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Abstract— We present a computational scheme to obtain
adaptive non-linear, multiple-input models of the Volterra-
Wiener class, by utilizing Laguerre expansions of Volterra
kernels in a recursive least-squares formulation. Function
expansions have been proven successful in systems identification
as they result in a significant reduction of the required free
parameters, which is a major limiting factor particularly for
nonlinear systems, whereby this number depends exponentially
on the nonlinear system order. We apply this scheme in
order to obtain adaptive estimates for a two-input model of
cerebral hemodynamics, where the two inputs are arterial blood
pressure (ABP) and end-tidal CO2 (PETCO2 ) variations and
the output is cerebral blood flow velocity (CBFV) variations,
by utilizing long-duration (40 min) experimental measurements
of spontaneous variations of these signals in healthy humans.
Maintenance of a relatively steady cerebral blood flow, despite
changes in arterial pressure, is critical in order to meet the high
metabolic demands of the brain. This is achieved by the syner-
gistic action of various physiological factors, which may vary
over different time-scales and also exhibit nonstationarities. We
quantify these nonstationarities for the two main physiological
determinants of cerebral blood flow variability (i.e., arterial
pressure and arterial CO2) by considering one- (ABP) and two-
input (ABP and PETCO2 ) models. The results illustrate the
presence of nonstationarities which are frequency-dependent
and also that incorporation of PETCO2 as an additional input,
results in estimates of dynamic pressure autoregulation that are
more consistent with respect to time.

Index Terms: Cerebral autoregulation, recursive estimation,
nonlinear modeling, nonstationary systems, Volterra models.

I. INTRODUCTION

Autoregulation of cerebral blood flow (CBF) is defined
as the ability of the brain to maintain adequate blood flow
despite variations in a number of external physiological vari-
ables, the most important of which is arterial blood pressure
(ABP). It is now well established that autoregulation is a
dynamic, frequency-dependent phenomenon [1], [2], [3], [4].
The reliable quantitative assessment of cerebral autoregula-
tion and, more generally hemodynamics, is important in the
context of cerebrovascular disease diagnosis [5]. This assess-
ment may be performed by using spontaneous physiological
variabilty, which exhibits broadband characteristics in the
frequency range of interest, as well as step-like experimental
ABP stimuli. Hemodynamics during resting conditions have
been studied using both linear and nonlinear models, as well
as one-input and multiple-input models ([1], [2], [4] among
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others). An important aspect of the obtained models is their
time-varying characteristics, which are present in most phys-
iological systems, due to their complexity and the consequent
effect of several unobservable physiological variables and/or
physiological cycles that act in widely different time scales
(e.g., local mechanisms may act within seconds, whereas
diurnal or circadian mechanisms have a cycle on the order of
several hours). In the present paper, we propose a recursive
scheme to estimate multiple-input Volterra models, which is
based on Laguerre function expansions of Volterra kernels,
and apply it in order to obtain adaptive two-input models
of cerebral hemodynamics and examine the nonstationary
characteristics of the cerebrovascular system. In order to
do so, we utilize long duration experimental measurements
of ABP, CBF and end-tidal CO2 (PETCO2

) obtained under
resting (spontaneous) conditions. We also examine the effect
of unobservable physiological variables by comparing one-
input (ABP) and two-input (ABP and PETCO2 ) models.
Our results extend the results of previous studies regarding
nonstationarity of cerebral hemodynamics, based on wavelets
and the autoregulatory index ([6], [7], [8]).

II. METHODS

A. Experimental Methods

The experimental data were obtained at the University
of Calgary from thirteen healthy subjects (age:29.1±4.8
years[mean±SD]) under normal, free-breathing conditions.
None of the participants was on any medication and all of
them were normotensive and did not have history of any
cardiovascular, pulmonary or cerebrovascular diseases. ABP
and CBFV were measured by finger photoplethysmography
and transcranial Doppler ultrasonography in the right middle
cerebral artery respectively, while PETCO2 was measured
by mass spectrometry. The surrogate Doppler signal for
CBF is the mean value of the velocity corresponding to the
maximum Doppler shift V̂p averaged over the entire cardiac
cycle. Although it does not account for changes in vessel
diameter, changes in V̂p have been found to accurately reflect
CBF changes in almost all practical cases, including resting
conditions [9]. All experimental variables were sampled ev-
ery 10 ms and beat-to-beat values of mean ABP (MABP) and
mean CBF velocity (MCBFV) were calculated by integrating
the waveform of the sampled signals within each cardiac
cycle. The beat-to-beat values, as well as the breath-to-breath
PETCO2 data were then interpolated and resampled at 1Hz
to obtain equally spaced time series.
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B. Mathematical Methods

1) Laguerre expansion of Volterra Kernels: The output
of a non-linear multiple input single output system can
be expressed in terms of a series of functionals [10] that
represent higher order convolutions with the inputs signals:
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where I is the number of inputs. In the present case,
I = 2 and the system inputs xi are MABP and PETCO2

,
while the system output y(n) is MCBFV. kq denotes the q-
th order Volterra kernel of the system. The Volterra kernels
describe the linear (q = 1) and nonlinear (q > 1) dynamic
effects of the inputs (and their interactions) on the output.
The sum of eq. (1) can be viewed as a generalization of the
convolution sum, with the Volterra kernels quantifying the
effect of past input values (linear kernel), as well as their
q-th order products (nonlinear self- and cross-kernels) on
the output at present time n. For causal and finite memory
systems the sums in 1 are defined for mi = 0 to M , where
M is the system memory. In order to estimate the Volterra
kernels using input-output measurements, we use the discrete
Laguerre expansion method [11] formulated in a recursive
least-squares context in order to continuously update our
model estimates, as detailed below. This method utilizes the
orthonormal Laguerre basis and requires the determination of
two parameters: L and α where L is the maximum function
order and α (0 < α < 1) determines the rate of exponential
decay of the Laguerre functions - larger values of α result
in slower decay and are thus more suitable for systems with
large memory and/or slow dynamics. Determination of these
parameters is discussed below. Using the Laguerre expansion
method, the kernels can be expressed in the form:

k
(xi)
1 (m) =

Lxi∑
ji=0

c
(xi)
j b

(xi)
j (m) i = 1, 2

k
(xi1

xi2
)

2 (m1,m2) =

Lxi1∑
j1=0

Lxi2∑
j2=0

c
(xi1

...xiq )

j1...jq
b
(xi1

)

j1
(m1)b

(xi2
)

j2
(m2)

(2)

where i1, i2 = 1, 2 and b(xi)
j (m) is the j-th order discrete-

time Laguerre function corresponding to input i, given by:
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By combining equations (1) and (2) we can write:

y = Vc + ε, (4)

where y is the (N × 1) vector of output observations,
V is a (N × d) matrix containing the convolution of both
inputs with the Laguerre functions v(xi)

j = xi ∗ b(xi)
j (linear

models), as well as higher-order products between them
v
(xi1)
j1

v
(xi2)
j2

. . . v
(xiQ)
jQ

(nonlinear models), including self- and
cross-terms (whereby i1 = i2 = · · · = iQ and some of
i1, i2, . . . , iQ are different respectively), and c is the (d× 1)
vector of the unknown expansion coefficients. The number
of free parameters d is equal to L + 1 for Q = 1 and
L1L2 + (L+ L(L+ 1)) /2 for Q = 2,where L = L1 + L2,
due to the symmetry of the second-order self-kernels with
respect to j1, j2, . . . , jQ.

The values of v(xi)
j can be obtained by the following

recursive relations [12]:

v
(xi)
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√
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The least-squares estimate of c is given by:

ĉLS = (VTV)−1VTy. (7)

2) Recursive estimation of the Laguerre expansion model:
In order to obtain adaptive estimates for the system dynamics
(self-kernels for MABP and PETCO2

, as well as cross-
kernels between them) we formulate eq. (7) using recursive
least squares. Initially, we rewrite the least-squares cost
function at time point n as [13]:

J(n) =

N∑
s=1

λn−se2(s) (8)

where e(s) are the residuals at time point s and λ is
the forgetting factor (0 < λ ≤ 1), which determines the
weight of the previous time points on the present estimates.
A smaller value of λ corresponds to models that adapt
more quickly, while larger values of λ yield results that are
closer to regular least-squares. The update equations for the
coefficient vectors at time point n are then written as:

5769



ĉ(n) = ĉ(n− 1) + K(n)ε(n) (9)

ε(n) = y(n)− vT (n)ĉ(n− 1) (10)

P(n) =
1

λ

[
P(n− 1)− P(n− 1)v(n)vT (n)P(n− 1)

λ+ v(n)TP(n− 1)v(n)

]
(11)

K(n) =
P(n− 1)v(n)

λ+ vT (n)P(n− 1)v(n)
(12)

where v(n) is the n-th row of the matrix V, K(n) is a gain
matrix that determines the update size for ĉ(n) and P(n) is
the estimate of the coefficient covariance matrix. The initial
value for this matrix is typically selected as P(0) = ρI. The
effect of the value of λ on the results is examined below.

3) Model order selection: In order to select the model
complexity (i.e., the value of Lxi

for each input), we utilized
the Bayesian information criterion (BIC), which determines
the optimal model structure as the one that minimizes:

BIC =

(
2 ∗ log

[∑N
1 (e(n))2

N − d− 1

])
+ (d ∗ log(N)) (13)

where e(n) are the residuals between the output measure-
ments and the model output prediction and d,N were defined
above as the number of model free parameters and number
of observations respectively. Since the recursive estimation
above (eqs. (9)-(12)) requires the use of a fixed structure for
V we followed the following procedure for determining αi

and Lxi
: First, we segmented the entire 40 min data sets

using sliding windows with a length of 300 sec (5 min) with
a 1 min overlap. For each of the sliding windows we used
regular least squares to select the optimal value of αi as
the value that minimized the normalized mean square error
of the model prediction for a range of Lxi

values between 1
and 8. Consequently, for these optimal αi values we selected
the values of Lxi (for i = 1, 2) which minimized the BIC
criterion. For the recursive scheme, we used the median
model order that resulted from this procedure, as the most
representative for the entire data set.

C. Quantification of nonstationarities

The time varying characteristics of our model estimates
were assessed in the frequency domain by using the follow-
ing variability index:

I(xi)(fi) =

[
1

Nest−1

∑Nest
j=1(p

(xi)
j (fi)− p̄(xi)(fi))

2
]

p̄(xi)(fi)
(14)

where p(xi)
j (fi) denotes the FFT magnitude of the first-

order kernel corresponding to input xi for the j-th data
segment at frequency fi, Nest is the total number of estimated
kernels (we discarded the initial segments) and p̄(fi) is the
average of pj(fi) over j at each frequency fi.

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ values

N
M

S
E

 [%
]

 

 

2−input model
1−Input model

Fig. 1. Normalized Mean Square Error (NMSE) for one and two-input
models as a function of λ (mean ± SD over all subjects).

III. RESULTS
The mean values of the MABP, PETCO2

and MCBFV
measurements, averaged over the 40-min recordings for the
thirteen subjects, were equal to 77.62±5.54 mm Hg, 36.9±
3.77 mm Hg and 53.36± 4.63 cm/s respectively. In the fol-
lowing sections, we show results obtained for linear models
(i.e., Q = 1 in eq. ((1)) both for one- and two-input models.

A. Effect of λ

As mentioned above, the forgetting factor λ, which lies in
the range (0, 1], determines the adaptive properties of the
estimator. A value of unity is equivalent to regular least-
squares, and indicates that all previous input values are
equally significant in calculating the error function. As the
value of λ reduces, the effective memory of the estimation
algorithm reduces as well, and the estimates are affected
relatively more by the immediately preceding input values.
Therefore, smaller values of λ are more suitable for systems
that are rapidly varying and/or have small memory, whereas
larger values are suitable for slowly varying systems and
systems with large memory.

We examine next the effect of λ on the variability index
estimates. In Fig. (2) we show the variability index (eq. (14))
as a function of frequency for both the MABP (top panel)
and PETCO2 (bottom panel) linear kernels. Note that in the
case of linear models the first-order kernels are equivalent
to the system impulse response; however, this does not
hold for nonlinear models as the impulse response of the
latter depends on the diagonal terms of the higher order
kernels as well. It can be observed that the model estimates
obtained with smaller λ values exhibit higher index values,
i.e, higher variabililty, for both inputs. Also, the PETCO2

kernels are considerably more time-varying than their MABP
counterparts, while the variability index is clearly frequency
dependent, with the highest values being observed in the
lowest frequencies.

B. Two-input models

In this section we present the results obtained from two-
input models, i.e. when both MABP and PETCO2 were
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Fig. 2. Variability index (eq. (14)) for the linear MABP (top panel) and
PETCO2

(bottom panel) kernels, averaged over all subjects, for two-input
models and for various values of λ. Small values of λ result in estimates
that exhibit strongly time-varying characteristics.

considered as input variables. The top panels of Figs. (3)
and (4) illustrate the adaptive MABP and PETCO2

linear
kernels in the time domain for one representative subject
for λ = 0.993. We present results for this value, as it is
adequate to capture the longer time scales present in dynamic
autoregulation (previous studies have used 5-6 min segments
to assess autoregulation from spontaneous measurements,
e.g. [1], [4]). The MABP and PETCO2

linear kernels as
well as the corresponding frequency responses are updated
at each time point (i.e., every sec). The results in the
frequency domain (bottom panels of Figs. (3) - (4)) illus-
trate the previously established high-pass characteristic for
the MABP system dynamics, which implies more effective
autoregulation of pressure variations below 0.15 Hz, and low-
pass characteristic for the PETCO2

dynamics. The variability
indices for the MABP and PETCO2 kernels, averaged over all
subjects (mean ± standard deviation (SD)), are shown in Fig.
(5), where it can be seen that the PETCO2

estimates are con-
siderably more time-varying than their MABP counterparts.
The MABP kernels are nonstationary mainly in the very low
frequency range (below 0.04 Hz), while their characteristics
for higher frequencies are relatively consistent. Also, note
that the FFT magnitude values of the PETCO2 kernels above

Fig. 3. Adaptive linear MABP kernels (k(x1)
1 in eq. (1)) estimates for one

representative subject in the time (top panel) and frequency (bottom panel)
domains as a function of time.

approximately 0.12 Hz is zero, as the corresponding input
(end-tidal CO2) is measured every breath (i.e. every 3-4 sec);
therefore its power above 0.12 Hz is virtually zero.

C. Comparison between one-input and two-input models

Here we consider the effect of the second input (PETCO2 )
on the time-varying characteristics of the MABP system
dynamics, which reflect dynamic pressure autoregulation.
This is done by considering one-input models, whereby the
only input variable is MABP and the output is MCBFV and
comparing the results to the two-input case considered above.
In this case, the model of eq. (1) reduces to a one-input
Volterra model, whereby the linear and nonlinear effects
of MABP on MCBFV are described by the corresponding
linear and nonlinear Volterra MABP kernels. As PETCO2

has a significant effect on MCBFV in the very-low and low-
frequency ranges (mainly below 0.04 Hz [4]), we hypoth-
esized that omission of PETCO2 would mainly affect the
pressure autoregulation dynamics in these frequencies. The
MABP dynamics obtained from a one-input model in the
linear case are shown in Fig. (6) in the time domain (top
panel) for one representative subject. Compared to the two
input case (Fig. (4)), the obtained estimates exhibit a more
pronounced slow component, consistent with our hypothesis.
We also show the variability indices obtained from one
and two-input models for the same subject in the bottom
panel of Fig. (6), which illustrates that the variability index
values are higher for one-input models. Finally, we show the
variability index values for the MABP kernels averaged over
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Fig. 4. Adaptive linear PETCO2 kernels (k(x2)
1 in eq. (1)) for the subject

of fig. (3) in the time (top panel) and frequency (bottom panel) domains as
a function of time.
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Fig. 5. Variability index for the linear MABP (blue) and PETCO2
(red)

kernels, averaged over all subjects (mean±SD), as a function of frequency
for λ = 0.993.

all subjects, as obtained from one- and two-input models
in Fig. (7). The computed values are lower for two-input
models over the entire frequency range, but the difference is
more pronounced between 0.02 and 0.05 Hz, which is again
consistent with our hypothesis and the results of Fig. (6).

IV. DISCUSSION

We have presented a recursive scheme for estimating non-
linear, multiple-input models, based on Laguerre expansions
of Volterra kernels and applied this to obtaining adaptive
models of cerebral hemodynamics. One of the main issues in
nonlinear systems identification is the number of the required
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Fig. 6. Adaptive linear MABP kernels as a function of time obtained
from one-input models for the subject of figs. (3)-(4) (top panel) and
corresponding variability indices as a function of frequency for one-input
and two-input models (bottom panel). Note that the one-input model results
in higher variability index values overall.

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

f [Hz]

V
ar

ia
bi

lit
y 

In
de

x

Mean Variability Index for λ 0.993 ± std

 

 

2Input

1Input

Fig. 7. Variability index comparison for linear MABP kernels, averaged
over all subjects (mean ± SD) for one-input (red) and two-input(blue)
models. One-input models result in higher variability values in the very
low frequency range, due to the unmodeled effects of PETCO2

.

free parameters. In case of a Q-th order system with memory
M , the number of free parameters in the standard least-
squares formulation of the Volterra model is equal to MQ.
Utilizing function expansions reduces this number to LQ,
with the difference being more pronounced for nonlinear
systems, since typically L << M . The recursive algorithm
requires a fixed model structure; in order to determine

5772



the most representative structure we utilized the BIC for
overlapping 5 min segments using regular least-squares.

Obtaining accurate estimates of nonstationarities in phys-
iological systems is particularly important, as these systems
exhibit a high degree of complexity and are affected by
many physiological factors that exert their effects over time
scales that may be widely different. Therefore, in real-time
applications it is important to track these nonstationarities in
a reliable manner. In this context, selection of the parameter
λ is important as it determines the adaptive properties of
the estimation algorithm. This is shown in our results, as
small λ values (e.g., 0.95) resulted in very variable estimates
and also prediction errors that were very similar between
one and two-input models. This is due to the fact that for
this value of λ the effective memory of the estimation is
small (for example 0.9520 = 0.36), which implies that a
small number of points affect the current estimates. This
memory is rather short in order to account for the effects
of PETCO2, which exhibit slower dynamics; therefore, we
selected a larger value of λ, which is able to account for
these slower dynamics, while allowing for adaptive tracking
of cerebral hemodynamics. As MABP changes are the most
important determinant of MCBFV changes, autoregulation
is usually assessed by considering these effects only. Our
results suggest that PETCO2 affects the time-varying char-
acteristics of MABP-MCBFV dynamics as well, therefore
they should be taken into account as well. Specifically, the
comparison between one- and two-input models reveals that
the omission of PETCO2 results in pressure autoregulation
estimates that exhibit more pronounced time-varying behav-
ior. The examination of these effects in nonlinear models of
cebebral hemodynamics is currently underway and will be
reported in subsequent studies.
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