it should be noted that during steps a) to e) the

controllable transitions are blocked, while the new control

input is being computed. The total length of these steps

should be small with respect to the length of step f), when

enabled controlled transitions are left free to fire.

Finally, the control law computed in step e) must be

admissible even if the firing of controlled transitions during

step f) is not immediately observed and used to update the

control. Such a control law has already been discussed in

the literature [7] and is known as control under concurrent

firing. Here we briefly discuss it.

ps

Fig. 1. A simple Petri net with a monitor place.

Consider the net in Figure 1 (ignoring the dashed place

and arcs) and assume that the objective of a supervisor is

to enforce the constraint µ1 + µ2 ≤ 2, i.e., the sum of the

tokens in places p1 and p2 should not exceed 2. Assuming

transition t1 and t2 are controllable, the monitor places ps
that enforces this solution is represented in the figure as well

(in dashed line). The monitor works as follows. Initially place

p1 contains a single token and p2 is empty. The monitor has

a single initial token to denote that one more token can be

added to place p1 or p2, and both transitions t1 and t2 are

initially control enabled. As soon as one of them fires, putting

a token into its output place, the monitor looses its token and

both t1 and t2 are control disabled.

In a real implementation, however, the supervisor needs

some time to detect the firing of one transition and conse-

quently to update the control law. In a centralized system

it may be reasonable to assume that this time is negligible

and that for all practical purposes only one transition can

fire at a time. In a decentralized system, however, due to

communication delays this time cannot be neglected and

a concurrent firing of two enabled transitions, or even a

multiple firing of a single transition, may occur.

Under this assumption we need to change the control law.

In the case just discussed, under concurrent firing we have

two maximally permissive control laws: either the monitor

should assign the token to transition t1 and thus disable t2,

or assign the token to transition t2 and thus disable t1. Note

that when p1 and p2 are both empty, the monitor shall contain

two tokens and may assign k1 tokens to t1 and k2 tokens to

t2 (with k1 + k2 = 2) to denote that during next cycle t1
(resp., t2) can fire up to k1 (resp., k2) times. In step d) of

the control cycle we assume that a law of this type, valid for

concurrent firing, is computed.

Finally, we also note that the firing of any transition other

than t1 and t2 (the controlled transitions) will not make the

control law computed by the monitor unfeasible: in fact, the

firing of all other transitions will never increase the token

content in p1 and p2. On the contrary, each time the firing of

t3 and t4 is detected the number of tokens in the monitor will

increase and more permissive control laws can be computed.

In our framework, communication among supervisors is

assumed to be available but limited to one-hop neighbors,

i.e., supervisors reachable by another one with respect to a

certain communication radius r. Our first contribution is to

provide a systematic approach to the problem of achieving d-

admissibility by focusing the attention on the communication

topology of the network of supervisors. As a result, a

sufficient condition to achieve d-admissibility by means of

collaboration is proposed. Our second contribution is to pro-

vide a decentralized way of achieving an agreement among

the supervisors on the control input under the assumption

of concurrent firing. Finally, a feasibility analysis for the

implementation of the proposed decentralized supervision

technique is discussed.

III. RELATED WORK

Several works concerning the decentralization of the su-

pervisory control of Discrete Event Systems (DES) have been

proposed in literature.

An early work on decentralized DES has been proposed

in [8]. In that reference, which is an extension of the

work proposed in [9], the decentralization of the supervision

under the partial observation has been studied. The DES are

modeled using controlled automata, diminishing the design

complexity by means of distribution of supervisors. Follow-

ing this trend, in [10], the control of discrete-event systems

with partial observations has been addressed using coalgebra

and coinduction. The results of this paper is generalized

to the decentralized and modular supervisory control. In

modular control of DES, the overall system is obtained as a

parallel composition of local systems.

As mentioned above, in [1], an extension of the centralized

admissibility concept to the decentralized setting of a Petri

Net is proposed. Based on decentralization concept, authors

propose two methods to design decentralized supervisors. In
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both methods, the solution can be distributed by means of

communication, and the formalization of an Integer Linear

Programming (ILP) problem can be used to minimize the

amount of communication required by the solution.

Dealing with distributed discrete-event systems, the prob-

lem of communication among supervisors has to be ad-

dressed. In [11], a novel information structure model is

presented to deal with this problem. Existence results are

given for the cases in which supervisors do and do not

anticipate future communications, and a synthesis procedure

is given for the case when supervisors do not anticipate

communications. In [12], each agent (supervisor) uses a

combination of direct observation (obtained from sensor

readings available to that agent) and communicated infor-

mation (obtained from sensor readings available to another

agent). Since communication may be costly, a strategy to

minimize communication between sites is developed.

In [13], a hybrid approach to deal with the decentralized

control of DES is proposed. This work describes a solution

for achieving non-blocking decentralized supervisory control

of DES. In particular, the proposed approach gives a graph-

ical way of designing coordinators to keep the non-blocking

property of the closed-loop system with decentralized super-

visors. Furthermore, the proposed approach guarantees the

closed-loop system to be maximally permissive.

Decentralized Petri nets have been also used in different

real-world applications, such as mission control and task

sequencing for team of autonomous vehicles. For instance,

in [14], PNs have been used to manage mutual exclusion,

ordering and synchronization for missions defined on each

vehicle. The proposed solution guarantees a deadlock-free

centralized PN, which is distributed over the team.

IV. THEORETICAL BACKGROUND

In this section some concepts concerning the algebraic

structure of bounded lattices along with the consensus al-

gorithm for multi-agent systems are introduced.

A. Bounded Lattice

An algebraic structure {L,⊕, ⊗}, consisting of a set L and

two binary operations “join” ⊕, and “meet” ⊗, on L is a lat-

tice if the following axioms hold for all elements a, b, c ∈ L:

associativity, commutativity, absorption and idempotence.

A bounded lattice is an algebraic structure of the form

L = {L, ⊕, ⊗, ⊥, ⊤} such that {L,⊕, ⊗} is a lattice, ⊥
(the lattice’s bottom) is the identity element for the join

operator ⊕, and ⊤ (the lattice’s top) is the identity element

for the meet operator ⊗.

In the rest of the paper, the attention will be restricted to

a bounded lattice L built over a subset Lm ⊂ N including

the zero 0, where m denotes the upper bound of the subset.

B. Multi-Agent System and Consensus Algorithm

A multi-agent system (MAS) is a system composed

of multiple interacting intelligent agents [15]. Multi-agent

systems provide a useful abstraction to model interaction

among several entities. A multi-agent system is commonly

described by an undirected graph G = {V,E}, where

V = {vi : i = 1, ..., n} is the set of nodes (agents) and

E = {eij = (vi, vj)} is the set of edges (connectivity) repre-

senting the point-to-point communication channel availabil-

ity. This abstraction will be used to model the network of

supervisors S focusing mainly on their interaction.

The consensus problem forms the foundation of the field

of distributed computing [16]. Distributed computation over

networks has a tradition in systems and control theory

starting with the pioneering work of Borkar and Varaiya [17]

and Tsitsiklis and Athens [18] on asynchronous asymptotic

agreement problem for distributed decision-making systems.

In networks of agents (or dynamic systems), “consensus”

means to reach an agreement regarding a certain quantity of

interest that depends on the state of all agents. A “consensus

algorithm” (or protocol) is an interaction rule that specifies

the information exchange between an agent and all of its

neighbors on the network. For an overview of Consensus and

Cooperation in Networked Multi-Agent Systems the reader

is referred to [19].

Lemma 1 (Simple Consensus over a Bounded Lattice):

Let us consider a multi-agent system described by its

communication graph G = {V, E}, with |V | = n.

Let us assume each agent has an internal state, that is

xi = [x
(i)
1 , . . . , x

(i)
q ]T ∈ L

q
m. Let us consider an interaction

rule R : B
q
m × L

q
m → B

q
m described by the binary operator

⊘ such that the following holds:

• a ⊘ b = b ⊘ a (commutativity)

• a ⊘ (b ⊘ c) = (a ⊘ b) ⊘ c (associativity)

• a ⊘ a = a (idempotence)

If the communication graph G = {V, E} remains con-

nected over time then the multi agent system reaches a

common steady state in a finite time k̄, that is:

xi(k̄) = x̄ ∀i ∈ V (1)

where

x̄ = x1(k0) ⊘ x2(k0) ⊘ . . . ⊘ xn(k0)

is the combination of all the internal agents state at time

k = k0, and k̄ ≤ d(G), with d(G) the diameter of the graph,

i.e., the greatest distance between any pair of vertices.

Proof: The proof follows the same argument used

in [20] to prove the abstract convergence of consensus

algorithms.

In the following, for sake of clarity, we will refer to

the consensus algorithm over a bounded lattice as “lattice

consensus”.

V. DISTRIBUTED SUPERVISION AND D-ADMISSIBILITY

In this work, Petri nets of the form N = (P, T, F, W )
where P is the set of places, T the set of transitions, F the

set of arcs, and W the weight function are considered [21].

Let us first introduce the definition of decentralized super-

visor as follows:

Definition 1 (Decentralized Supervisor):

A decentralized supervisor S consists of a set of supervisors
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{S1, S2, . . . , Sn} operating in parallel, such that a given

specification is satisfied. In this work, specifications of the

form Lµ ≤ b where L ∈ Z
nc×|P |, b ∈ Z

nc with nc the

number of specifications, and µ is the marking of N will be

considered.

Let us now introduce the concept of supervision based on

monitor places following [3].

Definition 2 (Supervision Based on Monitor Places):

The supervision based on monitor places provides a super-

visor in the form of a set of monitor places Ds :

Ds = −LD (2)

µ0,s = b− Lµ0 (3)

where D is the incidence matrix of the plant N , Ds is the

incidence matrix of the supervisor, µ0,s the initial marking

of the supervisor, and µ0 is the initial marking of N . The

supervised system, that is the closed-loop system, is a PN of

incidence matrix Dc = [DT (−LD)T ]T .

Let µc be the marking of the closed-loop, and let µc|N
denote µc restricted to the plant N . t ∈ T is closed-loop

enabled if µc enables t; t is plant-enabled, if µc|N enables

t in N .

Let us now introduce the concept of supervisor admissi-

bility for a centralized scenario, i.e., c-admissibility.

Definition 3 (Supervisor Admissibility):

A supervisor is admissible, if it only controls controllable

transitions and it only detects observable transitions. The

constraints Lµ ≤ b are admissible if the supervisor defined

by (2) - (3) is admissible. When inadmissible, the constraints

Lµ ≤ b are transformed (if possible) to an admissible

form Laµ ≤ ba such that Laµ ≤ ba ⇒ Lµ ≤ b.

Then, the supervisor enforcing Laµ ≤ ba is admissible,

and enforces Lµ ≤ b as well. A plant N with a set of qc
controllable transitions Tc and qo observable transitions To

will be denoted as (N , Tc, To) .

Let us now introduce the concept of d-admissibility pro-

posed in [1] for a decentralized scenario.

Definition 4 (Decentralized Admissibility):

Given (N , µ0, Tc,1, . . . , Tc,n, To,1, . . . , To,n) a constraint

is d-admissible if there is a set C ⊆ {1, 2, . . . , n}, C 6= ∅,

such that the constraint is c-admissible with respect to

(N , µ0, Tc, To) , where Tc = ∪i∈CTc,i and To = ∩i∈CTo,i .

A set of constraints is d-admissible if each of its constraints

is d-admissible.

Remark 1: As pointed out in [1], even though the defi-

nition of d-admissibility can take advantage of situations in

which there are sets To,i that are not disjoint, the sets To,i

do not necessarily need to share common transitions, as the

set C may be a singleton. However, in a distributed scenario,

where C is not expected to be a singleton, the fulfillment of

the To condition is significantly constrained by the scale of

the system, since an intersection of the observable transitions

for each supervisor will likely tend to an empty set with

respect to an increasing size of the system.

VI. CONSENSUS-BASED DECENTRALIZED SUPERVISION

OF PETRI-NETS

In this section a consensus-based approach to achieve the

d-admissibility in a distributed fashion by allowing one-hop

collaboration among supervisors is described. The idea is

to develop a communication mechanism by which first the

supervisors can retrieve the set of observable transitions and

successively can issue a proper control action. To this end,

two different consensus algorithms, namely an observation

consensus and a control consensus, will be introduced.

Let us now summarize the assumptions made in the

introduction for the proposed scenario:

Assumptions 1:

a) Control under concurrent firing,

b) A global clock with sampling time ∆p is available for

the supervisors,

c) Controllable transitions can be fired according to the

sampling time ∆p,

d) Detectable but uncontrollable transitions may fire asyn-

chronously,

e) The network of supervisors S is described by an undi-

rected graph G,

f) The communication range is limited by a maximum

communication radius r ∈ R,

g) A unique identifier (ID) is associated to each transi-

tion t,

h) A state ti is associated to each transition i, and it

denotes the number of times the transition has been

fired.

A. Observation Consensus

An observation consensus is a collaboration mechanism

by which supervisors can reach a common knowledge about

status of all the controllable transitions of a Petri Net.

Let us indicate with h the time at which a controlled tran-

sition is fired according to the sampling time ∆p associated

to the global clock previously introduced. Furthermore, let us

introduce an additional sampling time ∆c for the consensus

algorithm and let us indicate with k the k-th step of this

algorithm. Obviously, this sampling time ∆c must be such

that the convergence of the consensus algorithm is always

reached before another transition is fired. As it will be shown

in Section VI-C, this turns out to be a design parameter

related to the diameter d(G) of the graph G describing the

interconnection among the supervisors.

At this point, by neglecting the temporal index h for the

sake of clarity, let us define the local state T
[i]
o (k) of a super-

visor i at step k as the integer vector
[

t
(i)
1 (k), . . . , t

(i)
qo (k)

]

describing the state of the observable transitions available to

this supervisor at step k, where t
(i)
j (k) = v if the transition j

has been fired v times in the last interval of time ∆p and the

i-th supervisor is aware of it at the step k of the observation

consensus, t
(i)
j (k) = ⊥, with ⊥ = 0, otherwise. Note that,

the local knowledge t
(i)
j (k) might differ from the real state

tj of a transition j at time h as this information might not be
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available yet to the supervisor i at step k of the observation

consensus. Indeed, the goal of this consensus mechanism

is to let each supervisor have a local knowledge which is

consistent with the real state of all the observable transitions

of a Petri net.

Let us now describe the collaborative technique by which

each supervisor can achieve this common knowledge about

the state of all the observable transitions.

Lemma 2 (Observability via Lattice Consensus):

Let us consider a Petri Net described as

(N , µ0, Tc,1, . . . , Tc,n, To,1, . . . , To,n). Furthermore,

let us consider a set S of supervisors described by an

undirected graph G = {V,E} with |V | = n. If the graph

G = {V,E} is connected, then by applying the lattice

consensus given in Lemma 1 with respect to the “join”

operator (⊕), the following holds:

T [i]
o (k) = T̄o ∀ k ≥ ko (4)

where T̄o =
⊕

i∈V To,i is the set of observable transition,

T
[i]
o (k) is the local (partial) knowledge of set T̄o of observ-

able transition for the i-th supervisor a the step k and ko is

the number of steps required to reach the convergence.

Proof: The proof of this lemma can be simply de-

rived from Lemma 1 by assuming the vector T
[i]
o (k) as

the current state x(i)(k) for each agent and the vector

x̄ = T
[1]
o (0)⊕ T

[2]
o (0)⊕ . . .⊕ T

[n]
o (0) as the combination of

all the internal supervisors state at time k = 0.

In the following, a characterization of the convergence

time of the lattice consensus described in Lemma 2 is

provided. Indeed, it can be noticed that in the more general

case where no assumption is made on the locality of the

transition observability for each supervisor, this protocol is

optimal as it requires a minimal exchange of information.

Lemma 3 (Convergence Time):

Let us consider a Petri Net described as (N , µ0, Tc,1, . . . ,

Tc,n, To,1, . . . , To,n) and let us consider a set S of supervi-

sors (multi-agents system) described by an undirected graph

G = {V,E} with |V | = n. If the graph G = {V,E} is

connected, then the consensus given in Lemma 2 reaches

the convergence in time:

ko = d(G) (5)

where d(G) is the diameter of the graph, i.e., the greatest

distance between any pair of vertices.

Proof: In order to prove this lemma, let us consider

two supervisors Si, Sj described respectively by the vertexes

vi, vj for which a path of length d̄ = d(G) exists. According

to the Assumptions 1-e),1-f) at each time step k, the state of

the two supervisors will be updated as follows:

T [i]
o (k) = ⊕ h∈V⋆

i (k)
T [h]
o (0)

T [j]
o (k) = ⊕ h∈V⋆

j
(k)T

[h]
o (0)

with V⋆
i (k) = Vi(k) ∪ {i} where Vi(k) is the set of k-

hops neighbors for the i-th supervisor. In particular, being

d̄ the longest path among two supervisors, after d̄ steps the

neighborhoods V⋆
i (d̄) = V⋆

j (d̄) = V . Therefore, the current

state of both supervisors will be:

T [i]
o (d̄) = T [j]

o (d̄) = ⊕ h∈V T
[h]
o (0) = T̄o

and so will it be for any other supervisor Sh.

Let us now introduce a theorem that details a set of con-

ditions under which d-admissibility can be achieved through

collaboration among supervisors.

Theorem 1 (Decentralized Collaborative Admissibility):

Let us consider a Petri Net described as (N , µ0, Tc,1, . . . ,

Tc,n, To,1, . . . , To,n) and let us assume a network of super-

visors S described by an undirected graph G = {V,E} with

|V | = n. Furthermore, let us assume the set of constraints

to be c-admissible with respect to (N , µ0, Tc, T̄o) where

Tc = ∪i∈V Tc,i and T̄o = ∪i∈V To,i. If the network of

supervisor S applies the consensus algorithm described in

Lemma 2, a sufficient condition for its d-admissibility with

C = V is that the graph G is connected.

Proof: The theorem can be proven by applying the

Definition 4 to the result given by Lemma 2. Indeed, the

consensus algorithm described in Lemma 2 allows each

supervisor Si to reach T
[i]
o (d) = T̄o after d steps. Therefore,

according to Definition 4, the d-admissibility is a conse-

quence of the fact that:

To = ∩i∈V To,i = ∩i∈V T
[i]
o (d)

= ∩i∈V T̄o = ∪i∈V T̄o

= T̄o

which implies (N , µ0, Tc, To) = (N , µ0, Tc, T̄o).

Remark 2: It should be noticed that connectivity con-

dition guarantees the feasibility of a decentralized imple-

mentation. Indeed, by assuming the graph G = {V,E} to

be connected, the set of supervisors can always set-up an

observation consensus by which an agreement toward T̄o can

be reached.

B. Control Consensus

A control consensus is a collaboration mechanism by

which supervisors can reach an agreement on a control input

that satisfied the specifications.

In particular, once the consensus towards the set of

observable transitions has been reached, supervisors are

required to issue a control action so that the plant is left

free to evolve. Nevertheless, with the assumption of control

under concurrent firing, a decentralized mechanism for the

coordination among the supervisors is required . This is due

to the fact that, a situation of mutual exclusion, as for the

concurrent firing of transitions, implies a nondeterministic

behavior of the Petri net. Therefore, the supervisors must be

aware of the control action taken by each other in order to

satisfy the specifications.

As in the case of the observation consensus, let us consider

a sampling time ∆c for the consensus algorithm (the same as

in the observation consensus case for sake of simplicity) and
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let us drop the global time index h for the sake of clarity.

Let us now denote with C [i](k) =
[

c
(i)
1 (k), . . . , c

(i)
qc (k)

]

the integer vector describing the firing policy for all the

controllable transitions of which the i-th supervisor is aware

of up to the k-th step of the control consensus. Note that,

while at step k = 0 such a vector describes exactly the

control policy adopted by the i-th supervisor, for any k > 0,

this vector integrates the control policy of all the supervisors

it has (directly or indirectly) collaborated with, while at

step k = d(G) it describes exactly the control policy of all

the supervisors {S1, . . . , Sn} which define the decentralized

supervisor S. In particular, c
(i)
j (k) = v, describes the fact

that the j-th transition can fire at most v times according

o all supervisor of which the i-th supervisor is aware of

(including itself) up to the step k of the control consensus,

while c
(i)
j (k) = m, with ⊤ = m, describes the fact that the

supervisor i does not have any information concerning the

control policy of the j-th transition up to step k.

A particular attention should be paid to the case of

concurrent firing described in the introduction (Fig. 1) for

which a single centralized monitor place is distributed into

two or more monitor places assigned to different supervisors

in the decentralized scenario. In the proposed control

framework, we assume that only one of those supervisors

takes a decision which will be communicated to the others by

means of the control consensus. Note that, this assumption

is not so restrictive as both supervisors will be aware of

this situation each time it happens due to the information

provided by the observation consensus previously performed.

Let us now describe the collaborative technique by which

each supervisor can reach a complete knowledge about the

control policy adopted by the other supervisors. Clearly,

this implies that, even though the behavior of the Petri net

is not deterministic, control actions can be taken so that

specifications are satisfied.

Lemma 4 (Controllability via Lattice Consensus): Let us

consider a set S of supervisors described by an undirected

graph G = {V,E} with |V | = n. If the graph G = {V,E}
is connected, then by applying the lattice consensus given

in Lemma 1 with respect to the “meet” operator (⊗), the

following holds:

C [i](k) = C̄ ∀ k ≥ kc (6)

where C̄ =
⊗

i∈V Ci(0) is the global result of the set of

local policy adopted by each supervisor Si and kc is the

time required to reach the convergence.

Proof: The proof of this lemma can be simply de-

rived from Lemma 1 by assuming the vector C [i](k) as

the current state x(i)(k) for each agent and the vector

x̄ = C [1](0)⊗ C [2](0)⊗ . . .⊗ C [n](0) as the combination of

all the internal supervisors state at time k = 0.

By following the analysis proposed for the observation

consensus, let us now provide a characterization of the con-

vergence time of the lattice consensus described in Lemma 4.

Lemma 5 (Control Consensus Convergence Time):

Let us consider a set S of supervisors (multi-agents system)

described by an undirected graph G = {V,E} with |V | = n.

If the graph G = {V,E} is connected, then the consensus

given in Lemma 4 reaches the convergence in time:

kc = d(G) (7)

where d(G) is the diameter of the graph, i.e., the greatest

distance between any pair of vertices.

Proof: The proof follows the same argument used to

prove in Lemma 3 the convergence time of the observation

consensus.

C. Feasibility Analysis

In this section, an analysis concerning the feasibility of

the proposed approach is provided. Indeed, as described in

the introduction, a particular attention should be paid to the

relationship between the sampling time ∆p of the Petri net

evolution and the sampling time ∆c of the two consensus

algorithms for the implementation of such a control frame-

work. In particular, by assuming the sampling time ∆p for

the evolution of the Petri to be given, the sampling time ∆c

for the two consensus algorithms should be chosen according

to the following inequality:

kc ∆c + ko ∆c ≤ ∆p (8)

which simply states that the time required for the conver-

gence of the two consensus algorithms must be less or equal

to the time between two consecutive steps of the Petri net

evolution. In particular, by exploiting the result provided

respectively by Lemma 3 for the observation consensus and

Lemma 5 for the control consensus, the inequality described

by eq. (8) can be fulfilled assuming:

∆c ≤
∆p

2 d(G)
. (9)

This implies that the choice of the sampling time Sa for the

two consensus algorithms is strictly related to the particular

network topology adopted for the collaboration among the

supervisors, thus it can be considered as a parameter design.

Fig. 2. Abstract model of the manufacturing workcell.

VII. AN EXAMPLE

In this section, a manufacturing example is presented to

corroborate the theoretical analysis and the feasibility of the

proposed approach. Fig. 2 describes the abstract model of the

considered manufacturing work-cell. In detail, this example

illustrates the the manufacturing of a product composed of
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Fig. 3. PN of the manufacturing workcell with the centralized supervisor.

two different types of parts. In a first phase, two different

types of parts (Pa and Pb) are produced in parallel by using

machines M1 and M2, each product is moved to a common

area by the robot M3. In a second phase, the resulting

products are assembled by using machine M4 to obtain

the final product (Pab) that leaves the manufacturing cell.

Note that, in order to decouple the part production from

their transportation, two buffers (B1 and B2), one for each

machine, are introduced.

The proposed manufacturing work-cell can be modeled by

means of a PN as depicted in Fig. 3. The machines could

be either available (M1A {p3}, M2A {p9}, M4A {p14})

or processing a part (M1P {p2}, M2P {p8}, M3Pa {p5},

M3Pb {p11}, M4P {p13}). As parts enter the work-cells

(PaI {p1}, PbI {p7}), they are placed in two buffers (B1

{p4}, B2 {p10}) respectively, and finally they are moved

to the common assembly phase (PaO {p6}, PbO {p12}) to

obtain final products (Pab {p15}).

Therefore, the whole process can be divided into three

main phases:

• the manufacturing of part Pa, described by the sequence

of transitions {t1, t2, t3, t4};

• the manufacturing of part Pb, described by the sequence

of transitions {t5, t6, t7, t8};

• the assembly phase described by the sequence of tran-

sitions {t9, t10}.

As far as the supervision of the manufacturing work-cell

is concerned, the following supervisory requirements have to

be satisfied for the aforementioned PN N . If the buffer is

full (B1 or B2), the entrance of parts in the machine (M1

or M2) has to be denied. By assuming the two buffers to

have the same capacity h, the requirements can be written,

for buffer B1 and B2 respectively, as:

µ2 + µ4 ≤ h, (10)

µ8 + µ10 ≤ h. (11)

Another requirement is that the mutual exclusion of the robot

(M3) have to be guaranteed; the constraint is:

µ5 + µ11 ≤ 1. (12)

It should be noticed that, according to Fig. 3, a

c-admissible supervisor can be obtained by assuming

To = {t1, t3, t4, t5, t7, t8} and Tc = {t1, t3, t5, t7}. Let us

recall that, according to the definition provided in Section V,

a supervisor is admissible if it only controls controllable

transitions and only detects observable transitions.

At this point, in order to enforce these constraints in

a distributed way, we attempt to obtain a d-admissible

representation of the PN. To this end, we assume to have

the following decentralized supervisor:

• S1 with Tc,1 = {t1} and To,1 = {t1, t3};

• S2 with Tc,2 = {t5} and To,2 = {t5, t7};

• S3a with Tc,3a = {t3} and To,3a = {t3, t4};

• S3b with Tc,3b = {t7} and To,3b = {t7, t8}.

Thus, enforcing (10), (11) for h = 4, and the constraint

(12), results in the control places C1, C2, C3a, and C3b as

shown in Fig. 4, where detectable transitions that are not

observable for a supervisor are drawn empty. Note that, the

monitor place C3 has been decentralized into two monitor

places C3a and C3b. Furthermore, we assume that the control

law related to these two monitors is taken by the supervisor

C3a. This implies that, the supervisor C3b, according to

Section VI-B, always takes ⊤ as a control decision for t3
and t7.

Nevertheless, the system turns out to be dc-admissible if

communication is allowed among the supervisors.

In particular, let us assume the communication topology of

the network of supervisors to be described by the following

undirected graph G = {V,E} with V = {1, 2, 3, 4} and E =
{(1, 2), (1, 3), (3, 4)}. According to Theorem 1, since the set

of constraints is c-admissible with respect to (N , µ0, Tc, T̄o)

where Tc = ∪i∈V Tc,i and T̄o = ∪i∈V To,i and the graph G
is connected, the d-amissibility can be enforced by applying

the lattice consensus given in Lemma 2.

Furthermore, according to the assumption of control under

concurrent firing, the transitions t3 and t7 cannot be fired at

the same time. This implies that a coordination among the

supervisors is required to avoid the two enabled transitions
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Fig. 4. Decentralized PN of the manufacturing workcell.

to be fired at the same time. Indeed, according to Lemma 4

this can be obtained by exploiting the proposed control

consensus.

Finally, according to Lemmas 3 and 5, the convergence

time for both consensus algorithms is d = 3 steps. Regarding

the optimality of the communication, i.e., the minimum

number of messages to be exchanged in order to reach the

consensus, it should be noticed that, generally speaking, the

optimality is strictly related to the diameter of the graph.

Therefore, an algorithm which does not require a number of

messages higher than this threshold can be considered to be

effective. Indeed, this is the case for the proposed algorithms

which do require exactly the same number of messages as

the diameter of the network.

VIII. CONCLUSIONS

In this work the problem of decentralized supervision of

a Petri net has been addressed. Starting from the theoretical

framework introduced in [1] by Iordache and Antsaklis, a

general framework for the design of a truly decentralized

control law which can be effectively implemented has been

proposed. In particular, by assuming the communication

among supervisors to be limited to one-hop neighbors, a

sufficient condition for achieving d-admissibility focusing

the attention on the communication topology of the network

of supervisors has been proposed. Furthermore, under the

assumption of control under concurrent firing, a protocol

to reach an agreement on the control input among the

supervisors has been proposed. Finally, a feasibility analysis

of the proposed decentralized control framework has been

discussed.
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