
 

  

Abstract—A nonlinear networked control system in which 

the system information is transmitted over the network through 

multiple communication channels is considered. Each channel is 

modeled by a time-varying delay element. Stability of the 

control system is studied using the Lyapunov-Krasovskii 

method for continuous-time delayed systems. The sufficient 

condition for stability of the networked control system is 

presented in the form of a compact LMI. The results are 

applied to a robot arm networked control system to show the 

capabilities of the proposed method for nonlinear networked 

control applications. 

I. INTRODUCTION 

S a new way of implementing control engineering 

solutions, the field of networked control has attracted 

a considerable attention from the researchers [1, 2, 3]. 

Implementing control systems over communication networks 

is associated with several problems of different nature 

ranging from the communication system analysis [4, 5] to 

control and communication scheduling co-design [6, 7] and 

control in presence of the network effects such as sampling 

issues [8, 9, 10], delay [11, 12, 19] and packet loss [13, 14].  

Nonlinear networked control is a much more difficult 

problem and the attempts toward improved results are in 

progress. For example, a small gain Theorem is derived in 

[15] for a nonlinear networked control system (NCS) with 

multiple delayed channels. However, the results are not 

directly applicable for numerical analysis. In [16, 10], the 

analysis is based on a hybrid system modeling of the NCS. In 

[16], the NCS with multiple delayed channels is studied. 

Again it is difficult to use the results for the nonlinear case 

and the authors have applied the results to a linear NCS. 

An important category of the works on the NCS problems 

are based on the Lyapunov-Krasovskii method for time delay 

systems [17]. This method is a natural extension of the 

Lyapunov method when time delays are present. In the case 

of linear systems, this method can result in LMI sufficient 

conditions for stability and performance. This method has 

been applied to linear NCS problems in several works 

including [12, 18, 19] where both communication delay and 

packet loss are handled at the same time.  

In this work, a nonlinear NCS with multiple time-varying 

bounded delays is considered and a simple stability analysis 

is presented based on the Lyapunov-Krasovskii method. The 

controller can be designed using the ordinary Lyapunov 
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based methods in continuous-time without considering the 

effects of communication. Then, the tolerance of the NCS to 

the communication delays can be studied using the analysis 

method proposed in this work which is a compact LMI 

condition for stability. The results are applied to a robot arm 

control problem where the sensors and actuators at each joint 

are independently connected to a serial communication 

control bus. In the remaining the problem is stated in Section 

two. The main results are presented in Section three. The 

robot control problem is studied in Section four and 

conclusions are made at the end.  

II. PROBLEM STATEMENT 

A nonlinear closed loop control system with delayed 

communication channels can be illustrated as the block 

diagram in Figure 1. The augmented system in Figure 1 may 

be composed of several subsystems including interacting 

processes and controllers. The signal that passes through the 

communication channel experiences a time delay which 

varies with time in general. It is mentioned that a data packet 

loss in communication networks can be also considered as a 

delay equal to one sampling interval until receiving the next 

data sample (this idea is applied for example in [19]). 

 

 
 

Figure 1. A control system with multiple communication channels on the 

signal paths. 

 

In this work, the system in Figure 1, is modeled by the 

nonlinear state space model with time varying delays (1) in 

which t∈� is the time (� is the set of real numbers), 

x(t)∈�
nx is the state of the augmented system and di(t)∈� is 

the time-varying delay in the ith communication channel for 

1≤i≤q. 
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In the remaining, x(t) and x(t−di(t)) are written as x and 

i
d

x  for brevity (the dependency on the current time t is 
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omitted). The ideal communication is identified as the case 

in which di(t) = 0 for every 1≤ i≤q. In this case, the set of 

system equations in (1) is simplified to ),...,,( xxtfx =& . It is 

assumed that the control system is designed for the ideal 

communication case and there exist a bounded Lyapunov 

function V1(t,x) that satisfies (2).  
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III. MAIN RESULTS 

In this Section stability of the system (1) is studied under 

the following assumptions. 

Assumption A1: For every 1≤ i≤q, there exist a positive 

constants ri such that the delay value di(t) in (1) is bounded 

as di(t) ≤ ri . 

 Assumption A2: There exist positive constants cv, cf and 

i
g
c  such that the relations (3), (4) and (5) are satisfied for 

every 1≤ i≤q . 
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Stability of the system (1) can be analyzed by the means of 

Theorem 1 in the following. 

Theorem 1: If assumptions A1 and A2 hold, then the 

system (1) is asymptotically stable if there exist real numbers 

y1, y2 and positive real numbers zi > 0 for 1≤ i≤q such that 

the matrix Ψ defined in (6) is negative definite. 
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Proof: The following Lyapunov-Krasovskii functional is 

used to prove the Theorem. 
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Time derivative of V is calculated as 

 

+
∂

∂
+

∂

∂
= ),...,,,(

1

11

q
dd
xxxtf

x

V

t

V
V&  

       ∑ ∫∑
=

−
=

−
q

i

t

rt

T

i

i

q

i

T

i
i

dxx
r

zxxz
11

)()(
1

θθθ &&&&  (8) 

 

The following equation can be verified by eliminating the 

opposite terms from the right hand side.  
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The above equation can be written as the following. 
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Using (9), the system equations (1) can be written as 

below. 
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Replacing (9.1) in (8) and adding a vanishing term 

according to (10) multiplied by (y1x + y2 x& ) for arbitrary 

values y1 and y2 we have  
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An upper bound can be obtained for V&  in (11) by using 

(2.2), (3), (4), (5) as below 
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The following inequalities hold because ri, zi and the 

integrands (the squared expressions) are non-negative. 
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Adding (13.1) and (13.2) to (12) and simplifying the result 

we obtain 
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Substituting di(t) by its upper-bound ri for 1≤ i≤q, the 

above inequality can be written as below 
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If the matrix Ψ in (6) is negative definite, then it can be 

concluded that Ψc in (14.2) is also negative definite using the 

Schur complements technique. Hence, according to (14.1) 

there exist a constant ce > 0 such that V& < −ce ||x||2. On the 

other hand (2.1) and (7) imply that V > cu ||x||2. Therefore 

according to Lyapunov-Krasovskii Theorem the system (1) 

is asymptotically stable (proposition 5.2 in [17] with 

ε = min{cu,ce}). � 

IV. CASE STUDY 

In this Section control of a robot arm with two degrees of 

freedom is considered. The control system is implemented 

over a control network as shown in Figure 2. The control bus 

is passed through the robot links and connected to the 

various devices installed on the robot including the sensors 

and actuators for each joint of the robot. The sensor S1 

measures 
11

,qq & and the sensor S2 measures 
22

,qq & . The 

actuators A1 and A2 apply the torque control commands τ1, 

τ2 to the first and second joints respectively. 

 

 
 

Figure 2. A robot arm equipped with a control bus for serial communication 

of the control data. 

 

The equations of the motion of the robot arm can be 

written as in (15) where m1 = 1.5 Kg, m2 = 0.8 Kg, 

a1 = 0.5 m, a2 = 0.4 m and g = 9.8 m/sec2 are the weight of 

link 1, weight of link 2, length of link 1, length of link 2 and 

acceleration of gravity respectively [20]. For simplicity, it is 

assumed that the mass of each link is concentrated at its end. 
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By neglecting the control network delays, the robot 

controller can be designed such that q1 and q2 track the 

desired trajectories 
1
d

q and 
2

d
q  respectively with the error 

dynamics in (16) using the computed torque method [20]. 

The positive constants αi and βi are the design parameters 

that determine the error convergence behavior.  
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substituting them in (15.1) and (15.2). If 
21

,
dd

qq  are 

constant with respect to the time, then the resulting control 

law is expressed as (17). 
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A set of controller coefficients for stable error dynamics 

can be selected as α1 = α2 = 3.8, β1 = β2 = 7.1 by designing 

LQR state feedback 
iiiii
eeu βα −−= &  for 

ii
ue =&&  that 

minimizes ∫
∞

++
0

222
)02.001.0( dtuee

iii
&

. Since the closed 

loop dynamics (16.1) is linear, a quadratic Lyapunov 

function can be found for the closed loop system as below. 
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If the control network delays are taken into account, then 

the delay from sensor i to controller is denoted by )(td
i
s

 and 

the delay from the controller to actuator i is denoted by 

)(td
i
a

 for i∈{1,2}. In this case, the closed loop dynamics is 

determined by the nonlinear set of equations in (19) instead 

of (16.1). The time dependencies of the delays are not shown 

in the following for brevity. 
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Since the controller is static, the delays from sensors to 

controller can be added to the delays from controller to the 

actuators. The total delays in the above equations include 

four time-dependent delay values d1 = 
1
sd +

1
ad , d2 = 

1
sd +

2
ad ,  d3 = 

2
sd +

1
ad , d4 = 

2
sd +

2
ad . Each delay value 

contains two parts where the first part appears in (19.1), 

(19.2) and the second one appears in (19.3), (19.4). The set 

of equations in (19) is simplified to (16.1) when the delays 

2121

,,,
aass

dddd  are zero.  

The timing diagram of the networked control is shown in 

Figure 3. In the k th control cycle, the controller polls the 

sensors S1, S2 at tk,0, tk,1 respectively to collect the feedback 

information, then it starts to compute the control torques at 

tk,2 and sends them to the actuators A1, A2 where they are 

received at tk,3, tk,4 respectively.  

 

 

 
Figure 3. The timing diagram of the kth control cycle. 

 

 

It can be assumed that the length of control cycle is 

limited such that for every k and i we have tk,i−tk−1,i < T. 

According to Figure 3, for the kth control cycle one can write 

1
sd = tk,2 − tk,0 and 

2
sd = tk,2 − tk,1 . For the controller to 

actuator delays, the maximum delay is experienced just 

before receiving the control data by an actuator at which the 

delay becomes 
1
ad = tk,3 − tk−1,2 for A1 and 

2
ad = tk,4 − tk−1,2 

for A2. Therefore we can write 

 

d1 < tk,3 − tk−1,0 < tk+1,0 − tk−1,0 < 2T (20.1) 

d2 < tk,4 − tk−1,0 < tk+1,0 − tk−1,0 < 2T (20.2) 

d3 < tk,3 − tk−1,1 < tk+1,0 − tk−1,0 < 2T (20.3) 

d4 < tk,4 − tk−1,1 < tk+1,0 − tk−1,0 < 2T (20.4) 

 

If more information is available about the time offsets of 

the events within a control cycle, then tighter bounds than 

(20) can be obtained.  

In the case of digital control without delays there exists a 

sufficiently small sampling period that can stabilize the 

control system which is designed in the continuous time 

frameworks [20, 10]. But this result is not applicable to the 

robot control problem in this Section because of the time 

delays. To use Theorem 1 in the previous Section, the closed 

loop dynamics (19) can be transformed into the form of (1) 

with  x defined in (18.3). Based on (16), (18) and (20), the 

coefficients in (6) are calculated as cf = 8.05, cd = σ(Q) = 

0.145, cv = 2 )(Pσ  = 1.16 and ri = 2T for 1≤ i ≤ 4 (σ  and σ  

denote the smallest and the largest singular values of a 

matrix respectively). To determine 
i

gc in (5), it is assumed 

that 10<
i

q&  rad/sec according to the limited producible 

torque and physical limitations. Then 
i

d
xf ∂∂ / (1≤ i ≤ 4) are 

calculated symbolically and their upper bounds are obtained 

as 
1
g
c =249, 

2
gc = 870, 

3
gc = 259, 

4
gc =922. By applying 

Theorem 1, the maximum value of T that guarantees the 
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stability of the robot control system is 0.21 msec. 

The response of the robot control system to 
1
dq = 1.2 rad 

and 
2

dq = −0.8 rad  is plotted in Figure 4. The sampling time 

is tk+1,0−tk,0 = 1 msec and tk,4−tk,3 = tk,3−tk,2 = tk,2−tk,1 = tk,1−tk,0 

= 0.2 msec for every k. It can be seen that despite of 

violating the obtained limit T = 0.21 msec the tracking 

performance is satisfactory which shows that the sufficient 

stability condition in Theorem 1 is conservative. However, 

according to the existing results for analysis of nonlinear 

control systems this conservativeness is almost unavoidable. 

For example, if we assume that tk,4 = tk,3 = tk,2 = tk,1 = tk,0 then 

the results of [10] are applicable to obtain a bound on T 

which is equal to 0.49 msec. This bound is also smaller than 

the sampling time that can deteriorate the performance. 

However, these bounds are still useful as design criteria.  
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Figure 4. Control performance for 1 msec sampling intervals. Top: response 

of q1 (solid) to the command of 1.2 rad (dotted). Bottom:  response of q2 

(solid) to the command of −0.8 rad (dotted). 

V. CONCLUSIONS 

A relatively simple stability analysis Theorem was 

presented for nonlinear systems with multiple time-varying 

delayed channels. The analysis was based on the Lyapunov-

Krasovskii method that has been applied to linear NCS 

problems in previous works. Application to a robotic arm 

control system showed that the results are useful especially 

for studying stability of networked control systems that are 

designed by neglecting the effects of communication.    
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