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Abstract— Robust sensor Fault Detection and Isolation for
nonlinear system using partial knowledge of the system is
proposed in the paper. First, a suitable Takagi-Sugeno model for
uncertain nonlinear system is determined using sector nonlinear
method. Then the matrix input-output relation is given and the
robust FDI residual is computed by projecting the relation onto
the Kernel of the predetermined matrix.

I. INTRODUCTION

Nowadays, Fault Detection and Isolation (FDI) methods
have a growing interest ([1]-[3] and [25]).

The goal of FDI methods is to detect fault occurrence and
to locate which component is subject to the fault. Model-
based methods generally use mathematical model ([6]) and
measurable input-output signals of the system to generate
fault indicator signals named residuals ([5], [12]). These
residuals indicate no fault situation when they are equal to
zero mean and fault occurrence is detected when this mean
differs significantly from zero. Consequently, an accurate
mathematical model is required.

However, especially for nonlinear systems, its exact mod-
eling is difficult to realize. Therefore, the system’s model
is subject to parameter uncertainties. These uncertainties
disturb the residual and can lead to false alarms or no fault
detection.

To cope with these uncertainties, robust fault detection
methods are proposed ([4] and [25]). The task here is to find
robust residuals against constant model uncertainties.

The goal of this paper is to provide a robust fault detection
methods based on a partial knowledge of the system and
using Takagi Sugeno (TS) approach. Only constant uncer-
tainties are considered here. The TS approach can provide
a mathematical model of different kind of systems using
identification techniques ([16], [20] and [21]) or the non-
linear sector method ([9]-[11]). Sector nonlinear technique
is used in this article to provide a particular form of TS
model which suited for robust fault detection and isolation.
All model uncertainties are set in local models and weighting
functions are kept free from the uncertainties. Finally, robust

This work was supported by GIS-3SGS-COSMOS : Groupement d’Intérêt
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residual is generated by projecting the system output matrix
onto the kernel of a predetermined data matrix.

A simulation of a simplified quarter car model which is
assumed as a mass-spring-damper model system is used to
illustrate the method.
The paper is organized as follows: The TS model and
its construction from the sector nonlinearity approach are
presented in section 2. The proposed method based on data
projection of the output matrix onto the weighted input
matrix is provided in section 3. Section 4 is devoted to the
description of mass-springer-damper model which is subject
to uncertainties. Then, illustration of the proposed method is
provided.

II. TAKAGI SUGENO MODEL

The target of this section is to provide an exact TS
representation of nonlinear uncertain systems. The sector
nonlinear approach is used in the following to reach this
goal. The TS model is designed such as all uncertainties
are in the local state and the activation functions contain no
uncertainty. This representation is used in the next sections
to yield a robust residual for fault detection and isolation.
Given the nonlinear system represented by:

xk+1 = f (xk, uk,∆f )xk + g (xk, uk,∆g)uk
yk = h (xk, uk) + v (xk, uk)uk + ek

(1)

where f, g, h and v are nonlinear matrix functions where
terms are assumed to be bounded and ∆f and ∆g are
uncertainties in functions f and g. The input, output and state
vectors are respectively uk ∈ Rm, yk ∈ R` and xk ∈ Rn.
The vector ek ∈ R` is a colored centered noise. The objective
is to determine a TS uncertain model of the nonlinear system
(1) such as no uncertainty is contained in the weighting
functions.
Let us determine the TS uncertain model. Using a sector
nonlinear approach ([5]), a TS representation of the nonlinear
system is given by N (N = 2p, where p is the number of
nonlinearities in the nonlinear function (1)) rules. Rule Rγ
(1 < γ < N ) is defined as:

Model Rule γ :
If z1 in Oγ1 and . . . and zp in Oγp Then{
xγk+1 = (Aγ + ∆Aγ)xk + (Bγ + ∆Bγ)uk

(2)

where Aγ ∈ Rn×n, Bγ ∈ Rn×m are subsystem matrices
and ∆Aγ ∈ Rn×n, ∆Bγ ∈ Rn×m are constant uncertain
matrices with appropriate dimensions. The variable zj , 1 ≤
j ≤ p denotes chosen scheduled non-constant terms in f, g, h
and v, and Oγj , 1 ≤ γ ≤ N, 1 ≤ j ≤ p are the fuzzy sets.
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We assume that these variables are measurable or can be
computed from the input-output system.
Remark: xγk+1 denotes the value of the state variable obtained
from the γth rule.
For a given premise vector Z = (z1 z2 . . . zp), the resulting
TS model-based dynamic system with constant-parametric
uncertainties inferred from (2) is given by:
xk+1 =

N∑
γ=1

ωγk (Z) ((Aγ + ∆Aγ)xk + (Bγ + ∆Bγ)uk)

yk =
N∑
γ=1

ωγk (Z) (Cγxk +Dγuk) + ek

(3)
where the weighting function that corresponds to the fuzzy
set in the rule γ is given as follows:

ωγk (Z) =
$γ
k (Z)

N∑
i=1

$i
k (Z)

(4)

ωγk (Z) ≥ 0,

N∑
γ=1

ωγk (Z) = 1 (5)

with $γ
k (Z) is the degree of fulfillment of the rule γ and

obtained by the product of the membership grade of the
premise variables to their corresponding modalities Oγj :

$γ
k (Z) =

p∏
j=1

Oγj (6)

III. DATA-PROJECTION METHOD

This section describes the proposed residual generation
method using only input-output data and weighting functions
of the TS model expressed by equation (3). For this purpose,
input-output matrix relation is established on a given time
window of size L. Secondly, a projection matrix is computed
on-line to eliminate both unknown state and the model
parameters ([19]-[21]). Finally, sensitivity against constant
model uncertainties is discussed.

A. Input-Output relation

To establish the input-output relation, the following appli-
cation is defined,

M (ı, nN)×M (n, N)→M
(
ı, N2

)
[V1 . . . VN ]

⊙
[R1 . . . RN ] 7→ [V1R1 V1R2 . . . VNRN ]

(7)
where the matrices Vγ ∈ Rı×n and Rγ ∈ Rn× and
M (a1, a2) represents the set of (a1 rows, a2 columns)
matrices. The scalar N represents the number of local model.
Some properties are defined here to clarify the function’s
application and to simplify further developments. Let R0 =
[R1 R2 . . . RN ]

• R0 � . . .�R0︸ ︷︷ ︸
i

=
i∏
�

q=0

R0 = ℘i (R0) ∀i ∈ Z∗+ \ {1}

• ℘i (R0) = ζ for i ≤ 0.

• ℘1 (R0) = R0 � ζ = R0

where ζ = [Ij . . . Ij ] and Ij is the identity matrix of
size j.

Remark: For the simplicity sake, we will not use the model
uncertainties (∆A,∆B) in the following, but the relations
established properties are trues for uncertainties systems too
by replacing A by A + ∆A and B by B + ∆B further in
proposition 1.

Proposition 1:
The following equations (8) is equivalent to equations (9):

xk+1 =
N∑
γ=1

ωγk (Z) (Aγxk +Bγuk)

yk =
N∑
γ=1

ωγk (Z) (Cγxk +Dγuk) + ek

(8)



xk+1 =
(
℘p+1 (A0)

)
Ψp
kxk−p

+
p∑
r=0

(℘p−r (A0)�B0) Ψp−r
k uk−p+r

yk = (C0 � ℘p (A0)) Ψp
kxk−p

+
p−1∑
r=0

(
C0 � ℘p−r−1 (A0)�B0

)
Ψp−r
k uk−p+r

+D0

(
Ψ0
k

)T
uk + ek

(9)

with Ψα
β =

 α∏
�

q=0

ω0
β−q


T

, A0 = [A1 A2 . . . AN ],

B0 = [B1 B2 . . . BN ], C0 = [C1 C2 . . . CN ],
D0 = [D1 D2 . . . DN ] and ω0

β =
[
ω1
β ω

2
β . . . ω

N
β

]
.

Proof:
(i) Basis step
The proof is given by induction on the power p. The
equivalence is straightforward for p = 0, using equation (9):

xk+1 = ℘1 (A0)︸ ︷︷ ︸
A0

Ψ0
k︸︷︷︸

(ω0
k)

T

xk +
0∑
r=0

(
℘0 (A0)�B0

)︸ ︷︷ ︸
ζ�B0

Ψ0
k︸︷︷︸

(ω0
k)

T

uk

= A0 Ψ0
k︸︷︷︸

(ω0
k)

T

xk +B0 Ψ0
k︸︷︷︸

(ω0
k)

T

uk

(10)
Then, for the output yk we have:

yk =
(
C0 � ℘0 (A0)

)︸ ︷︷ ︸
C0�ζ

Ψ0
k︸︷︷︸

(ω0
k)

T

xk +D0 Ψ0
k︸︷︷︸

(ω0
k)

T

uk + ek

= C0 Ψ0
k︸︷︷︸

(ω0
k)

T

+D0 Ψ0
k︸︷︷︸

(ω0
k)

T

uk + ek
(11)

(ii) Inductive step
Here, we show that if statement (9) holds for p, then it holds
also for p+ 1:
In (8), we have:

xk+1 =

N∑
γ=1

ωγk (Z) (Aγxk +Bγuk) (12)
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If we assume that the equivalence (9) holds at stage p, then
we have:

xk = ℘p (A0) Ψp−1
k−1xk−p+

p−1∑
r=0

(
℘p−1−r (A0)�B0

)
Ψp−1−r
k−1 uk−p+r

(13)

If we substitute the above expression of xk in (12), we have:

xk+1 =
N∑
γ=1

ωγk (Z)Aγ℘
p (A0) Ψp−1

k−1xk−p

+
N∑
γ=1

p−1∑
r=0

Aγ
(
℘p−1−r (A0)�B0

)
Ψp−1−r
k−1 ωγkuk−p+r

+
N∑
γ=1

ωγkBγuk

=
[
A1℘

p (A0)A2℘
p (A0) . . . AN℘

p (A0)
]︸ ︷︷ ︸

A0�℘p(A0)=℘p+1(A0)[
ω1
k(Ψp−1

k−1)T ω2
k(Ψp−1

k−1)T . . . ωNk (Ψp−1
k−1)T

]T︸ ︷︷ ︸
ω0

k
�Ψp−1

k−1
=Ψp

k

xk−p

+
p−1∑
r=0

N∑
γ=1

Aγ℘
p−1−r(A0)�B0Ψp−1−r

k−1 ωγkuk−p+r

+
N∑
γ=1

Bγω
γ
kuk

= ℘p+1 (A0)

(
N∑
γ=1

ωγkΨp−1
k1

)
︸ ︷︷ ︸
ω0

k
�(Ψp−1

k−1)
T

=Ψp
k

xk−p

+
p−1∑
r=0

(℘p−r (A0)�B0)×[(
Ψ

p−1−r
k−1

)T
ω1
k

(
Ψ

p−1−r
k−1

)T
ω2
k

. . .

(
Ψ

p−1−r
k−1

)T
ωN
k

]
×

uk−p+r +B0Ψ0
kuk

= ℘p+1 (A0) Ψp
kxk−p

+
p−1∑
r=0

(℘p−r (A0)�B0)Ψp−r
k uk−p+r

+ B0Ψ0
kuk︸ ︷︷ ︸

(℘0(A0)�B0)Ψ0
k
uk

xk+1 = ℘p+1 (A0) Ψp
kxk−p

+
p∑
r=0

(℘p−r (A0)�B0)Ψp−r
k uk−p+r

(14)

That proves the equivalence holds at stage p+ 1.
One can prove in the same way that the output yk is equal
to:

yk = (C0 � ℘p (A0)) Ψp
kxk−p

+
p−1∑
r=0

(
C0 � ℘p−1−r (A0)�B0

)
Ψp−r
k uk−p+r

+D0Ψ0
kuk + ek

(15)

Proposition 2: For a large p, the contribution of the initial
state can be neglected under stability condition of all local
models . That implies ‖℘p (A0) Ψp

kxk−p‖ ' 0. Therefore,
the output equation (11) will be expressed as:

yk ≈
p−1∑
r=0

(
C0 � ℘p−1−r (A0)�B0

)
Ψp−r
k uk−p+r

+D0Ψ0
kuk + ek

(16)

Proof: In the following, we prove that each terms of
℘p (A0) is negligible.

Let consider, first each term of the result of
‖℘p (A0) ‖ = ‖ Ap1︸︷︷︸

term1

|Ap−1
1 A1

2︸ ︷︷ ︸
term2

|Ap−2
1 A1

2A
1
3| . . . | ApN︸︷︷︸

termNp

‖.

Each term is in form: ‖AS1
1 AS2

2 AS3
3 . . . ASN

N ‖, with
N∑
i=0

Si =

p. Then, by applying the sub-multiplicative norm theorem,
we have:

‖AS1
1 AS2

2 AS3
3 . . . ASN

N ‖ ≤ ‖A
S1
1 ‖‖A

S2
2 ‖‖A

S3
3 ‖ . . . ‖A

SN

N ‖
≤ (maxγ (‖Aγ‖))p

and‖℘p (A0) ‖ ≤ (maxγ (‖Aγ‖))Np 1 ≤ γ ≤ N
(17)

Since each local model is stable, we have ‖ASγ ‖→0 when
S →∞. Then ‖AS1

1 AS2
2 AS3

3 . . . ASN

N ‖ ' 0 if S is great
enough.

Finally, by staking the output Yk =
(yk yk+1 . . . yk+L−1) ∈ R`×L on a horizon L, the
expression equation (16) will be expressed as:

Yk ≈ HΦk + Ek (18)

with Φk = Ωk ◦ Uk is the Hadamard product of the inputs
matrix by the weighting matrix.
where

H =
[
C0 � ℘p−1 (A0)�B0 | . . . | C0 � ℘0 (A0)�B0 |D0

]
(19)

Ωk =


Ψp−1
k . . . Ψ1

k Ψ0
k

Ψp−1
k+1 . . . Ψ1

k+1 Ψ0
k+1

... · · ·
...

...
Ψp−1
k+L−1 . . .Ψ

1
k+L−1 Ψ0

k+L−1

 (20)
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Uk =


uk−p1mNp uk−p+11mNp . . . uk−p+L−11mNp

...
...

...
...

uk−11mN uk1mN · · · uk+L−21mN
uk1m uk+11m · · · uk+L−11m


(21)

with 1r =
(

1 . . . 1
)T ∈ Rr×1.

Ek = [ek ek+1 . . . ek+L−1] (22)

• Choice of p:
The determination of integer p should be done in initial stage,
off-line, using a sufficient excited input (like Pseudo Random
Binary Signal. The minimisation of the criterion J (p) gives
the value of p (see [24]):

J (p) = ‖YkΦ⊥k ‖ (23)

with Φ⊥k is a projection matrix.

B. Robust Residual Generation

The proposed data-based residual is obtained by projecting
the matrix of input-output relation in (18) onto the right
kernel of Φk. The projection matrix Φ⊥k is given as follows:

Φ⊥k = I − ΦTk
(
ΦkΦTk

)−1
Φk (24)

A necessary condition that allows the existing of the projec-
tion matrix Φ⊥k is given by:

L > m

(
p∑
r=1

Nr

)
+ 1 (25)

The residual expression is obtained by right-multiplying
equation (18) by the projection matrix Φ⊥k in equation (24):

ε(k) = YkΦ⊥k S ≈ HΦkΦ⊥k S︸ ︷︷ ︸
=0

+EkΦ⊥k S = EkΦ⊥k S (26)

where S = (0 . . . 0 1) ∈ R`×1 is a vector that selects the
last column of the generated residual. It represents the current
residual at time-instant k.

C. Sensitivity to fault

The sensitivity of the residual is analyzed here.
If the fault fk occurs on a time-window [k, k + L− 1],
then we have:

Yk = HΦk + Fk + Ek (27)

where Fk is defined in the same way as Ek in (22). The
residual becomes:

ε (k) = YkΦ⊥k S
= FkΦ⊥k S + EkΦ⊥k S

(28)

If the row space of the fault matrix Fk is not included
in the right Kernel of Φk, then the term FkΦ⊥k is different
from zero and the residual is sensitive to the fault. Indeed,
its mathematical expectation is:

E [ε (k)] = E
[
FkΦ⊥k + EkΦ⊥k

]
= FkΦ⊥k 6= 0

(29)

But in no fault situation, Fk = 0 and its mathematical
expectation is null.

D. Robustness of residual

We prove here the robustness of the residual to constant
parameters uncertainties. Equation (3) gives the uncertain TS
model of the system. If there are uncertainties (∆Aγ ,∆Bγ),
the equation (18) becomes:

Yk ≈ [H + ∆H] Φk + Ek (30)

and the residual is:

ε (k) = [H + ∆H]︸ ︷︷ ︸
H

ΦkΦ⊥k S + EkΦ⊥S (31)

As a result, the projection residuals ε(k) = Yk
(
Φ⊥k
)

+ Ek
are insensitive to H̄ and consequently to constant model
uncertainties.

IV. EXAMPLE

To illustrate the proposed method, we consider a nonlinear
mass-damper-spring system used in [22]. We consider con-
stant parameters uncertainties to show the robustness of the
proposed technique. The considered nonlinear system is the
mass-damper-spring system as shown in Fig. (1).

A. TS model determination for robust FDI

Two parametric uncertainties are considered as in ([22]
and [23]). The dynamic equation of system with parametric
uncertainties is described as:

Mẍ (t) + g (x (t) , ẋ (t)) + f (x (t)) = φ (ẋ (t))u (t) (32)

where M is the mass and u (t) is the force. The functions
f (x (t)), g (x (t) , ẋ (t)) and φ (ẋ (t)) are a nonlinear or
uncertain terms with respect respectively to the spring, to
the damper and to the input term. Here it is assumed
that x ∈ [−1.5, 1.5] , ẋ ∈ [−1.5, 1.5] , g (ẋ, x) =
D (c1x+ c2ẋ) , f (x) = (c3 + ∆1 (t))x and φ (ẋ) =
c4 + ∆2 (t) + c5ẋ

3.
The above parameters are set as follows:
M = 1, D = 1, c1 = 0, c2 = 1, c3 = 1.13, c4 =
1, c5 = 0.13 and the terms of parametric uncertainties are

112



Fig. 1. Mass-Damper-Spring System.

∆1 (t) ∈ [−1.07, 0.9] and ∆2 (t) ∈ [−0.54, 2]. Then, the
uncertain nonlinear system in (32) can be rewritten as:

(
ẋ1

ẋ2

)
=

((
0 1
−1.13 −1

)
+

(
0 0
−∆1 (t) 0

))(
x1

x2

)
+

((
0

1 + 0.13x3
2

)
+

(
0

∆2 (t)

))
u (t)

y (t) = x1

(33)

where the vector of state represents the position and the
velocity respectively to x1 and x2. Therefore, based on
the sector nonlinearity approach described in section I, the
following two-rules TS fuzzy model with two parametric
uncertainties can approximate the uncertain nonlinear system
in Fig. (1) as follows:

ẋ (t) =
2∑

γ=1
ωγ (z (t)) [(Aγ + ∆1 (t))x (t)

+ (Bγ + ∆2 (t))u (t)]

(34)

where z (t) = (x2)
3 ∈ [−3.375, 3.375] is the nonlinear

term and matrices are: A1 = A2 =

(
0 1

−1.13−1

)
;B1 =(

0
1.43875

)
;B2 =

(
0

−0.56125

)
;C = (1 0).

Finally, the discrete TS model is given by the following
expression:

Rule1 : If z (k) is O1
1 Then

xk+1 = (A1 + ∆1)Te xk + xk + (B1 + ∆2)Te uk
Rule2 : If z (k) is O2

1 Then
xk+1 = (A2 + ∆1)Te xk + xk + (B2 + ∆2)Te uk

(35)

For the discrete TS model , we used Euler method as follows:
dx(t)

dt
=
x(k + 1)− x(k)

Te
(36)

where Te = 0.1s is the sampling time used for the discretiza-
tion procedure. The nonlinear term z(k) has been divided in
two regions according to the membership depicted in Fig.
(2). The weighting functions are given by:

−4 −3 −2 −1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

O
1

1

O
2

1

Fig. 2. Membership function in TS model (28).

ω1
k = ω1 (z (k)) = 3.375−z(k)

6.75

ω2
k = 1− ω1 (z (k)) = −3.375+z(k)

6.75

(37)

The parameters uncertainties are as follows:

∆1 =

(
0 0
−0.5 0

)
; ∆2 =

(
0
1

)
B. Fault detection and isolation

We have simulate the nonlinear system for 240e seconds
with zero initial state and white Gaussian unity-variance
measurement noise and the sensor fault occurs at the interval
time [2000Te, 2400Te]. The system output yk = x1

k is shown
in Fig. (3).
Robust residual is computed with p = 8 and L = 1000Te.

Fig. (4) shows the effective detection of the fault with the
computed residual. The sensor fault is detected in time-
instant Tf = 2000Te.

V. CONCLUSIONS

In this paper, a design framework for robust fault detection
and isolation is developed for a class of discrete-time nonlin-
ear systems described by a TS fuzzy model. The framework
includes only input-output data and weighting functions.
Residuals generated by data-based projection method are
insensitive to the constant model uncertainties. Simulation re-
sults of a discrete-time nonlinear system mass-damper-spring
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Fig. 3. System’s output.
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Fig. 4. Residual.

model are used to show the effectiveness of the obtained
results. The example shows the robustness of the method to
constant uncertainties. Future work will extend the proposed
method to nonlinear systems subject to variable parameters
uncertainties and to TS fuzzy models with unmeasurable
premise variables.
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