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Abstract— This paper considers the observers design for
continuous-time singular fractional-order systems. The ap-
proach is based on the generalized Sylvester equations solutions.
The conditions for the existence of these observers are given
and sufficient conditions for their stability are derived in terms
of linear matrix inequalities formulation.

Index Terms— Singular fractional-order systems, generalized
Sylvester equations, linear matrix inequality (LMI), reduced
order observer, minimal order observer, full order observer,
stability.

I. INTRODUCTION

State estimation or observer design have been widely used
in control and signal processing in the last few decades. They
are of theoretical interest and also have some applications
particularly in the failure detection and fault diagnosis prob-
lems, and chaotic synchronization and secure communica-
tions [1], [2], [3], [4], [5]. The problem of observer design
for linear and singular systems has been greatly treated for
the standard and singular systems with or without unknown
inputs [6], [7], [2].

Fractional-order systems (i.e. systems containing frac-
tional derivatives and/or integrals) have been studied by many
authors in engineering sciences from an application point of
view (see [8], [9] and references therein). Many systems can
be described with the help of fractional derivatives. These
systems are known to display fractional-order dynamics :
electromagnetic systems [10], [11], dielectric polarization
[12], viscoelastic systems [13], [14] chaotic synchronization
and secure communications.

Singular systems (known as generalized, descriptor of
differential algebraic systems) describe a large class of
systems, which are not only theoretical interest but also have
a great importance in practice [3]. They are encountered in
chemical and mineral industries, for example the dynamic
balances of mass and energy are described by differential
equations while thermodynamic equilibrium relations con-
stitute additional algebraic constraints. The problem of the
state estimation for these practical applications arises in data
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reconciliation for example [4]. Singular systems are also
frequently encountered in electronic and economics [15].

The question of stability is crucial in control theory.
In the field of fractional-order control systems, there are
many challenging and unsolved problems related to stability
theory such as robust stability, bounded input-bounded output
stability, internal stability, etc. Stability results on fractional-
order control systems have been presented in [16], [17], [18].

In our knowledge, the present work is the first one
presenting in an unified framework the observers design for
singular fractional-order systems. The approach is based on
the parameterization of the generalized Sylvester equations
solutions and the design of reduced order, minimal order
and full order observers for singular fractional-order systems
are presented in a compact formulation. The conditions for
the existence of these observers are given, necessary and
sufficient conditions for their stability are derived in terms
of linear matrix inequalities formulation with fractional-order
α belonging to 0<α<2.

This paper is organized as follows.
In section II, we provide some background on the

fractional derivative, the observability and the stability of
fractional-order systems with the fractional-order α belong-
ing to 0 < α < 2.

In section III we present the system description and
formulate the observers design problem.

Section IV presents the main results of the paper.
Necessary and sufficient conditions for the asymptotical
stability of observers with fractional-order α belonging to
0<α61 and 16α<2 are presented.

Notations. MT is the transpose of M , Sym{X} is used
to denote XT + X , Ω+ is any generalized inverse of Ω
satisfying ΩΩ+Ω = Ω and Dα represents initialized αth

order differintegration.

II. PRELIMINARIES DEFINITIONS

A. The fractional derivative

Formulations of noninteger-order derivatives fall into two
main classes: the Riemann-Liouville derivative and the
Grûnward-Letnikov derivative, on one hand, defined as [8],
[19]

Dαf(t) =
1

Γ(n− α)

dn

d tn

Z t

a

f(τ)

(t− τ)α−n+1
d τ, n− 16α<n

(1)
or the Caputo derivative on the other, defined as [19], [20]

Dαf(t) =
1

Γ(n−α)

Z t

a

dn f(τ)

d tn

(t−τ)α−n+1
d τ, n−16α<n (2)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4017



with n ∈ IN and α ∈ IR+, where Γ(�) is the Gamma
function. The physical interpretation of the fractional deriva-
tives and the solution of fractional differential equations are
given in [19], [20]. Here and throughout the paper, only
the Caputo definition is used since this Laplace transform
allows utilization of initial values of classical integer-order
derivatives with clear physical interpretations. In the rest
of the paper, Dα is used to denote the Caputo fractional
derivative of order α.

Consider the following linear fractional-order systems
Dαx(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0)=x0

0 < α < 2 (3)

where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the
control input vector and y(t) ∈ IRp is the measured output.
A, B and C are known constant matrices.

B. Stability of fractional-order systems
The stability domain of fractional-order linear system with

order 16α<2 is a convex set that can be described by LMI
methods, and the stability domain for the case 0<α6 1 is
a nonconvex set that can not described by LMI methods.
However, in the case where 0 < α 6 1, the formulation
introduced in [21] and developed in [22] permits to treat
this particular case using the concept of Generalized LMI
(GLMI) regions. This concept is based on the fact that
the stability domain can be viewed as the union of two half
planes and is initially extended in the case of fractional-order
systems in [23].

Definition 1: It has been shown that system (3) is asymp-
totically stable if the following condition is satisfied [16],
[24] for 0<α61, [25] for 16α<2

|arg(spec(A))| > α
π

2
(4)

where spec(A) represents the eigenvalues of matrix A.
The stability of matrix A is equivalent to the stability of

matrix AT , then the necessary and sufficient LMIs conditions
to satisfy condition (4) when the fractional-order α belonging
to 16α<2 and 0<α61 are given in the following lemmas.

Lemma 1: [25], [23], [26] Let AT ∈ IRn×n the transpose
of matrix A. Then, the fractional-order system Dαx(t) =
Ax(t) is asymptotically stable (i .e. |arg(spec(A))| > απ2
where 16 α < 2, if and only if there exits P0 = PT0 > 0
such that[

(P0A+ATP0) sin θ −(P0A−ATP0) cos θ

(P0A−ATP0) cos θ (P0A+ATP0) sin θ

]
< 0

where θ = π − απ2 . �
Lemma 2: [27], [28] Let AT ∈ IRn×n the transpose of

matrix A. The fractional-order system Dαx(t) = Ax(t) is
asymptotically stable (i .e. |arg(spec(A))| > απ2 ) where 0<
α61, if and only if there exist two real symmetric matrices
Pk1 ∈ IRn×n, k = 1, 2, and two skew-symmetric matrices
Pk2 ∈ IRn×n, k = 1, 2, such that

2∑
i=1

2∑
j=1

Sym{Γij ⊗ (ATPij)} < 0 (5)

[
P11 P12

−P12 P11

]
> 0,

[
P21 P22

−P22 P21

]
> 0, (6)

where

Γ11 =

"
sin(απ

2
) − cos(απ

2
)

cos(απ
2

) sin(απ
2

)

#
,Γ12 =

"
cos(απ

2
) sin(απ

2
)

− sin(απ
2

) cos(απ
2

)

#
,

Γ21 =

"
sin(απ

2
) cos(απ

2
)

− cos(απ
2

) sin(απ
2

)

#
,Γ22 =

"
− cos(απ

2
) sin(απ

2
)

− sin(απ
2

) − cos(απ
2

)

#
.

(7)
�

The two drawings of the figures below illustrate the
stability region of linear fractional-order systems with
fractional order belonging to 0 < α 6 1 and 1 6 α < 2.
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Fig. 1. Stability region of linear fractional-order systems with order 0 <
α 6 1.
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Fig. 2. Stability region of linear fractional-order systems with order 1 6
α < 2.

C. Detectability of fractional-order systems

Lemma 3: [29], [30] System (3) is detectable by an
asymptotic observer if the unobservable modes of matrix A
are asymptotically stable.

Proof: The proof of lemma 3 can be established as
in the usual integer order case, since it involves algebraic
properties of the pair (C,A) only.

Remark 1: [29], [30] In particular if (C,A) is observ-
able, the spectrum of L = A − LC can be assigned
anywhere in the complex region of asymptotic stability
(i .e. |arg(spec(L))| > απ2 ).
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III. SYSTEM DESCRIPTION AND OBSERVER FORM

Consider the following linear descriptor fractional-order
systems

EDαx(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0)=x0

0 < α < 2 (8)

where x(t) ∈ IRn is the descriptor vector, u(t) ∈ IRm is
the control input vector and y(t) ∈ IRp is the measured
output. Matrix E ∈ IRnE×n and when nE = n matrix E
is singular, A ∈ IRnE×n, B ∈ IRnE×m and C ∈ IRp×n. Let
Φ ∈ IRr1×nE be a full row rank matrix such that ΦE = 0,
then, from (8) we have

ΦBu(t) = −ΦAx(t)

Assumption 1: Assume that

rank


E

ΦA

C

 = n

�
As in [2], [3], it is easy to see that assumption 1 is equivalent
to the impulse observability, i.e.

rank


E A

0 E

0 C

 = rank


E

ΦA

C

+ rankE = n+ rankE

Now, consider the following reduced-order observer for
system (8)

Dαη(t) = Nη(t) + Jy(t) +Hu(t)

x̂(t) = Px̂(t)−QΦBu(t) + Fy(t)

η(0)=η0

0 < α < 2 (9)

where η(t) ∈ IRq is the state vector of observer and x̂(t) ∈
IRn is the estimate of x(t). Matrices N , J , H , P , Q, and
F are unknown matrices of appropriate dimensions, which
must be determined such that x̂(t) asymptotically converges
to x(t).

The following proposition gives the conditions for the
existence and stability of observer (9).

Proposition 1: Under assumption 1, system (9) is an
asymptotic observer, i.e. lim

t→∞
x̂(t)− x(t) = 0 where 0 <

α<2, if there exits a matrix T such that

i) Dαε(t) = Nε(t) is asymptotically stable,
ii) NTE − TA+ JC = 0,

iii) H = TB,

iv)
[
P Q F

]
TE

ΦA

C

 = In. �

Proof: Define ε(t) = η−TEx(t), the error between η
and TEx(t), then its fractional-order dynamic is given by

Dαε(t) = Dαη(t)− TEDαx(t) (10)

or equivalently
Dαε(t)=Nε(t) + (NTE+JC−TA)x(t) + (H−TB)u(t).

(11)
On the other hand from the definition of ε(t), we have

x̂(t) = Pε(t) +
[
P Q F

]
TE

ΦA

C

x(t). (12)

If items i) - iii) of the proposition are satisfied then
lim
t→∞

η − TEx(t) = 0.
In addition if item iv) is satisfied, then lim

t→∞
x̂(t)− x(t) =

lim
t→∞

e(t) = lim
t→∞

Pε(t) = 0.
Then, the estimation error is independent of u(t) and x(t),

and we obtain the following observer error system{
Dαε(t) = Nε(t)

e(t) = Pε(t)
0 < α < 2 (13)

Items ii) - iv) correspond to a constrained generalized
Sylvester equation, of proposition 1 of assumption 1, let
Ψ be an arbitrary matrix and define the following matrix
T ′ = T − ΨΦ, then this constrained generalized Sylvester
equation becomes [3]

[
N −Ψ J

P Q F

]
T ′E

ΦA

C

 =

[
T ′A

In

]
(14)

where we have used the fact that ΦE = 0.
Equation (14) have a solution if only if

rank



T ′E

ΦA

C

T ′A

In


= rank


T ′E

ΦA

C

 = n = rank


E

ΦA

C

 .
(15)

The design of observer of dimension q is reduced to finding
the matrices T ′, N , Ψ, J , H , P , Q, and F such that equation
(14) and items i) - iii) of proposition 1 are satisfied.

Remark 2: One can see that the dimension of observer (9)
is of dimension q 6 n. Then, the presented approach unifies
the observers design for the full order q = n, the reduced
order q = n− p and the minimal order observers

IV. MAIN RESULTS

In this section, we give sufficient conditions for the
existence and stability of observer (9).

The method to design observer (9) for system and its
existence and stability conditions are given in [3], [31]. From
proposition 1, the design of observer (9) of dimension q is
reduced to find the matrices T , N , J , H , P , and Q such
that items i) - iv) of proposition 1 are satisfied.

The following lemma shows how we can solve, under
assumption 1, the constrained Sylvester equations (14) and
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obtain the expressions of matrices T ′, N , Ψ, J , H , P , Q,
and F solution to (14).

Lemma 4: [3], [31] Let R ∈ IRq×n be any full row rank

matrix and define the matrix
∑

=


R

ΦA

C

 such that

rank
∑

= n, then under assumption 1, the general solution
to (14) is given by

N = A− Z1B− Y1C (16)

T = T ′ + ΨΦ (17)

P =


R

ΦA

C


+ [

Iq

0

]
(18)

and"
−Ψ J

Q F

#
=

"
T ′A

In

#
Ω+−

"
Y1

Y2

#
(Iq+r1+p−ΩΩ+)

"
K

Ir1+p

#
(19)

where T ′ = Λ1 − Z1∆1, K = Λ2 − Z1∆2, Ω =


E

ΦA

C

,

Λ1 = RΩ+

[
In

0

]
, Λ2 = RΩ+

[
0

In+p

]
,

∆1 = −(In+r1+p − ΩΩ+)

[
In

0

]
,

∆2 =−(In+r1+p−ΩΩ+)

[
0

In+p

]
, A = Λ1A

∑+

[
Iq

0

]
,

B = ∆1A
∑+

[
Iq

0

]
, C = (Iq+p+r1 −

∑∑+)

[
Iq

0

]
,

and with Y1 and Z1 are arbitrary matrices of appropriate
dimensions. �

In these following sections IV-A and IV-B, the conditions
for the existence of the parameter matrices Y1 and Z1 such
that the observer (9) is asymptotically stable is giving i.e.
condition i) of proposition 1 is realized where 16α<2 and
0<α61 respectively.

The problem amounts to study the asymptotical stability
for the fractional-order system Dαε(t) = Nε(t) because
when ε(t) → 0, then the estimation error e(t) → 0 and
it’s guaranteed the stability of observer (9).

A. Stability of fractional-order error system : The 16α<2
case

Under assumption 1, the asymptotical stability for the
fractional-order observer error system Dαε(t) = Nε(t)
where 16α<2 is given in the following theorem.

Theorem 1: Under assumption 1, there exists an asymp-
totically stable observer of the form (9) where 16α<2, i.e.
condition i) of proposition 1 is satisfied, if and only if there
are matrices W ∈ IRn×n and P0 = PT0 > 0 ∈ IRn×n such

that [
Π11 Π12

ΠT
12 Π22

]
< 0 (20)

where
Π11 = Γ22 = (P0A + ATP0 −WX− XTWT ) sin θ
Π12 = (ATP0 − P0A +WX− XTWT ) cos θ

and W1 = WP−1
0 =

[
Z1 Y1

]
, X =

[
B
C

]
with θ =

π − απ2 . �
Proof: From lemma 3 and remark 1, one can see that

the necessary condition that condition i) of proposition 1

is satisfied, by using (16), that the pair

([
B
C

]
,A

)
is

detectable.
Now, suppose that there exist matrices W ∈ IRn×n and

P0 = PT0 > 0 ∈ IRn×n such that (20) holds. It follows from
lemma 1 that |arg(spec(N))| > απ2 is equivalent to[

(P0N +NTP0) sin θ −(P0N −NTP0) cos θ

(P0N −NTP0) cos θ (P0N +NTP0) sin θ

]
=

Sym

{[
P0A sin θ −P0A cos θ

P0A cos θ P0A sin θ

]}

+ Sym

{[
−WX sin θ WX cos θ

−WX cos θ −WX sin θ

]}
< 0 (21)

where W1 = WP−1
0 =

[
Z1 Y1

]
, X =

[
B
C

]
and θ =

π − απ2 .
Inequality (21) is equivalent to (20). This ends the proof

of theorem 1.

B. Stability of fractional-order error system : The 0<α61
case

Under assumption 1, the asymptotical stability for the
fractional-order observer error system Dαε(t) = Nε(t)
where 0< α61 is given in the following theorem.

Theorem 2: Under assumption 1, there exists an asymp-
totically stable observer of the form (9) where 0<α61, i.e.
condition i) of proposition 1 is satisfied, if and only if there
are matrices L ∈ IRn×n and P0 = PT0 > 0 ∈ IRn×n such
that

2∑
i=1

(
Sym{Γi1 ⊗ (ATP0)} − Sym{Γi1 ⊗ (XTL)}

)
< 0

(22)
where Γi1(i = 1, 2) satisfy (7), WT

1 = LP−1
0 =[

Z1 Y1

]T
and X =

[
B
C

]
. �

Proof: From lemma 3 and remark 1, it is easy to see
that the necessary condition that condition i) of proposition

1 is satisfied, by using (16), that the pair

([
B
C

]
,A

)
is

detectable.
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Now, suppose that there exist matrices L ∈ IRn×n and
P0 = PT0 > 0 ∈ IRn×n such that (22) holds. It follows from
lemma 2 that |arg(spec(N))| > απ2 is equivalent to

2∑
i=1

2∑
j=1

Sym{Γij ⊗ (NTPij)} < 0 (23)

where N = A − W1X, W1 =
[
Z1 Y1

]
, X =

[
B
C

]
and Γij(i, j = 1, 2) satisfy (7). By setting P11 = P21 = P0,
P12 = P22 = 0 in (23), one can conclude that if

Sym{Γ11 ⊗ (NTP0)}+ Sym{Γ21 ⊗ (NTP0)} < 0 (24)
the fractional-order system Dαε(t) = Nε(t) where 0< α61
is asymptotically stabilizable.

Substitute N = A −W1X into (24) and set L = WT
1 P0,

we obtain
2∑
i=1

(
Sym{Γi1 ⊗ (ATP0)} − Sym{Γi1 ⊗ (XTL)}

)
< 0

(25)
Inequality (25) is equivalent to (22). This completes the

proof of theorem 2.
The algorithm for the observer design is given as follows

[3], [31]

C. Algorithm

Under assumption 1 the design of the observer (9) can be
obtained as follows

• Step 1 : Find a matrix R such that
∑

=


R

ΦA

C

 is a

full-column rank.
• Step 2 : Compute Λ1, ∆1, Λ2, ∆2, A, B, P and C.
• Step 3 : Solve the LMIs (20) or (22), to deduce the

parameter matrices Z1 and Y1.
• Step 4 : Compute T ′ = Λ1 − Z1∆1, K = Λ2 − Z1∆2,
N and then deduce [−Φ J ] and [Q F ].

• Step 5 : Compute T = T ′+ΨΦ, then deduce H = TB.

D. Minimal order, reduced order and full order observers
design

In this section, the minimal order, the reduced order and
the full order observers are derived with the above results.

1) Minimal order observers
Let rankE = r and Φ ∈ IRr1×n be a full row rank
matrix such that ΦE = 0, with rank Φ = r1 = n−r =
rank ΦA. Then the dimension of the minimal order
observer is q = n− r1 − p, and we have

∑+
=
∑−1

=


R

ΨA

C


−1

.

From the above results we obtain C = 0 and matrix
N becomes

N = A− Z1B

where A = Λ1A
∑+

[
Iq

0

]
, B = ∆1A

∑+

[
Iq

0

]
.

The design of the observer is reduced to the determi-
nation of the parameter matrix Z1 such that condition
i) of proposition 1 is satisfied.
This matrix can be determined by solving the LMIs
(20) or (22) with C = 0, the rest of the design can be
obtained from Algorithm IV-C.

2) Reduced order observers
This case corresponds to the full state estimation using
a filter of order n − p. It can be obtained when Φ =

0, in this case assumption becomes rank

[
E

C

]
=

n. It corresponds to Ω =

[
E

C

]
and

∑
=

[
R

C

]
nonsingular then Ω+ = Ω−1.
The reduced order observer design can be obtained as
in the case of minimal order presented above.

3) Full order observers
This case corresponds to the state estimation of the full
state by using the full order observer. It corresponds
to q = n and matrix R = In then we have, under

assumption 1, rank Ω = n with Ω =


E

ΦA

C

 and

the following results
∑+ =


R

ΦA

C


+

= [In 0],

A = Λ1A, B = ∆1A, C =


0

ΦA

C

 and P = In.

Where

Λ1 = Ω+

[
In

0

]
, ∆1 = −(In+r1+p −ΩΩ+)

[
In

0

]
,

Λ2 = Ω+

[
0

Ir1+p

]
, ∆2 = −(In+r1+p −

ΩΩ+)

[
0

Ir1+p

]
, [Q F ] =

[
R

C

]−1 [
K

Ir1+p

]
and

K = Λ2 − Z1∆2.
As in the above cases, the full order design can be
obtained by following Algorithm IV-C.

V. CONCLUSION

In this paper, we have presented the observer design for
singular fractional-order systems. The obtained results unify
the observers design of full, reduced and minimal orders. The
conditions for the existence of these observers are given,
necessary and sufficient conditions for their stability are
derived in terms of linear matrix inequalities formulation
with fractional-order α belonging to 0<α<2.
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