
Recursive Bayesian Estimation of Stochastic Rate Constants from
Heterogeneous Cell Populations

C. Zechner, S. Pelet, M. Peter, and H. Koeppl

Abstract— Robust estimation of kinetic parameters of intra-
cellular processes requires large amounts of quantitative data.
Due to the high uncertainty of such processes and the fact
that recent single-cell measurement techniques have limited
resolution and dimensionality, estimation should pool record-
ings of multiple cells of an isogenic cell population. However,
experimental results have shown that several factors such as
cell volume or cell-cycle stage can drastically affect signaling as
well as protein expression, leading to inherent heterogeneities in
the cell population measurements. Here we present a recursive
Bayesian estimation procedure for stochastic kinetic model
calibration using heterogeneous cell population data. While
obtaining optimal estimates for the rate constants, this approach
allows to reconstruct missing species as well as to quantitatively
capture extrinsic variability. The proposed algorithm is applied
to a model of the osmo-stress induced MAPK Hog1 activation
in the cytoplasm and its translocation to the nucleus.

I. INTRODUCTION

Although experimental techniques in molecular cell bi-
ology are advancing rapidly, quantitative data is still char-
acterized by large uncertainties and low-dimensionality with
respect to the complexity of the cellular process under study.
On top of acquisition uncertainty one encounters fluctuations
due to the inherent stochasticity of chemical kinetics and
heterogeneity of the cell population from which the data is
extracted. Performing two-color experiments, the latter was
shown to dominate the former with respect the variability
observed in single-cell measurements [1], [2]. Heterogeneity
is present in a population of isogenic cells due to non-
synchronized cell-cycle stage, difference in local growth con-
ditions, difference in expression capacity and so forths. This
cell-to-cell variability is commonly referred to as extrinsic
noise [1]. The naming is unfortunate, as it indicates that
these variation are inherently stochastic. Accordingly, math-
ematical accounts for cell-to-cell variability often choose
to vary the kinetic rate constants by a stochastic process,
such as the Ornstein-Uhlenbeck process [3], [4]. However,
often single physiological states of the cell were shown to
be good predictors of the variation of the above mentioned
features [5] and cell-to-cell variability can to a large extent
considered to be deterministic. For instance, cell volume
increase was shown to align well with expression capacity
with a correlation coefficient of 0.77 [2].

Several authors address the problem of calibrating a
stochastic kinetic model to quantitative experimental data.

C. Zechner and H. Koeppl are with the Automatic Control Lab., Depart-
ment of Information Technology and Electrical Engineering, ETH Zurich,
Switzerland {zechner,koeppl}@control.ee.ethz.ch

S. Pelet and M. Peter are with the Institute for Bio-
chemistry, Department of Biology, ETH Zurich, Switzerland
{serge.pelet,matthias.peter}@bc.biol.ethz.ch

Some neglect any contribution coming of cell-to-cell vari-
ability and thus attribute the variability solely to the stochas-
ticity of chemical events. Approaches involve Markov-chain
Monte-Carlo (MCMC) based Bayesian inference variants
that either work on the jump process directly [6], [7], or
on its diffusion approximation [8]. Moreover, probability
metrics have been put forth as cost functions [9] to deploy
general gradient-type algorithms for parameter estimation.
Approaches that account for the heterogeneity of the data-
generating population are limited. In a recent study, Rand and
co-workers [4] outline an estimation scheme that accounts for
extrinsic variability and also gives estimates for the strength
and half-life of the stochastic process on the kinetic rate
constants. In the context of differential equation models
heterogeneity is considered in [10]. We recently proposed
an novel approach to capture cell-to-cell variability and
showed how to incorporate it into an estimation scheme
[11]. The approach is based on the observation that the
abundance of proteins or their concentrations vary from cell
to cell, while the kinetics of elementary events, such as
association and post-translational modification is determined
by the biophysics of the interacting biomolecules and are
thus invariant over a heterogeneous but isogenic population.
Clearly, this model accounts just for one aspect of cell-to-
cell variability and needs to be complemented with existing
approaches in general.

In this article we alleviate many of the limitations of
the estimation algorithm presented in [11]. In particular, the
previous work assumes observation of all species as well
as observation of the complete sample path – equivalent to
resolving every single reaction. The novel method can cope
with the important realistic scenario of having unobserved
species and noisy subsampled paths as observations. It is
based on a recursive Bayesian estimation scheme and is thus
favorable in terms of complexity with respect to standard
MCMC schemes. The scheme is novel as such, and is also
applicable to the general situation of continous-time Markov
chain (CTMC) inference.

The remaining part of the work is organized as follows. In
Section II we first introduce a CTMC description for stochas-
tic chemical reaction systems. In Section II-A, the basic
notation is extended to statistically model the heterogeneity
over cell population measurements. Section III is divided into
two parts. In Section III-A, we introduce a general state space
model which is compatible with real-world experimental
data. A simple bootstrap filter is proposed, which allows
sequential state and parameter estimation using a Metropolis-
within-Gibbs scheme. Section III-B extends this approach
for cell population data according to the Bayesian models
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from sections II-A and II-B. Simulations are performed
under realistic conditions in Section IV, where the proposed
algorithms are applied to a model of the osmo-stress induced
Hog1 activation in yeast.

II. CONTINUOUS-TIME MARKOV CHAINS

In this work, we describe the temporal evolution of chem-
ical reaction system with n species and v reactions as a
CTMC X with state-space Zn

≥0. The stoichiometry matrix
S ∈ Zn×v is composed of v change vectors

(
ν+
k − ν−k

)
,

k ∈ {1, . . . , v}, where ν−k and ν+
k count the number of

molecules consumed and produced when the k-th reaction
fires, respectively. We know from [12] that the state of the
system can be written as

X(t) = X(0) +

v∑
k=1

ξk

(∫ t

0

ak(X(s), ck) ds

)
(ν+

k − ν−k ),

(1)
where C = {c1, . . . , cv} is the set of stochastic rate con-
stants, ξk, k ∈ {1, . . . , v} are unit Poisson processes and
ak (x, ck) = ckgk(x),x ∈ Zn

≥0, are the reaction propensities
for reaction k with function gk given by the law of mass-
action. Furthermore, we define the total reaction propen-
sity as a (x, C) =

∑v
k=1 ak (x, ck). The key quantity in

estimating C from a particular sample path X[0,tM ]
1 is the

conditional path density (or likelihood function)

p(X[0,tM ]|C) = π0(X(0))

×
M∏
j=1

exp {−a (X(tj−1), C)) (tj − tj−1)}

× arj
(
X(tj−1, crj )

)
,

(2)

where tj , j ∈ {1, . . . ,M} are the times when the system
state jumps (i.e., when a reaction occurs) and π0(X(0)) is
the initial distribution over the system state [13], [11]. It is
well known that given a complete sample path X[0,tM ] and
assuming priors p(ck) = Γ(αk, βk), the posterior distribution
over the k-th rate constants is given by

p
(
ck|X[0,tM ]

)
= Γ

(
rk + αk,

∫ tM

0

gk(X(s))ds+ βk

)
,

(3)
with rk as the number of occurrences of reaction k in the
interval [0, tM ] and Γ(·, ·) as the Gamma distribution [13].

A. Modeling Extrinsic Variablity
To model the heterogeneity over a cell population (i.e.,

ensemble of CTMCs), we use the same approach as in
[11], where extrinsic variability is expressed via certain
conservation laws. First, we introduce the parameterized
system state Z(t,b), as a solution to

Z(t,b) = Z(0,b)+
v∑

k=1

ξk

(∫ t

0

ãk(Z(s,b),b, ck) ds

)
(ν+

k − ν−k ).
(4)

1Quantities with subscript [a, b] denote piecewise constant functions,
evaluated on the interval [a, b].

where b ∈ Zu
≥0 is a vector specifying the total number

of molecules for each set of conserved species. We fur-
thermore assume this quantity to be extrinsic and hence, to
vary from cell to cell. It follows that the new propensities
ãk(Z(t,b),b, ck), which we define as

ãk(x,b, ck) = ak(x, ck)1{Nx=b} (5)
with x ∈ Zn

≥0

will also depend on b. Note that {x ∈ Zn
≥0 : Nx = b}

defines the state-space of the (equivalent) Markov chains
Z(t,b) and X(t) under presence of mass-conservation laws.
For relation

Nx = b (6)

we have defined N ∈ Zu×n
≥0 as the smallest positive integer

base of the u-dimensional left null space Null {S}. Rearrang-
ing equation (6), we obtain

Nx =
(
Ñ N̄

)(x̃
x̄

)
= b. (7)

Now, we can express a set of species x̄ as a function of x̃
and b, i.e.,

x̄ = N̄−1
(
b− Ñx̃

)
≡ F (x̃,b) . (8)

Furthermore, when defining X(t) = ( X̃(t); X̄(t) ) and re-
ordering the dimensions of Z(t,b) accordingly, we can write
Z(t,b) = ( X̃(t);F(X̃(t),b) ). Note that X(t) and Z(t,b)
are still equivalent, but Z(t,b) gives rise to a data model
governed by the conservation constant b, which allows us to
perform inference with respect to this quantity [11].

Rewriting the likelihood from (2) in terms of Z(t,b) is
straight-forward and the full conditional distribution over
a single rate constant again takes the form of a Gamma
distribution.

B. A Hierarchical Bayesian Model

Using the previous considerations, we will now set up
our extrinsic noise model. First of all, let us assume that
we have complete measurement data observed from cells
m ∈ {1, . . . , L}, each of them giving rise to one particular
Markov process Z(t,bm). We denote the set of conserva-
tion constants as B = {b1, . . . ,bL}, where each of the
components bm is independently drawn from one common
distribution, i.e., bm ∼ p(b|α), where α denotes a set of
hyperparameters with hyperpriors p(α). The corresponding
hierarchical Bayesian model can be seen in Figure 1. During
model calibration, we are particularly interested in comput-
ing the posterior distribution

p(C, α|Z(b1)[0,tM ], . . . ,Z(bL)[0,tM ]) =∫
p(C,B, α|Z(b1)[0,tM ], . . . ,Z(bL)[0,tM ])dB,

(9)

which is analytically intractable. Anyway, it was shown in
[11] that MCMC methods can be used to efficiently draw
samples from (9), to calibrate the model, while accounting
for extrinsic noise.
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Fig. 1. Graphical model for a heterogeneous cell population. Shaded circles
denote observed quantities. Furthermore, note that the L different CTMCs
Z(t,bm),m ∈ {1, . . . , L} are simply denoted as Zm,m ∈ {1, . . . , L}.

III. RECURSIVE BAYESIAN ESTIMATION

Unfortunately, assuming complete experimental data is far
from reality. Usually, we can only obtain noisy measurements
of a small fraction of the involved species, captured at
discrete time points. In the following we will describe how
the probabilistic model from Section II can be extended to fit
real-world single-cell as well as cell-population data. Further-
more, we propose a recursive Bayesian estimation procedure,
being capable of solving the corresponding inference tasks.

A. Model Calibration on a Single Cell Level

For the moment let us go back to a single cell system,
with X as the CTMC and C as a set of unknown
parameters. Assuming noisy and incomplete measurements
at consecutive time points tl, ∀l ∈ {1, . . . , N}, such a
system can be written as a general state space model,
governed by

1) a state transition kernel

p(X(tl)|X(tl−1), C) (10)

2) and a measurement likelihood function

p(Y(tl)|X(tl)). (11)

If X describes a well-stirred, chemically reacting system,
the transition kernel (10) is given by the chemical master
equation (CME). The measurement likelihood function (11)
should reflect the uncertainty, introduced by the experimental
data acquisition. For instance, the measurement noise is often
described as an additive and/or multiplicative component
[14]. Here, we assume that the observation Y(tl) ∈ Rd with
d ≤ n of a single cell at time point tl is given as

Y(tl) = WX(tl) + ε, (12)

with W ∈ Rd×n and additive measurement noise ε, that
we assume to be i.i.d. random variables with a certain
distribution p(ε). The matrix W is usually a known quantity,
given by the underlying experimental setup. For instance,
we often cannot directly access certain chemical species,
but only linear combinations of them, which would be

reflected by W. Also note that most measurement techniques
are only capable of retrieving observations proportional to
the quantity of interest. In this case, additional (unknown)
scaling factors enter W, which have to be tuned during
model calibration. However, in this work we assume W to
be entirely known.

In order to calibrate the model to the N discrete-
time observations, we are interested in finding the
posterior distribution p(C|Y(t1), . . . ,Y(tN )). Since
Y(t1), . . . ,Y(tN ) depend on the parameters C over the
latent states X[t1,tN ], this turns out to be a challenging
task. Practically, one has to compute the joint posterior
p(C,X[t1,tN ]|Y(t1), . . . ,Y(tN )) and then marginalize with
respect to X[t1,tN ] to infer C or vice versa. However,
exact analytical analysis is still impossible for all but the
simplest models and hence, several approximate solutions
for directly sampling from p(C,X[t1,tN ]|Y(t1), . . . ,Y(tN ))
have been proposed in literature, e.g., [15] or [6]. As this is
computationally demanding, we prefer using a comparably
fast sequential approach, referred to as recursive Bayesian
estimation. The latter is carried out by iteratively computing
the following two quantities:

1) Prediction for time tl:

p (X(tl)|Y(t1), . . . ,Y(tl−1), C) =∑
X(tl−1)∈Zn

≥0

p (X(tl)|X(tl−1), C)×

p (X(tl−1)|Y(t1), . . . ,Y(tl−1), C)

(13)

2) Correction for time tl:

p (X(tl)|Y(t1), . . . ,Y(tl), C) ∝ p (Y(tl)|X(tl))×
p (X(tl)|Y(t1), . . . ,Y(tl−1), C)

(14)

Note that except for linear and fully Gaussian models, equa-
tions (13) and (14) cannot be evaluated analytically. How-
ever, particle filters can be used to recursively draw samples
from (13) and (14) based on importance sampling techniques.
In this work, we utilize one simple but powerful variant of
the particle filter, known as the bootstrap filter [16]. The only
(remarkable) thing required by the algorithm is sampling
from (10). However, we know that we can draw sample paths
from a CTMC between two arbitrary, consecutive time points
tl−1 and tl using Gillespie’s direct simulation algorithm [17],
i.e., x[tl−1,tl] ∼ p(X[tl−1,tl]|X(tl−1), C). Hence, we obtain a
sample x(tl) ∼ p(X(tl)|X(tl−1), C) by evaluating x[tl−1,tl]

at tl.
According to the concept of importance sampling [16],

(13) can then be approximated by the mixture distribution

p (X(tl)|Y(t1), . . . ,Y(tl−1), C) ≈
P∑
i=1

w(i)p
(
X(tl)|x(i)(tl−1), C

)
,

(15)

where x(i)(tl−1) are samples drawn from the
posterior distribution of the previous time step, i.e.,
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x(i)(tl−1) ∼ p (X(tl−1)|Y(t1), . . . ,Y(tl−2), C), with
corresponding weights

w(i) ∝ p
(
Y(tl−1)|x(i)(tl−1)

)
. (16)

Note that the weights w(i) have to sum up to one and thus,
require to be normalized after computation. While the simple
bootstrap filter already works for estimating the states of
our continuous-time model, simultaneously estimating fixed
model parameters is not covered by the standard algorithm,
but can be easily integrated within the sequential Monte-
Carlo framework. In this work we adopt a technique, which
performs an additional Metropolis-within-Gibbs step with
respect to the parameters after each resampling step as de-
scribed in [18] or [19]. Simply speaking, at time tl we predict
the latent states on the next measurement interval [tl, tl+1]
given the most recent parameter values. Afterwards, at time
tl+1 we resample the parameter vector for each particle i by
incorporating the newly sampled states associated with that
particle and so on. In order to do so, we need to sample from
the full conditional distributions, i.e., p(X(tl)|X(tl−1), C)
and p

(
ck|X[t1,tl]

)
. As already mentioned, we can easily

draw from p(X(tl)|X(tl−1), C) and the same holds for
p
(
ck|X[t1,tl]

)
as it takes the form of a standard Gamma

distribution. It is important to note that the conditional
distribution p

(
ck|X[t1,tl]

)
naturally depends on the entire

sample path X[t1,tl], which means that each particle i is
represented at time tl by a set {C(i),x(i)

[t1,tl]
}. Consequently,

the computational sampling effort increases with time. This,
however, can be avoided if the parameter densities can be
represented by low-dimensional sufficient statistics, which
can be recursively updated as time increases [18]. This is
the case for the conditional density p

(
ck|X[t1,tl]

)
, as it only

depends on the number of reactions of type k happened
within [t1, tl] and on

∫ tl
t1
gk(X(s))ds2. A possible realization

of the sequential state and parameter estimation algorithm is
summarized in Algorithm 1.

Algorithm 1 Bootstrap filter for joint state and parameter
estimation given single cell measurements.

for tl ∈ {t2, . . . , tN} do
Resample P particles according to their weights w(i)

for i ∈ {1, . . . , P} do
{Resample parameters}
for each rate constant c(i)k ∈ Ci do
c
(i)
k ∼ eq. (3)

end for
{Simulate CTMC between tl−1 and tl}
x(i)(tl) ∼ eq. (10)
{Compute importance weights}
w(i) = eq. (16)

end for
Normalize weights such that

∑P
i=1 w

(i) = 1
end for

2Note that as X(t) is piecewise constant, the integral can be evaluated
straight-forward using a finite sum.

B. Model Calibration on a Cell Population Level

In the following we will pick up the concept from Section
III-A and extend it for model calibration tasks based on
measurements captured from heterogeneous cell populations.
In order to do so, we first construct an ensemble state space
model, collecting the individual system descriptions of each
cell. Afterwards, it is straight-forward to design a bootstrap
filter, which acts on this unified model. Similar approaches
can be found in for instance [20].

Assume now that we are able to obtain discrete-time
measurements of L independent cells. As we expect a certain
heterogeneity over the cell population, we parameterize each
cell’s state by a quantity which is assumed to vary from
cell to cell, as it was done in Section II-A. Then, each cell
m ∈ {1, . . . , L} gives rise to one particular system state
Z(t,bm) and output Ym(tl) = WZ(tl,bm) + εm, whereas
we assume that the sampling points tl are equivalent for each
cell and that εm are independent across cells. We denote the
set of all states as

Z(t) ≡ {Z(t,bm) |m ∈ {1, . . . , L}} .

Given C and B, the transition kernel factorizes such that

p (Z(tl)|Z(tl−1), C,B) =
L∏

m=1

p (Z(tl,bm)|Z(tl−1,bm), C,bm) .
(17)

Similarly, the set of observations can be written as

Y(tl) ≡ {WZ(tl,bm) + εm|m ∈ {1, . . . , L}} . (18)

Consequently, the conditional density over Y(tl) splits up
into the product

p (Y(tl)|Z(tl)) =

L∏
m=1

p (Ym(tl)|Z(tl,bm)) . (19)

According to the model from Section II-A, we con-
struct a bootstrap filter to first sample from the posterior
p(C,B, α,Z[t1,tN ]|Y(t1), . . . ,Y(tN )) and then marginalize
with respect to B. Again, this requires sampling from the
full parameter conditional distributions at each timepoint tl,
whereas we demand that we can find sufficient statistics
which can be recursively updated as time increases. In case of
the rate constants ck, we obtain p

(
ck|Z[t1,tl], C\{ck},B

)
=

p
(
ck|Z[t1,tl],B

)
. As the individual system states Z(t,bm)

are conditionally independent from each other, the likelihood
function over all sample paths factorizes and as a conse-
quence, the full conditional density over ck is again a Gamma
distribution

p
(
ck|Z[t1,tl],B

)
=

Γ

(
r?k + αk,

L∑
m=1

∫ tl

0

gk(Z(s,bm))ds+ βk

)
,

(20)

where r?k is the total number of occurrences of reaction k
over all L sample paths. At this point, we just state that the
corresponding sufficient statistics can be recursively updated,
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even if they depend on bm, but a detailed discussion is
skipped due to the space limitations.

In contrast, the conservation constants bm enter the
data likelihood in a complicated manner, such that the
full conditional distributions with respect to bm, i.e.,
p
(
bm|Z[t1,tl], C,B\bm, α

)
= p

(
bm|Z(bm)[t1,tl], C, α

)
, are

not of standard form. At this point, we could use a
Metropolis-Hastings (M-H) update instead [16], to sample
from p

(
bm|Z(bm)[t1,tl], C, α

)
. This, however, requires eval-

uating the data likelihood function which would again lead
to an increasing computational complexity over time. To
our current knowledge, it is not possible in this case to
find sufficient statistics, which can be updated over time,
independently from all other relevant parameters (i.e. only
C, because α only shows up in the prior). We remember
that the null space matrix N was defined to be a minimum
positive integer base and thus, bm can only take integer
values as well. Thus, the simplest solution to that problem is
to recursively update a one-dimensional discrete distribution
with finite support, for each component of bm separately. As
before, we skip a detailed discussion on the construction of
such a distribution.

Finally, we need to find a strategy to sample from
p
(
α|Z[t1,tl], C,B

)
= p (α|B). As we prefer allowing arbi-

trary distributions for p(B|α) and p(α), we make us of a M-
H acceptance criterion, to sample from p (α|B), i.e., accept
a proposed sample αnew with probability

aMH = min

{
1,
p(B|αnew)p(αnew)q(αold|αnew)

p(B|αold)p(αold)q(αnew|αold)

}
, (21)

where q(·|·) denotes an arbitrary proposal distribution. The
final algorithm is outlined in Algorithm 2.

Algorithm 2 Bootstrap filter for joint state and parameter
estimation given cell population measurements.

for tl ∈ {t2, . . . , tN} do
Resample P particles according to their weights w(i)

for each particle i ∈ {1, . . . , P} do
{Resample rate constants}
for each rate constant c(i)k ∈ C(i) do
c
(i)
k ∼ eq. (20)

end for
{Resample hyperparameters using M-H}
α(i),new ∼ q

(
α|α(i),old

)
Accept α(i),new with probability eq. (21)
for each cell m ∈ {1, . . . , L} do
{Resample conservation constants b

(i)
m as dis-

cussed}
{Simulate CTMC between tl−1 and tl}
z(i)

(
tl,b

(i)
m

)
∼ eq. (10)

end for
{Compute importance weights}
w(i) = eq. (19)

end for
Normalize weights such that

∑P
i=1 w

(i) = 1
end for

IV. A CASE STUDY

In this section, the proposed algorithms from Section III
are applied to a reaction system, modeling the Hog1 driven
transcriptional process in yeast cells. The MAPK (Mitogen
Activated Protein Kinase) Hog1 is the most downstream
kinase of a signaling cascade which is activated by osmotic
stress [21]. Upon activation of this pathway, a large fraction
of the activated Hog1 is relocated from the cytoplasm to
the nucleus of the cell to initiate a transcriptional program
resulting in the up-regulation of roughly 300 genes [22].
This was recently shown to happen with different efficiency,
leading to bimodal expression profiles [23]. The kinase
activity of Hog1 in the cytoplasm leads to the production
of glycerol, which allows the cells to equilibrate the interior
and exterior osmotic pressures of the cell. Several levels of
feedback adaptation are present. Experimental evidence from
[24] suggest that activated Hog1 exerts a negative feedback
loop on itself by activating phosphatases (e.g. Ptp3) targeting
activated Hog1. Once adaptation has been achieved, Hog1
activity returns to basal levels and the active MAPK leaves
the nucleus thereby offering only a short temporal window
for the transcription of downstream target genes. Co-authors
are measuring this transient relocation of Hog1 by fluorescent
microscopy.

A. The Model
The model focuses on the activation of a single gene upon

entry of the active MAPK Hog1 in the nucleus. The signaling
part is thus reduced to a minimal model, being consistent
with the high-basal level [24] and feedback adaptation [21].
The reaction network of the model is explained in Fig. 2.

We remark that the proposed model comprises events that
are clearly non-elementary and thus, might in reality be
subject to extrinsic variability. The reader should note that the
proposed framework could as well account for a variability
in kinetic parameters. For the sake of simplicity however, we
decided not to cover such a scenario in this work.

The stochastic kinetic model comprises 14 species and 15
reactions, whereas we skip a detailed description due to the
space limitations. Furthermore, to obtain a fair assessment
of the proposed algorithm, we decided to use synthetic
rather than experimental data. Thus, we apply Gillespie’s
direct simulation algorithm to our model in order to gen-
erate reference time course data for L = 10 cells. In this
work we assume extrinsic variability to affect the chromatin
remodeling process, which is reflected by a variability of
RSC molecules. Assuming enzymatic reactions as indicated
in Fig. 2, the corresponding conservation law for cell m is
given as

bm,RSC =RSC +Hog1P,N : GPD1 : RSC,

where we assume that bm,RSC varies from cell to cell
according to a log-normal distribution, i.e., bm,RSC ∼
LN

(
ln 50, σ2

b

)
3. Here, σb denotes the hyperparemeter of in-

terest which we estimate in order to capture the heterogeneity

3As bm,RSC denotes a discrete number of molecules, it has to be rounded
after drawing it from a continuous distribution. The resulting artifacts are
assumed to be negligibly small.
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Fig. 2. Schematic model of MAPK Hog1 activation, shuttling and Hog1-
induced synthesis of enzyme Gpd1. All reactions are modeled according
to mass-action kinetics. Filled arrowheads denote elementary mass-action
reactions, whereas non-filled arrowheads denote catalytic reactions, modeled
as three mass-action events in case of Ptp3 activation, or as a single event
otherwise. Once cytoplasmic Hog1 (Hog1C ) has been activated due to
osmotic pressure (Hog1P,C ), it translocates to the nucleus (Hog1P,N ) and
binds via transcription factors (such as Hot1) to the gene coding GPD1 of
protein Gpd1. Efficient transcription of the gene product requires interaction
of chromatin remodeling factors such as RSC with the Hog1P,N :
GPD1 complex to open the chromatin structure [23]. Once Hog1P,N

is dephosphorylated via a nuclear phosphatase, it is again exported to the
cytoplasm. In the model, those two steps are fused to a single reaction (i.e.,
a first-order conversion event). Hog1P,C exerts a negative feedback loop
on itself by activating Ptp3 and additionally, equilibrates osmotic pressure
(via production of glycerol).

over the cell population. During generation of the reference
data we set σb = 0.3. For simplicity we assume that all
of the 15 rate constants of the stochastic model are known
except cT the transportation rate of Hog1P,C to the nucleus
(i.e., conversion to Hog1P,N ) and cS , the rate at which new
proteins Gpd1 are synthesized.

As in real-world fluorescent microscopy, we assume that
we can measure only total Hog1 in the cytoplasm and the
nucleus4 as well as Gpd1. The obtained paths are sampled
at time points tl = (l − 1)∆t, ∀l ∈ {1, . . . , N} with
∆t = 1.5 up to a maximum time of t = 40. Additionally,
we assume additive uncorrelated Gaussian observation noise,
i.e., εm ∼ N

(
0, 52I

)
, ∀i and ∀m ∈ {1, . . . , L}. Fig. 3

shows exemplary cytoplasmic and nuclear Hog1 responses
(Figure 3A) as well as the corresponding observations, later
used for model calibration (Figure 3B).

B. Model Calibration
Using the algorithms described in Section III and the

data generated according to the previous section, we can
now perform model calibration to estimate parameters cT
and cS as well as hyperparameter σb. In the following we
provide a detailed description of the underlying algorithm
configuration.

For sampling the rate constants according to (20) we
assume that cT and cS are Gamma distributed a-priori, i.e.,

4This means that we also consider Hog1 molecules that are bound to a
complex.
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Fig. 3. Sample traces generated by the reference model. Figure 3A shows
the temporal evolution of active Hog1 in the cytoplasm as well as in the
nucleus, where it is dephosphorylated to Hog1 and again exported. The
quantities available from fluorescent microscopy are shown in 3B, i.e., total
Hog1 in the cytoplasm and in the nucleus as well as Gpd1. The observations
(shown as circles) were acquired with equidistant time intervals ∆t = 1.5
and corrupted by uncorrelated Gaussian noise with σ = 5. Note that the
x-axes have arbitrary time scale.

p(cT ) = Γ (1, 1) and p(cS) = Γ (4, 1). As described in in
Section III-B, we compute the discrete conditional distribu-
tion over bm,RSC for integer values between 1 and 3000
and using the log-normal prior distribution p(bm,RSC) =
LN

(
ln 50, σ2

b

)
. Furthermore, we sample from p(α|B) =

p(σb|b1, . . . , bL) by using a M-H update with proposal
density q(σnew

b |σold
b ) = N

(
σold
b , 0.12

)
. For σb we do not

incorporate prior knowledge.
For cell population based model calibration, we apply

Algorithm 2 to the generated measurement data using
P = 500 particles, where initial values of the parameters
were drawn according to their prior distributions, if available.
After the burn-in of the bootstrap filter, one can accumulate
the obtained samples over time to improve the subsequent
posterior estimation. Even if the described algorithm returns
estimates of the joint parameter posteriors, for clarity we
rather present the marginal posterior distributions of each
parameter separately as shown in Figure 4.
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Fig. 4. Results for estimating the marginal parameter posterior distributions.
Maximum a-posteriori (MAP) estimates were computed from the particles
as c̄T = 0.5830 c̄S = 2.9396 and σ̄b = 0.2492. Figure 4A and 4B
show the estimated histograms for the rate constants cT and cS . Results
show small deviations to the reference values cT = 0.5 and cS = 3 but
correspond well to the MAP estimates ĉT = 0.5331 and ĉS = 2.9609,
obtained from noise-free complete data. The estimated posterior density over
the hyperparameter σb can be seen in Figure 4C . Even if we have used
only L = 10 cells, the results fit well the true value of σb = 0.3. We have
also computed the empirical standard deviation σ̂b over the (true) values of
bm,RSC ,m ∈ {1, . . . , L}, which was found as σ̂b = 0.2557.

Clearly, it would be of great interest to obtain estimates
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for the species that have not been directly measured. For
demonstration, we estimated the amounts of Hog1P,C and
Hog1C . The corresponding results are shown in Figure 5.
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Fig. 5. Reconstruction of missing species of a single cell. Circles denote
the MAP state at the measurement time points, calculated over the particle
distribution. As expected, estimation accuracy increases with time.

V. CONCLUSIONS

We presented an efficient recursive Bayesian estimation
procedure, which allows model calibration on single cell
- as well as heterogeneous cell population data under re-
alistic conditions. For the latter case, we have used the
hierarchical Bayesian model from [11], which allowed us
to additionally estimate hyperparameters, representing low-
dimensional statistics of the extrinsic variability. As the
formulated prediction-correction procedure is analytically
intractable, we have combined a bootstrap filter with a
Metropolis-within-Gibbs iteration, to jointly carry out the
sequential state and parameter estimation. Our algorithms
were applied to synthetic data, generated from a model of
the osmo-stress regulation in budding yeast (MAPK Hog1).
We have shown that state and parameter estimation works
comparably well, even if we can measure only total nuclear
and cytoplasmic Hog1 and Gpd1 at discrete time points. The
fact that this configuration corresponds to a realistic scenario
suggests that the proposed estimation scheme can deal well
with real-world experimental data.

A. Future Work
The main draw-back of the algorithm is it’s initialization,

especially if little prior knowledge is available. In fact, con-
vergence can be very slow for improper starting values, or the
particle filter might even produce degenerate solutions. Thus,
an efficient algorithm for finding a suitable initialization
would be of great interest. Furthermore, it seems natural
to use smoothing variants of the proposed particle filter
[19], [25] when dealing with off-line data. This would allow
to incorporate knowledge also from future time points to
improve the estimation accuracy.
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