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Abstract— This paper proposes a novel approach that may
help reducing the computational burden when using the Non-
linear Moving-Horizon Observer/ Estimator (MHE) technique.
This technique is often used to reconstruct unmeasured quan-
tities of a dynamic system. The latter may include both the
state and the vector of parameters that are involved in the
system model. The proposed approach is based on the use
of partial explicit inversion maps that express a part of the
problem unknowns as a function of the remaining ones. The
Moving-Horizon Estimators can therefore concentrate on the
latter reduced dimensional unknown vector. The paper shows
how explicit inversion maps can be derived based on a recently
developed graphical-signature-based technique. Two illustrative
examples are proposed to show the efficiency of the proposed
solution.

I. INTRODUCTION

It is needless to say that the problem of reconstructing
unknown quantities from a limited set of measurement
remains a key open problem in nonlinear systems theory.
The reason is that the solution of the above problem underlies
almost all classical dynamic systems paradigms such as
measurement-feedback control, diagnosis, supervision and
fault tolerant control to cite but a limited number of issues.

Algorithms that achieve this task are called observers. As
far as nonlinear systems are concerned, many observation
techniques have been developed during the last four
decades. This includes high-gain observers [5], sliding-
modes observers [12], Moving-Horizon Estimators (MHE)
[8] and naturally, the widely used Extended-Kalman-Filter
(EKF) observer. Excellent reviews of nonlinear observer
design techniques can be found in [11] and [4].

Amongst all possible observer design alternatives, MHE
technique has witnessed an increasing interest these last
years because of its ability to handle constraints and to
fully exploit precise and generally nonlinear models of
the dynamic processes under study. This observer requires
on-line solution of a non convex optimization problem in
which the cost function is the integral output prediction
error while the decision variable is the set of unknown
quantities to be recovered (state and unknown parameter
vectors). The on-line solution of this optimization problem
can be cumbersome to an extent that may questions the
feasibility of the whole approach, at least for a family of
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problems that needs high updating rates.

The aim of the present paper is to address this specific
complexity reduction problem by using partial explicit
map inversion. This is made possible when a part of the
unknown vector can be made explicitly dependent on the
remaining part. It is suggested that such a map inversion can
be performed using graphical signature based classification
tool that have been recently developed in a series of papers
[13], [14], [15]. By doing so, the dimension of the decision
variable to be updated on-line can be strongly reduced and
the real-time implementability of the MHE algorithm is
enhanced.

The paper is organized as follows: First, the key idea
is clearly stated in section II where the central role played
by the inversion map is underlined. Section III recalls
the graphical signature-based classification framework and
states the necessary conditions that are needed for it to be
used in the inversion map derivation. The whole solution is
then illustrated in section IV by two illustrative examples
in order to make concrete the set of concepts invoked
throughout the paper. Finally, section V concludes the paper
and gives a road map for future investigations.

II. THE KEY IDEA

Let us consider a nonlinear system that admits the following
general model:

x(k + i) = X(i, x(k), p,u) (1)

where x ∈ Rn is the state vector, u is the control profile
that is applied during the time interval [kτ, (k + i)τ ] where
τ is some sampling period. The vector p ∈ Rnp gathers the
model unknown parameters. Note that (1) may be obtained
based on physical modeling involving Ordinary Differential
Equations (ODEs), Partial Differential Equations (PDEs) or
a more involved hybrid nonlinear model. It is assumed that
measurements y(k) := h(x(k), p) ∈ Rny are periodically
acquired and stored over some time window of length T =
NO · τ to form the measurement data given by:

Ym(k) :=

 y(k − 1)
...

y(k −NO)

 ∈ RNO·ny (2)

The use of Moving-Horizon Estimator (MHE) for simul-
taneous state and parameter estimation is based on the
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implicit assumption according to which there exists a map
Ψ : RNO×ny → Rn × Rnp such that:

(x(k), p) = Ψ(Ym(k)) (3)

Otherwise, the simultaneous estimation problem would be
theoretically infeasible. However, the existence of such a
map does not mean that it can be explicitly available for
observer design. That is the reason why MHE design relies
on the implicit reconstruction of Ψ through the solution of
the following optimization problem:

(x̂(k −NO), p̂) :=

arg min
(ξ,p)

NO−1∑
i=0

‖y(k −NO + i)− Y (i, ξ, p,u)‖2 (4)

leading to the state estimate given by

x̂(k) = X(NO, x̂(k −NO), p̂,u)

Note that the optimization problem (4) has to be solved at
each sampling period which may represent a challenging
task in some cases. Despite this potential problem, softwares
for MHE design are by now quite frequently proposed [3],
[16], [1] with encouraging successful results. Nevertheless,
it remains a fact that the MHE implementation can be
made easier if the underlying optimization problem can be
simplified by some off-line preliminary investigation. Such
a scheme is proposed in the remainder of the present paper.

A. Partial Map Inversion

In order to simplify the notation, let us use z := (ξ, p) ∈
Rn+np to denote the decision variable in the optimization
problem (4). Using this notation, the straightforward notation
X(i, z,u) and Y (i, z,u) can be used to denote the trajec-
tories of the state and the output starting from the initial
conditions and the parameter vector value both contained in
z, according to the original notation X(i, (ξ, p),u) already
used in (1). Moreover, the optimization problem (4) can be
shortly rewritten as follows:

ẑ := arg min
z
J
(
z |Ym(k),u

)
(5)

Now assume that the following assumption holds:

Assumption 1:
There exists a partition z = Z(z(1), z(2)) with (z(1), z(2)) ∈
Rn1×Rn2 such that for any given pair (z(2),u), there exists
an explicitly invertible map taking the following form:

T(z(2),u) : Rn1 −→ Rn1 (6)

z(1) ; S
({
Y (i,Z(z(1), z(2)),u)

}NO−1

i=0

)
where S is a function that maps the sequence of measure-
ments corresponding to the initial state and the vector of
parameters defined by (z(1), z(2)) and the control profile u
into Rn1 .

⊙
More precisely, given (z(2),u), for each z(1), the image of
T(z(2),u) is constructed according to the following steps:

1) Compute z = Z(z(1), z(2))
2) Compute the output trajectory

{
Y (i, z,u)

}NO−1

i=0
3) Apply the map S

The key point in Assumption 1 lies in the invertibility of the
map T(z(2),u) for any pair (z(2),u) since this clearly leads
to the following result:

Proposition 1:
If Assumption 1 holds, then, the (n + np)-dimensional
optimization problem (5) can be solved by solving the
(n+ np − n1)-dimensional problem given by:

ẑ(2) := arg min
z(2)

Jr
(
z(2) |Ym(k),u

)
(7)

where

Jr
(
z(2) |Ym(k),u

)
:=

J
(
Z
(
T−1

(z(2),u)
(S(Ym(k))), z(2)

)
|Ym(k),u

)
(8)

where T−1
(z(2),u)

is the inverse map that is supposed to be
explicitly available by Assumption 1. Note that the term

T−1
(z(2),u)

(S(Ym(k)))

is nothing but the expected value of z(1) if z(2) takes the
true value that led to the measurement data Ym(k).

Section IV shows two examples with n = 2, np = 1 and
n1 = 2 meaning that an original 3-dimensional optimization
problem can be replaced by a scalar optimization problem,
after an appropriate inversion map is found off-line.

Needless to say that finding an explicitly invertible
map like the one invoked in Assumption 1, is generally an
extremely hard task. The main contribution of the present
paper is to attract the reader attention to an approximate
inversion technique that the authors found efficient on a
variety of examples of which only two are shown here for
the lack of space. The next section reminds the signature
based classification tool that has been recently developed
and successfully applied (see [13], [14], [15]).This tool is in
the heart of the proposed approximate partial inversion map
invoked in the above discussion since it is used to define
the map S invoked in Assumption 1.

III. A GRAPHICAL SIGNATURE-BASED TOOL FOR MAP
INVERSION

A. Definitions

Let (z(2),u) be given; we consider the set Z(1) ⊂ Rn1 of
admissible values of z(1) (say a hypercube of Rn1 ). Note
that the map:

z(1) ;
{
Y (i,Z(z(1), z(2)),u)

}NO−1

i=0
(9)

associates to each value z(1) ∈ Z(1) an output sequence of
length NO. Now let’s take N = NO −M (for some integer
M ) and assume that there is a map P : RN+1 → R2 that
associates to each output sequence Y of length N + 1, a
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specific point P (Y) in R2 (see Fig. 1). Applying this map
to the M output sequences given by:{
Y(i)(z(1)) :=

Y (N + i, . . . )
...

Y (i, . . . )

 ∈ RN+1

}M−1

i=0

(10)

yields a 2D graphical signature (including M points) in the
2D plane. This signature is denoted hereafter as follows:

S(z(1)) :=

{(
χi(z(1))
ηi(z(1))

)
:= P (Y(i)(z(1))) ∈ R2

}M−1

i=0

(11)

The function P that is needed to generate this signature is
detailed in Appendix A.
To summarize, each measurement data contained in the
observation window of length NO can be represented by
a 2D signature containing M points. As a matter of fact,
the integer N = NO −M ≥ 1 is a free parameter that can
be chosen to obtain different signatures (see Appendix A.),
consequently, one may write S(N)(z(1)) to explicitly express
this fact.

Fig. 1. Signatures SN obtained for successive output sequences
Y(i)(z(1)). For each one a point P (Y(i)(z(1))) in the 2D space R2 is
associated.

B. Signature property

A map r that associates to each signature

S(N) :=

{(
χi
ηi

)}M−1

i=0

⊂ R2

a scalar1 is called a signature property.

C. Measurement data coordinate

A pair c = (S(N), r) composed of a signature S(N) and an
associated property is called a measurement data coordinate
(or shortly coordinate when no ambiguity holds).

1This may be maxi(χi), maxi(ηi) − mini(ηi), mean({χi}Ni=1),
std({ηi}M−1

i=0 ), maxi({ χi
(ε+|ηi|)

}), . . . , etc.

D. Definition of the invertible map T(z(2),u)(·)
For a given pair (z(2),u), a typical definition of
T(z(2),u)(z(1)) invoked in Assumption 1 is given by:

T(z(2),u)(z
(1)) :=

 r1(SN1(z(1)))
...

rn1(SNn1 (z(1)))

 (12)

where ci := (S(Ni), ri), i = 1, . . . , n1 are n1 conveniently
chosen coordinates making (12) invertible over the admis-
sible set Z(1). The choice of these coordinates is done
by visual inspection based on the investigation of different
candidate values for N and r. The visual inspection is
highly facilitated by the 2D character of the signatures.
The 2D signature makes visual classification easier before
mathematical expression are derived. The examples proposed
in the next section make easier the understanding of the
proposed framework since concrete situations, signatures,
properties and coordinates can be examined.

IV. ILLUSTRATIVE EXAMPLES

In section II we have clearly explained the inversion
scheme that helps to reduce the complexity of optimization
problem invoked when using the MHE algorithm. In this
section we will focus on the steps followed to find the
invertible map (12); we will demonstrate how to find an
appropriate graphical signature and how to choose a relevant
system of coordinates. This one will help in finding a part
of unknown variables depicted in (5) as off-line step of
resolution.

A. Example 1

Let us first consider the reversible reaction [10]:

2A
β̄−→ B (13)

with stoichiometric matrix υ =
(
−2, 1

)
and reaction rate r̄ =

κ̄C2
A. The state and measurement vectors are respectively

given by x := (CA, CB)T and y = x1 + x2. Assuming
a perfect gas and a perfectly mixed isothermal reactor, the
system equations write:

ẋ = f(x) = υT r̄ =
(
−2β̄x2

1

β̄x2
1

)
(14)

y = x1 + x2 (15)

which, in discrete time form leads to a system similar to (1)
with two states x1, x2 and one parameter β̄ that is assumed
here to be unknown.

The framework proposed in section II is applied to this
example using the following definitions:
• z(1) := (x1, x2)T , n1 = 2, z(2) = β̄

• Z(1) := [0, 3]× [0, 3], NO = 11, τ = 0.01
Let us define the following discrete subset of Z(1) that may
be obtained using uniform grids on the admissible intervals
for x1 and x2, namely:

Z(1)
d :=

{
x11 , . . . , x15

}
×
{
x21 , . . . , x25

}
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Fig. 2. Views of the 25 signatures S(z(1)) for z(1) ∈ Z(1)
d obtained using N = 2 and β̄ = 0.15. Note that each signatures contains M = NO−N = 9

points. subplot (a) regroups all signatures sharing the same value of x1 using the same color while subplot b) regroups them based on the value of x2.
subplot (c) The shape of the cost function Jr(β̄ |Ym(k)) at different instants k.

This is clearly a discrete set containing 25 elements. To these
25 elements of Z(1)

d correspond 25 signatures{
SN (z(1) | β̄ = 0.15)

}
z(1)∈Z(1)

d

that can be defined once a given value N < NO and β̄ are
chosen.
Fig. 2 shows these 25 signatures viewed differently on the
two subplots a) and b). More precisely Fig .2.a) shows these
25 signatures with all those sharing the same value x1 plotted
using the same color. For instance, the five signatures in
black on Fig .2.a) are obtained for the set of values:

E11 :=
{

(x11 = 0, x2j )T
}5

j=1

Similarly, Fig .2b) regroups the signatures based on the
values of x2. For instance, all the signatures plotted in dark
red are those corresponding to the set of elements in Z(1)

d

given by:

E25 :=
{

(x1j
, x25 = 3)T

}5

j=1

Visual inspection of the signatures depicted in Fig. 2 shows
clearly that once the signature S(z(1)) is plotted, it is possible
to identify z(1) = (x1, x2)T using the two following steps:

1) First determine x1 based on the signature property

r1(S | β̄ = 0.15) := min
i∈{1,...,M}

χi

This can be obtained by interpolating the information
on Fig. 2.a), indeed:

∀e ∈ E14 , r1(S) ∼= −3.5
∀e ∈ E13 , r1(S) ∼= −1.5
∀e ∈ E12 , r1(S) ∼= −0.5
∀e ∈ E11 , r1(S) ∼= 0

and so on. For a new value of r1, one can easily
associate the corresponding value of x1.

2) The subplot Fig .2.b) clearly shows that there is a
monotonic map defined by:

x2 = X2(ηmin | x1, β̄ = 0.15)

that gives x2 knowing x1 and the property

ηmin = r2(S) := min
i∈{1,...,M}

ηi

This is because one x1 is given [thanks to r1(S)], one
knows that the tail of the signature lies approximately
on a vertical line with a height that is directly linked
to the value of x2 in a bijective way.

The above discussion completely defines the invertible map
(12) using the signature defined by N = 2 and the two
signature properties r1 and r2.
Once the invertible map is obtained, the scalar dimensional
problem (8) can be defined in the scalar decision variable β̄.
Fig .2.c) shows the shape of the cost function Jr(β̄ |Ym(k))
for different instants k when the value β̄ = 0.15 is used to
produce the measurement vector Ym(k). This clearly shows
that solving this scalar optimization problem is quite easier
than solving the original 3-dimensional problem.
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B. Example 2:

In order to illustrate the above ideas on another concrete
example, let us consider the dynamical model of recombinant
Escherichia Coli strain ([2], [7], [9], [6]). This model is
a mass balance model describing the pure recombinant
microbial batch culture of E. Coli strain X growing on
the limiting substrate glycerol S while yielding a final
intracellular product β-galactosidase protein P :

Ẋ = µ(S)X − kd exp(−kp
P

)X (16)

Ṡ = −ysµ(S)X − kmX (17)

Ṗ = ypµ(S)
I

I + kl
X − kd exp(−kp

P
)P (18)

where µ is the growth rate that is modeled using classical
Monod-type relation:

µ(S) =
µmS

ks + S

in which µm is the maximum specific growth rate for the cell
growth in (h−1). ks is the half saturation constant. kp and
kd are constants involved in the Arrhenius-type death kinetic
that depends on P . km is a maintenance rate that describes
the energy required for normal upkeep and repair. ys, yl
are identified yield coefficients. I stands for the arabinose
inducer that is assumed to be constant (no degradation).
The output measurement is the light produced by the biolu-
minescence that is defined by the following expression:

L = yl.µ(S)
I

I + kl
XP (19)

In a series of recent works ([2], [7], [9]), the parameters of
the above model have been identified and the resulting model
has been experimentally validated using Micro-fermentor
test-bed. The resulting set of values are given on table I.
Here, the framework proposed in section II is applied to this

parameter Values Units
µm 0.49 h−1

ks 0.06 g/l
kp 0.047 g/l
kd 0.005 g/l
km 0.21 h−1

kl 0.03 g/l
ys 0.75 g cell/ g glycerol
yp 0.32 g protein/ β − galactosidase
yl 17.6 U/β − galactosidase

TABLE I
IDENTIFIED PARAMETERS FOR THE DYNAMIC MODEL

system using the following definitions:
• x := (X,S, P ), z(1) := (x1, x3)T , n1 = 2, z(2) = x2

• Z(1) := [0.01, 0.09]× [0.05, 0.15], NO = 11, τ = 0.01
Let us define the following discrete subset of Z(1) that may
be obtained using uniform grids on the admissible intervals
for x1 and x3, namely:

Z(1)
d :=

{
x11 , . . . , x15

}
×
{
x31 , . . . , x35

}

The same road map that has been used in example 1 is
conducted here, namely, the signatures associated to the
25 values of z(1) contained in Z(1)

d are plotted for visual
inspection.

Fig. 3 shows these signatures viewed differently in
the two subplots a) and b). More precisely, Fig .3 a) [resp.
(b)] show these 25 signatures with all those sharing the
same value x1 [resp. x3] plotted using the same color.

Fig. 3. Views of the 25 signatures S(z(1)) for z(1) ∈ Z(1)
d obtained using

N = 4 and x2 = 2.5. Note that each signatures contains M = NO−N =
7 points. subplot (a) regroups all signatures sharing the same value of x1

using the same color while subplot b) regroups them based on the value of
x3.

Visual inspection of the signatures depicted in Fig .3 shows
clearly that once a signature is plotted, it is possible to
identify z(1) = (x1, x3)T using the following steps:

1) First determine x1 based on the signature property

r1(S) := curvilinear coordinate of the
lowest point of the signature
in the curvilinear coordinates of Fig 3.a)

This can be obtained by interpolating the information
on Fig .3a)

2) The subplot Fig .3b) clearly shows that there is a
monotonic map defined by:

x3 = X3(ηmin | x1)

that gives x3 knowing x1 and the property

ηmin = r2(S) := min
i∈{1,...,M}

ηi

This is because once x1 is given [thanks to r1(S)], one
knows that the tail of the signature lies approximately
on a curvilinear line with a curvilinear coordinate
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that is determined by the value of x3 in a bijective way.

The above discussion completely defines the invertible map
(12) using the signature defined by N = 4 and the two
signature properties r1 and r2. Once the invertible map
is obtained, the scalar dimensional problem (8) can be
defined in the scalar decision variable x2 which leads to
a scalar optimization quite easier than solving the original
3-dimensional problem.

V. CONCLUSIONS AND FUTURE WORKS
In this paper, a novel approach has been proposed that
aims at reducing the on-line computational burden associated
to the moving horizon observer. This is done by off-line
derivation of explicit expression of a part of thep unknown
vector as a function of the other part and the vector of past
measurements that are available for MHE computation. The
concepts have been validated through two concrete examples
showing the potential efficiency of the proposed approach,
especially for nonlinear systems where systematic approach
does not apply.
It is worth mentioning that the proposed approach is dedi-
cated to low dimensional but highly nonlinear systems, where
the available computation time is short and the optimization
problem is difficult to solve.
Note however that although the general framework involves
the presence of controlled input in the system model, no such
example have been yet studied. Future work include such
investigation together with an analysis of the robustness of
the proposed approach in the presence of measurement noise
that may alter the quality of the invertible map. Finally, the
use of the proposed scheme as a tool for the analysis of the
feasibility of the inverse problem as well as general nonlinear
observability may also be a promising.

APPENDIX

A. Expression of the map Pq(Y )
Given Y ∈ RN+1, the following map has been suggested in
[13]:

Pq(Y ) = Φ0(Y ) + λ(Y ) ·
[
Φ1(Y )− Φ0(Y )

]
(20)

Φ0(Y ) =
1

2N

N∑
j=1

Ψj(Y ) (21)

Φ1(Y ) =
1

2N

N∑
j=1

Z̄jΨj(Y ) (22)

where

Ψj(Y ) :=
[
(1 + Z̄i)Qi+1 − (Z̄i − 1)Qi

]
Z̄i :=

Yi
ηn ·maxNj=1 |Yi|+ 1

Qi :=
(

cos( 2π(i−1)
N ), sin( 2π(i−1)

N )
)T

λ(Y ) :=
YN+1

ηn ·maxNj=1 |Yi|+ 1
− 1
N

N∑
i=1

Z̄i

The vector of signature parameter q include the integer
N , the normalization coefficient ηn ∈ {0, 1} and the
under-sampling integer that is not mentioned in the equation
for simplicity.
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