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Abstract— We consider the problem of optimal reactive
power compensation for the minimization of power distribution
losses in a smart microgrid. We first propose an approximate
model for the power distribution network, which allows us to
cast the problem into the class of convex quadratic, linearly
constrained, optimization problems. We also show how agents
have a partial knowledge of the problem parameters and state
via some local measurements. Then, we design a random-
ized, gossip-like optimization algorithm, providing conditions
for convergence together with an analytical characterization
of the convergence speed. The analysis shows that the best
performance is achieved when we command cooperation among
agents that are neighbors in the smart microgrid topology.

I. INTRODUCTION

Most of the distributed optimization methods have been
intended as a way of dispatching part of a large scale
optimization algorithm to different processing units [1].
When the same methods are applied to networked control
systems, however, different issues arise: the way in which
decision variables are assigned to different agents is not
part of the designer degrees of freedom; agents have a
local and limited knowledge of the problem parameters;
moreover, the information exchange between agents happens
not only via a given communication channel, but also via
local actuation and measurement performed on a common
underlying physical system.

The extent of these issues depends on the particular
application, and in this work we present the specific scenario
of smart electrical power distribution networks.

In the last decade, the introduction of distributed micro-
generation (driven by global environmental issues), together
with the increased demand for electric power and for higher
quality of service, has been driving the integration of a
large amount of information and communication technolo-
gies (ICT) into the power distribution network.

Among the many different aspects of this transition, we
focus on the distributed control of smart microgrids. A
microgrid is a portion of the low-voltage power distribution
network that is managed autonomously from the rest of
the network, to achieve better quality of the service, to
improve efficiency, and to pursue specific economic inter-
ests. Together with the loads connected to the microgrid
(both residential and industrial customers), we also have
microgeneration devices (solar panels, etc.). These devices
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are connected to the microgrid via electronic interfaces
(inverters), whose main task is to enable the injection of the
produced power into the microgrid. However, these devices
can also perform different other tasks, denoted as ancillary
services [2], [3]: reactive power compensation, harmonic
compensation, voltage support.

In this work we consider the problem of optimal reactive
power compensation. Loads belonging to the microgrid may
require a sinusoidal current which is not in phase with
voltage. A convenient description for this, consists in saying
that they demand reactive power together with active power,
associated with out-of-phase and in-phase components of the
current, respectively. Reactive power is not a “real” physical
power, meaning that there is no energy conversion involved
nor fuel costs to produce it. Like active power flows, reactive
power flows contribute to power losses on the lines, cause
voltage drop, and may lead to grid instability. It is therefore
preferable to minimize reactive power flows by producing it
as close as possible to the users that need it [4].

We explore the possibility of using the electronic interface
of the microgeneration units to optimize the flows of reactive
power in the microgrid. Indeed, the inverters of these units
are generally oversized, because most of the distributed
energy sources are intermittent in time, and the electronic
interface is designed according to the peak power production.
When they are not working at the rated power, these inverters
can be commanded to inject a desired amount of reactive
power at no cost [4].

In Section III and IV, we propose a model for the problem
of optimal reactive power flow (ORPF) in a microgrid, show-
ing how it can be casted into the framework of distributed
convex optimization. In Section V we propose a distributed
randomized algorithm for this problem, and we analyze its
performance by providing relevant bounds and a result on the
best achievable behavior. In Section VI, we finally validate
the proposed model and we simulate the behavior of the
proposed optimization method.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, and σ, τ : E → V are two
functions such that edge e ∈ E goes from the source node
σ(e) to the terminal node τ(e) (see Figure 1).

In the rest of the paper we will often introduce complex-
valued functions defined on the nodes and on the edges. By
indexing nodes and edges via the integers 1, . . . , N , and
1, . . . , NE respectively (where N = |V|, NE = |E|), these
functions will also be intended as vectors in CN and CNE .
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Fig. 1. Graph describing the adopted microgrid model.

Let moreover A ∈ {0,±1}NE×N be the incidence matrix
of the graph G, defined via its elements:

[A]ev =




−1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

If the graph G is connected, then 1 (the vector of all 1’s)
is the only vector in kerA.

An undirected graph G is a graph in which e ∈ E ⇒
e′ ∈ E , where σ(e′) = τ(e) and τ(e′) = σ(e). Neglecting
multiple edges and self loops, we can also intend the edges of
an undirected graph as subsets e ⊆ V with cardinality |e| =
2. By extension, we define a hypergraph H as a pair (V, E)
in which edges are subsets of V of arbitrary cardinality.

III. MICROGRID MODEL

For the purpose of this paper, we model a microgrid as
a directed graph G, in which edges represent the power
lines, and nodes represent both loads and generators that are
connected to the microgrid. These include the residential and
industrial consumers, microgenerators, and also the point of
connection of the microgrid to the transmission grid (called
point of common coupling, or PCC).

We limit our study to the steady state behavior of the
system, when all voltages and currents are sinusoidal signals
at the same frequency ω0. Each signal can therefore be
represented via a complex number whose absolute value
corresponds to the signal root-mean-square value, and whose
phase corresponds to the phase of the signal at t = 0.
Therefore the complex number y represents the signal y(t) =
|y|
√

2 sin(ω0t+ ∠y).
In this notation, the steady state of a microgrid is described

by the following system variables:
• u : V → C is the voltage at the nodes;
• i : V → C is the current injected by the nodes;
• ξ : E → C is the current flowing on the edges.
Moreover, let us define the following power flows in the

microgrid:
• s : V → C, where s(v) := u(v)i(v)∗ is the (complex)

power injected by node v into the grid;
• fσ : E → C, where fσ(e) := u(σ(e))ξ(e)∗ is the power

flow entering the edge e;
• fτ : E → C, where fτ (e) := u(τ(e))ξ(e)∗ is the power

flow exiting the edge e.
The following constraints are satisfied by u, i and ξ.

AT ξ + i = 0, 1T i = 0 (1)
Au+ Zξ = 0, (2)

where Z = diag(z(e), e ∈ E), z : E → C being the
impedance of the microgrid power lines.

Each node v of the microgrid is characterized by a law
relating its injected current i(v) with its voltage u(v). We
assume that all the nodes, but the PCC, inject (or are supplied
with, if negative) a constant power into the microgrid:

u(v)i(v)∗ = s̄v, ∀v ∈ V\{v̄}. (3)

This is a good approximation for all the devices that are
connected to the grid via an electronic interface, or inverter.
The vast majority of microgeneration devices fits in this
category, together with most industrial and residential loads.

Instead, we model the node corresponding to the PCC
(indexed as v̄) as a constant voltage generator, i.e.

u(v̄) = u0. (4)

The task of solving the system of nonlinear equations
given by (1), (2), (3), and (4) to obtain the grid voltages and
currents, given the network parameters, the injected power
at every node, and the nominal voltage at the PCC, has been
extensively covered in the literature under the denomination
of power flow analysis (see for example [5, Chapter 3]).

A. Power flow approximated model

The power flows fσ, fτ , and s must satisfy the following
equations, which descend directly from Kirchhoff’s laws (1)
and (2):

s(v) +
∑

τ(e)=v

fτ (e)−
∑

σ(e)=v

fσ(e) = 0, ∀v ∈ V (5)

fσ(e) = u(σ(e))
[u(σ(e))− u(τ(e))]∗

z(e)∗
, ∀e ∈ E (6)

Equation (5) guarantees power conservation at the nodes,
while (6) expresses the power entering an edge as a function
of the voltage drop on the same edge.

If the power losses `(e) := fσ(e) − fτ (e) on any edge
e ∈ E are much smaller than the power delivered by the
same edge, and voltage drops on the edges are much smaller
than the nominal voltage u0, then we can replace (5) and (6)
with the system of linear equations

AT fσ + s = 0 (7)
fσ + Y ∗u0(Au)∗ = 0, (8)

where Y = Z−1, and s ∈ CN is the vector of all
power injections s(v), v ∈ V\{v̄}, completed with s(v̄) =
−∑v∈V\{v̄} s(v).

In other words, the network constraints (7) and (8), to-
gether with the node equations (3) and (4), constitute an
approximated model for the microgrid, linear in the variables
s, f, and u. The following result expresses the approximation
error analytically, showing how this error goes to zero as the
nominal voltage of the grid grows in absolute value. This
is consistent with the common design practice for power
distribution network, where relatively high voltages are used
to deliver power to the loads while having small losses.

We first introduce an assumption of the impedance of
the edges of the microgrid, which simplifies the notation in
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the rest of this modeling section, and becomes a necessary
assumption in the derivation of the proposed algorithm.

Assumption 1: The inductance-resistance ratio is fixed for
all the edges, i.e.

z(e) = ejθd(e), d(e) ∈ R+, ∀e ∈ E .
We therefore have Z = ejθD and Y = e−jθD−1, where
D = diag(d(e), e ∈ E). We also introduce the weighted
Laplacian matrix L = ATD−1A, and the Green matrix X
[6], defined as the unique real, symmetric matrix satisfying
both conditions {

XL = Ω
X1 = 0,

where Ω = I − 11T /N . It is easy to show that X ≥ 0 and
that it has only one eigenvalue in zero. It also holds

Zeff(u, v) = ejθ(eu − ev)TX(eu − ev), (9)

where Zeff : V ×V → C is the effective impedance between
nodes, and where ev is a vector of all zeros except for
ev(v) = 1.

The Green matrix allows us, via some simple algebraic
manipulation of (7) and (8), to approximate node voltages u
as a linear function of the injected power s:

û =
ejθ

u∗0

(
Xs∗ − eTv̄Xs∗1

)
+ u01. (10)

The following holds.1

Proposition 2: There exists î ∈ CN such that the solution
(10) of the linear system (7), (8), satisfies the equations (1),
(2), and (4) of the exact model. Moreover, û and î satisfy
(3) up to an error that goes to zero as |u0| goes to infinity:

lim
|u0|→∞

∣∣∣û(v)̂i(v)∗ − s(v)
∣∣∣ = 0 ∀v ∈ V\{v̄}.

IV. OPTIMAL REACTIVE POWER FLOW PROBLEM

The total active power losses on the edges are given by
∑

e∈E
Re `(e) =

∑

e∈E
|ξ(e)|2 Re z(e) = cos θ(u∗)TLu,

where we used (2) to express ξ as a function of u. By using
the approximate solution û given in (10), we have

∑

e∈E
Re `(e) =

cos θ

|u0|2
(s∗)TXs, (11)

where we exploited the properties of X and the fact that
1T s = 0. Note that (11) is convex in s, as X ≥ 0 and its
zero-eigenvector 1 is orthogonal to the constraint 1T s = 0.

Let us now consider the decomposition of the decision
variable s into the injected active power p = Re(s) and the
injected reactive power q = Im(s). Expression (11) for the
power losses results to be separable in these two decision
variables, as

cos θ

|u0|2
(s∗)TXs =

cos θ

|u0|2
(
pTXp+ qTXq

)
,

1The proofs of this and of the following results can be found in the
extended version [7].

while the constraint 1T s = 0 decouples into 1T p = 0 and
1T q = 0.

We are allowed to command only a subset C ⊂ V of
the electronic interfaces (active agents, or compensators)
connected to the microgrid. Moreover, we assume that for
these agents we are only allowed to command the amount
of reactive power injected into the grid, as the decision on the
amount of active power follows imperative economic criteria
(for example, in the case of renewable energy sources, any
available active power is generally injected into the grid to
replace generation from traditional plants, which are more
expensive and exhibit a worse environmental impact). Via a
proper reordering of the nodes’ indices, we can introduce a
block-form for both q and X , obtaining

q =

[
qC
qC̄

]
, X =

[
XCC XCC̄
XC̄C XC̄C̄

]
,

where the subscript C identifies the variables corresponding
to the compensators, while C̄ identifies the variables corre-
sponding to the nodes in V\C.

The problem of optimal reactive power injection at the
compensators can therefore be expressed as a quadratic,
linearly constrained problem, in the form

min
1T qC=c

J(qC), where J(qC) = qTCMqC +mT qC , (12)

and where M = cos θ
|u0|2XCC > 0, m = 2 cos θ

|u0|2 XCC̄qC̄ , and
c = −1T qC̄ .

The solution of the optimization problem (12) would not
pose any challenge if the nodes knew the problem parameters
M , m, and c. These quantities depend on both the grid
parameters and the power demand of the whole microgrid,
therefore it is impractical that every agent is capable of
retrieving all this information, and we also exclude that a
centralized agent is allowed to collect all the necessary data.

Instead, we want to explore what information on the
optimization problem the agents can infer from local mea-
surements. In particular, we focus on the gradient ∇J(qC) =
2MqC+m. The component of the gradient corresponding to
a node v results to be

[∇J ]v =
2 cos θ

|u0|2
eTvXq.

Via equation (10), as q = Im(ŝ), we obtain

[∇J ]v =
2 cos θ

|u0|2
eTv Im(Xŝ)

=
2 cos θ

|u0|2
eTv Im

(
ejθu0u

∗)+ α

where α = − 2 cos θ
|u0|2 Im

(
ejθu01

Tu∗
)
/N is common to all

the nodes but unknown to any of them.
Therefore the nodes of a microgrid can obtain (element-

wise) an estimate

∇̂J =
2 cos θ

|û0|2
Im
[
ejθû0u

∗] . (13)

of the gradient of the cost function up to a common constant,
provided that they also agree on estimate û0 of the nominal
voltage.
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V. A RANDOMIZED DISTRIBUTED ALGORITHM

Let the compensators be divided into ` possibly overlap-
ping sets C1, . . . , C`, with

⋃`
i=1 Ci = C = {1, . . . , NC}.

This family of subsets can be interpreted as the edges of
a hypergraph H defined over the set of nodes C.

Nodes belonging to the same set are able to communicate
each other, and they are therefore capable of coordinating
their action and sharing measurements. We assume that, by
using this information, nodes belonging to the same set are
capable of driving their state in a new feasible state that
minimizes J(qC), solving the optimization subproblem in
which all the nodes that are not in Ci keep their state constant:

arg min
∆qC∈Si

J(qC + ∆qC), (14)

where Si :=
{
q ∈ RNC :

∑
j∈Ci qj = 0 , qj = 0 ∀j 6∈ Ci

}
.

The optimization subproblem faced by the nodes in Ci can
then be rewritten as

min
qCi

qTCiMCiCiqCi +
(
2qC̄iMC̄iCi +mT

Ci
)
qCi

subject to 1T qCi = c− 1T qC̄i .
(15)

It is easy to see that agents in Ci can reach the optimal
solution by adding to qCi the increment ∆qCi given by

∆qCi = −
M−1
CiCi
2

[∇̂J ]Ci +
1TM−1

CiCi [∇̂J ]Ci
1TM−1

CiCi1

M−1
CiCi
2

1,

where M−1
CiCi is the inverse of submatrix MCiCi . Notice that

the unknown term α1 in the gradient estimate ∇̂J gets
canceled in the expression.

The update law requires only information that can be
gathered inside the subset Ci, namely the matrix M−1

CiCi =(
cos θ
|u0|2XCiCi

)−1

and the voltage measurements uCi . This
is possible because the physics of the system allow us
to estimate the gradient, that otherwise would depend on
the whole system state, from some local measurements.
Moreover, according to (9), the elements of MCiCi depend
only on the effective impedance between nodes in Ci, and
therefore we can assume one of the following:
• nodes in Ci have a knowledge of the local topology and

therefore of the effective mutual impedance;
• nodes estimate the values MCiCi by computing the

gradient for different values of ∆qCi ;
• nodes estimate their mutual effective impedance by

performing some identification on the network during
an initialization stage, as suggested for example in [8].

The proposed optimization algorithm will therefore con-
sists of the following, repeated steps:

1) a set Ci is chosen according to a sequence of symbols
η(t) ∈ {1, . . . , `};

2) agents in Ci sense the network and obtain an estimate
of the gradient;

3) they determine a feasible update step that minimizes
the given cost function;

4) they actuate the system by updating their state (the
injected reactive power).

The iterated algorithm will then results in the following
discrete time system for q

qC(t+ 1) = Tη(t)[qC(t)] := arg min
∆qC∈Sη(t)

J(qC(t) + ∆qC), (16)

with initial conditions qC(0) such that 1T qC(0) = c.
The following notation will be useful in the rest of the

paper. Define the NC ×NC matrices

Ωi = ICi −
1

|Ci|
1Ci1

T
Ci

where |Ci| is the cardinality of the set Ci, ICi is the diagonal
matrix having diagonal entries 1 in positions belonging to
Ci and zero elsewhere and 1Ci is the column vector having
entries 1 in positions belonging to Ci and zero elsewhere.
Notice that Si = Im Ωi.

A. Convergence results

To study the convergence of the proposed algorithm and
its speed, we introduce the auxiliary variable x = qC −
qopt
C , where qopt

C is the solution of the optimization problem
(12). By substitution, it can be shown that the optimization
problem (12) is equivalent to

min
1T x=0

V (x) = xTMx, (17)

and that the subproblems described before are equivalent to
the subproblems

min
∆x∈Im Ωi

V (x+ ∆x) (18)

In this notation, it is possible to explicitly express the
solution of the individual subproblems as a linear function
of the starting point x(t):

x(t+ 1) = Fix(t), Fi = I − (ΩiMΩi)
]M. (19)

The discrete time system (16) in the x coordinates corre-
sponds then to the linear time varying system

x(t+ 1) = Fη(t)x(t). (20)

The following result characterizes the uniqueness of the
equilibrium for all maps Fi (which is a necessary condition
for the convergence of the algorithm) as a connectivity
requirement on the hypergraph H.

Proposition 3: A necessary condition for the convergence
of algorithm (16) to the solution qopt

C of the optimization
problem (12) is that the hypergraph H is connected.

B. Bound on the rate of convergence

For the study of the rate of convergence of the proposed
algorithm, we introduce the following assumption of the
random sequence η(t).

Assumption 4: The sequence η(t) is a sequence of inde-
pendently, uniformly distributed symbols in {1, . . . , `}.

We consider the following performance metric:

R = sup
x(0)∈ker 1T

lim sup v(t)1/t
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where v(t) = E [V (x(t))]. R describes the exponential rate
of convergence to zero of v(t) and so also the exponential
rate of convergence of qC(t) to the optimal solution qopt

C .
Using (16), we have

v(t) = E
[
x(t)TMx(t)

]
= E

[
x(t)TΩMΩx(t)

]

= x(0)TE
[
FTη(0) · · ·FTη(t−1)ΩMΩFη(t−1) · · ·Fη(0)

]
x(0).

Let us then define

∆(t) = E
[
FTη(0) · · ·FTη(t−1)ΩMΩFη(t−1) · · ·Fη(0)

]
.

Via Assumption 4, we can derive the following linear
system:

∆(t+ 1) = L(∆(t)) := E
[
FT∆F

]
, ∆(0) = ΩMΩ

Ξ(t) = Ω∆(t)Ω,
(21)

and express the expected cost function as

E [V (x(t))] = v(t) = x(0)TΞ(t)x(0).

Computing R as the slowest reachable and observable
dynamic of the linear system (21) is in general not simple.
In [9] it has been shown how to compute it numerically and,
for some special graph topologies, also analytically.

In the following, we will derive an upper bound for R that
can be computed from F̄ = E [F ].

Theorem 5: Consider the linear system (21) and its rate
of convergence R. Define

β = max{|λ| | λ ∈ λ(F̄ ), λ 6= 1}
where F̄ = E [F ]. Then R ≤ β.

The tightness of β as a bound for R has been studied in
[9], and in the following we therefore consider β as a reliable
metric for the evaluation of the algorithm performances.

C. Optimal strategy: nearest-neighbor gossip

Consider the case in which all clusters Ci are pair of nodes,
i.e. |Ci| = 2, ∀i. The following result shows what is the best
performance (according to the bound β on the convergence
rate R) that the proposed algorithm can achieve.

Theorem 6: Consider the algorithm (16), and assume that
the hypergraph H describing the clusters Ci is an arbitrary
connected, undirected graph defined over the nodes C. Con-
sider arbitrary triggering probabilities pi for the clusters.
Then the bound β on the convergence rate of the algorithm
satisfies

β ≥ 1− 1

NC − 1
.

We now present a special case in which the optimal
convergence rate of Theorem 6 is indeed achieved via a
specific choice of the clusters Ci.

Consider the special case in which the G is a tree, and
assume that C = V . Notice that the convergence rate of
the algorithm depends only on XCC , and therefore on the
electrical distance between the compensators. The loss of
generality of choosing C = V is then minor: one can always
add passive nodes between compensators, without affecting

|u
(v
)|

node index

6
u
(v
)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

-0.05

0

0.05

210

220

230

Fig. 2. Comparison between the network state (node voltages) computed
via the exact model induced by (1) and (2) (circles), and the approximate
model induced by (7) and (8) (stars), in the proposed testbed.

the convergence rate analysis. The choice C = V , however,
simplifies the definition of neighbors among compensators.

Proposition 7: Consider the nearest-neighbor clustering
choice, corresponding to the set of clusters {Ce, e ∈ E},
where Ce = {σ(e), τ(e)}. Assume that each set is triggered
with the same probability. Then R ≤ β, with

β = 1− 1

NC − 1
.

VI. SIMULATIONS

In this section we present numerical simulations to validate
both the model presented in Section III and IV, and the
randomized algorithm proposed in Section V.

We consider the microgrid sketched in Figure 1. We
assume that the nominal voltage at the PCC v̄ is 230 V, that
the nominal operating frequency is f0 = 50 Hz, and that
the lines’ characteristic resistance and inductance are 0.16
mΩ/m and 1 µH/m, respectively. The length of the lines are
uniformly distributed between 50 m and 200 m, while the
injected powers has been set as s(v) = |s(v)|ejφ(v), with
s(v) uniformly distributed between −10 kW and 0 kW, and
cosφ uniformly distributed between 0.7 and 1.

Given these parameter, we first estimate the quality of the
linear approximated model proposed in Section III. As shows
in Figure 2, the approximation error results to be negligible,
even in the case in which voltage drops get close to the
maximum that is generally allowed in power distribution
networks (with smaller voltage drops, the approximation
becomes even more accurate).

On the same testbed we then have validated the quality of
the estimate (13) for the gradient of the cost function that
we want to minimize. We considered again the microgrid in
Figure 1, assuming that only 3 nodes can be commanded to
inject the desired amount of reactive power: C = {v̄, i, j}.
Because of the constraint 1T q = 0, we are left with only 2
degrees of freedom, so we choose q(i) and q(j) as decision
variables and we let q(v̄) to satisfy the constraint.

In Figure 3 we reported, in thick line, the contour plot
of the power distribution losses in the microgrid, computed
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Fig. 3. Contour plot of the exact distribution losses (thick line) and of the
cost function whose gradient is given by the voltage measures, according
to (13) (thin line).

according to the exact nonlinear model. As a thin line,
we overlaid the contour plot of the (numerically computed)
function whose gradient corresponds to the gradient estimate
Ĵ(qC). The optimum obtained by zeroing the estimated
gradient practically corresponds to the solution of the exact
optimization problem.

We then simulated the behavior of the algorithm proposed
in Section V, and the performance of different clustering
choices. We considered a larger network of 30 nodes, 11
of which are compensators (see Figure 4). We chose line
impedances and loads similarly to before, and we considered
the two following clustering choices:
• nearest neighbor gossip: based on the result stated

in Proposition 7, we enabled pairwise communication
between nodes whose distance in the electric grid is
lower than a given threshold; notice however that the
hypotheses of Proposition 7 are not precisely verified,
as the graph is not a tree;

• star topology: clusters are in the form Ci = {v̄, v} for all
v ∈ C. The reason of this choice is that, as v̄ is the PCC,
the constraint 1T q = 0 is inherently satisfied: whatever
variation in the injected reactive power is applied by
v, it is automatically compensated by a variation in the
demand from the transmission grid via the PCC.

The result of the simulation are in Figure 4, together with
the best achievable performance as given in Theorem 6.

VII. CONCLUSIONS

The proposed model for the problem of optimal reactive
power compensation in smart microgrids exhibits two main
features. First, it can be casted into the framework of
quadratic optimization, for which robust solvers are available
and the performance analysis becomes tractable; second, it
shows how the physics of the system can be exploited to
design a distributed algorithm for the problem.

We proposed a metric for the performance of the algo-
rithm, for which we are able to provide a bound on the best
achievable performances. We are also able to tell which clus-
tering choice is capable of giving the optimal performances.
It is interesting that the optimal strategy requires short-range
communications: this is somehow surprising, considered that

v̄

iteration

E
[ x

T
M

x
]

0 20 40 60 80 100
10−2

10−1

100

101

102

Fig. 4. Simulation of the behavior of the algorithm, when applied to the
network above (where compensators are in white, loads in gray). The hyper-
graph H is represented by a dashed line. The algorithm behavior (averaged
over 1000 realizations) has been plotted for two different clustering choices:
nearest-neighbor gossip (solid line) and star topology (dashed). The dotted
line represent the best possible performance.

consensus algorithms (which share many features with the
proposed algorithm) benefit from long-range communication
that shorten the graph diameter. At the same time, this
result is also motivating from the technological point of view
(consider for example the possibility of communicating over
the power lines).
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