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Abstract— We study the observability problem of a general
class of singular linear systems with unknown inputs. It is
shown that, under some assumptions, the problem is equivalent
to study the observability of a standard linear system with
unknown inputs satisfying algebraic constraints. We obtain
necessary and sufficient conditions for observability in terms
of the zeros of the system matrix.

Index Terms— Singular systems, strong observability, alge-
braic observability.

I. INTRODUCTION

The problem of designing an observer for a multivariable

linear system partially driven by unknown inputs has been

widely studied [1], [2], [3]. Such observers can be of

important use for systems subject to disturbances or with

inaccessible inputs, or when dealing with the fault diagnosis

problem.

Observability and the problem of observer design have

been quite widely studied for singular systems with perfectly

known model ([4], [5],[6], [7], [8], [9]). However there exist

few results dealing with the problem of observer design for

singular systems with unknown inputs [10], [11], [12]. Most

investigation have been devoted to designing Luenberger

observers. Such observers can be designed under necessary

and sufficient conditions.

In this note, the observability problem of a general class

of singular linear systems with unknown inputs is studied.

It is shown that, under some assumptions, the problem is

equivalent to study the observability of a standard linear sys-

tem with unknown inputs satisfying algebraic constraints. We

obtain necessary and sufficient conditions for observability

in terms of the zeros of the system matrix. The observer

design is based on exact differentiators to generate additional

independent output signals from the available measurements.

Notation. The following notation will be used throughout

the paper. For a matrix X , we denote by X⊥ a full row

rank matrix such that X⊥X = 0, and by X⊥⊥ a full row

rank matrix such that rankX⊥⊥X = rankX . The Moore-

Penrose pseudoinverse matrix of X is denoted by X+. By

‖·‖, we mean the Euclidean norm. C
− denotes de set of

complex numbers with strictly negative real part. Ir is the

identity matrix of dimension r by r. 0r×s is the zero matrix

of dimension r. And as usual x (0+) = limt→0+ x (t).
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II. OBSERVATION PROBLEM FORMULATION

xµ1
(ξ, t)

Let us consider the class of linear singular systems gov-

erned by the following equations

Σ :

{

Eẋ (t) = Ax (t) +Dµ (t)
y (t) = Cx + Fµ (t)

(1)

where x ∈ Rn is the state vector, y ∈ Rp is the system

output, and µ ∈ Rm is the unknown input vector. Matrices

E,A ∈ Rn×n, D ∈ Rn×m, C ∈ Rp×n, and F ∈ Rp×m

are all constant. The matrix E is assumed to be singular.

Given a state x0 ∈ Rn and a function µ, we denote by

xµ (x0, t) the state of Σ at time t which results from taking

the initial condition equal to x0 and the input vector is equal

to µ. Therefrom, in a straightforward manner we define the

output yµ (x0, t) = Cxµ (x0, t) + Fµ (t).

We are interested in the reconstruction of the state vector

x (t) given the output information y (τ )τ∈[0,t). In general,

system Σ must not have a regular pencil [13], i.e. it is

allowed that det(λE − A) = 0 for all λ ∈ C. Nevertheless,

it is necessary to assume that for all µ, there exists x (t)
as a solution of Σ which is piecewise continuous for all

t > 0; however, an impulse may occur at t = 0. In order to

give algebraic conditions allowing the reconstruction of x (t),
we consider the following definitions, which are based on

classical definitions regarding the strong observability (SO)

and strong detectability (SD) properties (see, e.g. [14]).

Definition 1 (Strong observability): The system Σ is

strongly observable if for all x0 ∈ Rn and for every input

function µ, the following implication is satisfied

yµ (x0, t) = 0 ∀t > 0 implies x
(

0+
)

= 0. (2)

Definition 2 (Strong detectability): The system Σ is

strongly detectable if for all x0 ∈ Rn and for every input

function µ, the following implication holds

yµ (x0, t) = 0 ∀t > 0 implies lim
t→∞

xµ (x0, t) = 0. (3)

In the next section, we show that checking the SO (resp.

SD) of system Σ amounts to verifying two conditions: the SO

(resp. SD) of a regular linear systems with unknown inputs

and a rank condition.

III. OBSERVABILITY ANALYSIS

Since E is singular, there exist non-singular matrices T ∈
Rn×n and S ∈ Rn×n such that E can be transformed as
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follows1,

TES =

[

Iρ
E

0
0 0

]

, ρE := rankE (4)

Thus, let us define the vector z :=

[

z1
z2

]

= S−1x, where

z1 ∈ Rρ
E and z2 ∈ Rn−ρ

E . In these new coordinates, Σ can

be rewritten as follows

Ψ :

{

d

dt
TESz (t) = TASz (t) + TDµ (t)

y (t) = CSz (t) + Fµ (t)
(5)

It is clear that Σ is SO (resp. SD) if, and only if, Ψ is SO

(resp. SD). Thus, due to (4), Ψ takes the following form

ż1 (t) = T1AS1z1 (t) + T1AS2z2 (t) + T1Dµ (t)(6a)

0 = T2AS1z1 (t) + T2AS2z2 (t) + T2Dµ (t)(6b)

y = CS1z1 (t) + CS2z2 (t) + Fµ (t) (6c)

We might consider system Ψ as a regular system with

unknown inputs (including vector z2) and algebraic con-

straints. As we will see below a simple manner to study the

observability of Σ is considering (6b) as part of the system

output of a new pseudo system and considering z2 as part

of the unknown input vector. Indeed, consider the following

system

Φ :

{

ż1 (t) = Āz1 (t) + D̄v (t)
ȳ (t) = C̄z1 (t) + F̄ v (t)

(7)

where v (t) ∈ Rn−ρ
E
+m, ȳ (t) ∈ Rn−ρ

E
+p and the matrices

Ā, D̄, C̄, and F̄ are defined as follows

Ā = T1AS1, D̄ =
[

T1AS2 T1D
]

C̄ =

[

T2AS1

CS1

]

, F̄ =

[

T2AS2 T2D

CS2 F

]

It is clear by (6) that Φ looks like system Ψ. In general, they

do not represent identical systems. However, both systems

are identical if these both identities hold: ȳ =

[

0
y

]

and

v (t) =

[

z2 (t)
µ (t)

]

. We will show in the next theorem, the

fulfillment of the SO (resp. SD) of Σ is equivalent to the

fulfillment of the SO (resp. SD) of Φ plus a rank condition

(needed to reconstruct z2).

Theorem 1: System Σ is SO (resp. SD) if, and only if, Φ
is SO (resp. SD) and the following rank condition holds

rank B̄ = n−ρE+rank

[

D

F

]

, where B̄ :=

[

D̄

F̄

]

. (8)

Furthermore, the equivalence claimed in this theorem is

independent of the choice of the matrices T and S.

1We might select S =
[

S1 S2

]

to be nonsingular and so that

imS2 = kerE. Thus, ES =
[

ES1 0
]

and rankES1 = rankE.

Then a nonsingular matrix T might be selected as T =

[

T1

T2

]

so that

T1ES1 = I and T2ES1 = 0, one possibility is to select T1 = (ES1)
+ =

[

(ES1)
T (ES1)

]

−1

(ES1)
T .

Proof: Firstly, notice that, since rank
[

DT FT
]

=

rank
[

(TD)
T

FT

]

, the fulfillment of (8) is equivalent

to say that B̄
[

zT2 µT
]T

= 0 implies z2 = 0.

Necessity. Assume that Σ is SO (resp. SD). Hence, im-

plication (2) (resp. implication (3)) holds. Now, if, for an

input v and state z1, ȳv (z1, t) = 0 for all t > 0. By

selecting

[

z2 (t)
µ (t)

]

= v (t), we make that Ψ and Φ represent

the same system. Thus, with x1 = Sz (0), we obtain that

yµ (x1, t) = 0 for all t > 0. Since (2) (resp. implication (3))

holds, x (0+) = 0 (resp. x (t) converges to zero), which in

turn implies that z (0+) = 0 (resp. z (t) converges to zero),

in particular z1 (0
+) = 0 (resp. limt→∞ z1 (t) = 0), i.e. Φ

is SO (resp. SD).

Now, assume that (8) does not hold. Then, there exists a

vector v which can be divided as vT =
[

vT1 vT2
]

(v1 ∈
R

n−ρ
E , v2 ∈ R

m) so that B̄v = 0 and v1 6= 0. By selecting

z2 (t) = v1 and µ (t) = v2, and z1 (0
+) = 0, eqs. (6) are

fulfilled, and y (t) = 0 for all t > 0. Therefore x (t) =

Sz (t) = S
[

0 vT1
]T

= const 6= 0. That is, in such a

case Σ is not SO (resp. Σ is not SD).

Sufficiency. First, assume that Φ is SO and (8) is fulfilled.

Then ȳ (t) = 0, for all t > 0, implies that z1 (t) = 0.

Furthermore, it implies, (from (8)) that z2 (t) = 0 also.

Suppose that yµ (x0, t) = 0 for a state x0 ∈ Rn and an

input function µ. By taking zµ (z0, t) = S−1xµ (x0, t), we

have that the algebraic constraint (6b) is fulfilled. Thus, we

have that, for Φ, ȳv (z1, t) = 0, for all t > 0, with v defined

such that Φ and Ψ represent the same system. Then, from

the assumption over Φ, z1 (t) = 0 and z2 = 0 for all t > 0.

That is z (t) is identical to zero for all t > 0. Therefore,

x (0+) = Sz (0+) = 0. Thus we conclude saying that Σ is

SO.

Now, let us assume that Φ is SD and the rank condition

(8) is fulfilled. If yµ (x0, t) = 0 for an x0 ∈ Rn and some

input function µ, then, again, ȳv (z1, t) = 0, for all t ≥ 0,

with v properly selected. Due to the SD assumption, z1 (t)
converges to zero. Due to the SD and condition (8), v (t)
must have the form v (t) = K∗z1 (t) + Lw (t > 0) for a

particular matrix K∗, a matrix L such that B̄L = 0 and a

function w (the properties of K,L are not relevant for this

proof, see, e.g. [14]). Then, due to the convergence of z1, we

have that B̄v (t) converges to zero also, which in turn due to

(8), implies that z2 (t) converges to zero. Then we can say

the same for the entire state z (t). We finish concluding that

xµ (x0, t) converges to zero also and, therefore, Σ is SD.

The independence from T and S is trivial. Indeed, let
(

T 1, S1
)

and
(

T 2, S2
)

be two pair of matrices such that

T i and Si (i = 1, 2) satisfy (4). Let us call Φ
(

T i, Si
)

to

the system Φ when T = T i and S = Si. If Φ
(

T 1, S1
)

is

SO (resp. SD) and (8) is satisfied, then by the first part of

theorem 1 Σ is SO (resp. SD) also, which in turn implies, by

the same theorem (first part), that Φ
(

T 2, S2
)

is SO (resp.

SD) and (8) is fulfilled. So neither the SO nor the SD of Φ
depends on the choice of pair of matrices T and S satisfying

(4).
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As for system Φ, SO and SD can be completely deter-

mined by the four-tuple (Ā, C̄, D̄, F̄ ). Therefore, as for Σ, we

expect that those properties can be completely characterized

by the five-tuple (E,A,C,D, F ). Let R (λ) be the system

matrix of Σ, i.e.,

R (λ) =

[

λE −A −D

C F

]

, λ ∈ C

We say that λ0 ∈ C is a zero of Σ if rankR (λ0) < n +

rank

[

D

F

]

. Let σz (Σ) be defined as the set of zeros of Σ.

Let us characterize SO and SD in terms of the zeros of Σ.

Corollary 1: System Σ is SO (resp. SD) if, and only if,

σz (Σ) = ∅ (resp. σz (Σ) ⊂ C−).

Proof: Let Q (λ) be the system matrix of Φ. We have

that

rank

[

Eλ−A −D

C F

]

=

= rank





Is− T1AS1 −T1AS2 T1D

−T2AS1 −T2AS2 −T2D

CS1 CS2 F





That is, rankR (λ) = rankQ (λ). Thus, the corollary

follows from Theorem 1 and the fact that Φ is SO (resp.

SD)2 if and only if σz (Φ) = ∅ (resp. σz (Φ) ⊂ C−).

Notice that, as we have used it implicitly in the proof of

Corollary 1, for the case E = I Corollary 1 is a known

fact. Furthermore, if we consider that no unknown inputs

are affecting the system, i.e., µ = 0, then from Corollary

1 we have that Σ is observable in the sense of definition 1

if, and only if, rank

[

Eλ−A

C

]

= n for all λ ∈ C, which

coincides with the condition obtained in [4] for observability

of singular systems without unknown inputs.

IV. ALGEBRAIC OBSERVABILITY

As we might expect SO coincides with algebraic ob-

servability (reconstructability): we say that Σ is algebraic

observable if x can be expressed as an algebraic function

of y and a finite number of its derivatives (see, e.g. [16]).

To find an algebraic function, one can use the weakly

unobservable subspace. Precisely a recursive algorithm that

allows constructing such a subspace was proposed in [17].

Furthermore, using that algorithm when Σ is SD we can

expressed x as a function of y, a finite number of its

derivatives, and a variable not known in finite time, but

converging asymptotically to zero.

We have to recall some concepts concerning the strong

observability and detectability (see, e.g. [14]). For the linear

system (7), we say that z10 ∈ V (Φ) if there exists an input

function v (t) such that ȳv (z10, t) = 0 for all t ≥ 0. V (Φ) is

called the weakly unobservable subspace of Φ. It is clear that

Φ is SO if, and only if, V (Φ) = {0}. A recursive algorithm

to construct V (Φ) has been given as follows

V0 = R
n, Vk+1 =

(

Ā

C̄

)−1 [

(Vk × 0) + im

(

D̄

F̄

)]

2Such a statement was proven in [15].

Between some other interesting facts, we have that if Vk+1 =
Vk, then Vk = Vj for all j ≥ k, and there exists k ≤ ρE
such that V (Φ) = Vk. In matrix terms, we can obtain Vk+1

by the following algorithm (see, [17]).

Mk+1 = N⊥⊥
k+1Nk+1, M1 =

(

F̄⊥C̄
)⊥⊥

F̄⊥C̄

Nk+1 = Tk

(

MkĀ

C̄

)

, Tk =

(

MkD̄

F̄

)⊥ (9)

Thus, we have that Vk+1 = kerMk+1. Most important for

us it is the fact that there exists an integer k ≤ ρE such that

V (Φ) = kerMk. Let us denote by l, the smallest integer

such that rankMl = rankMl+1, which yields the identity

V (Φ) = kerMl (10)

For our purposes, we point out that Φ is SO if, and only

if, rankMl = ρE . For the case of SD we have to work a bit

more with system Φ. Indeed, let us assume that rankMl <

ρE . Let V be a full column rank matrix so that MlV = 0,

i.e. im V = V (Φ). There exists a pair of matrices Q and K∗

such that

ĀV + D̄K∗ = V Q and C̄V + F̄K∗ = 0. (11)

From (11), it is clear that
(

Ā+ D̄K∗V +
)

V (Φ) ⊂ V (Φ)
and

(

C̄ + F̄K∗V +
)

V (Φ) = 0. We can define a non-

singular matrix P of dimension ρE as follows,

P =

[

Ml

V +

]

, P−1 =
[

M+
l V

]

where V + and M+
l . Explicitly, V + =

(

V TV
)−1

V T and

M+
l = MT

l

(

MlM
T
l

)−1
. By defining the vectors w1 = Mlz1

and w2 = V +z1, we have that z1 = M+
l w1 + V w2. System

Φ in these new coordinates can be rewritten as follows:

ẇ1 = Ā1w1 + D̄1 (v −K∗w2) (12a)

ẇ2 = Ā2w1 + Ā3w2 + D̄2 (v −K∗w2) (12b)

ȳ = C̄1w1 + F̄ (v −K∗w2) (12c)

where

Ā1 = Ml

(

Ā+ D̄K∗V +
)

M+
l , D̄1 = MlD̄

Ā2 = V +
(

Ā+ D̄K∗V +
)

M+
l , D̄2 = V +D̄

Ā3 = V +
(

Ā+ D̄K∗V +
)

V , C̄1 = C̄M+
l

It is known also that system Φ is SD if, and only if,

rank

[

D̄1

F̄

]

= rank

[

D̄

F̄

]

and Ā3 is a Hurwitz matrix

(see, e.g. [18]).

Let us return to system Φ described by (7). Define ξ1 =
(

F̄⊥C̄
)⊥⊥

F̄⊥ȳ = M1z1, with M1 defined as in (9). Let us

derive once the vector ξ1:

ξ̇1 (t) = M1Āz1 (t) +M1D̄v (t) (13)

Let us define a new vector ξ2 as follows

ξ2 := N⊥⊥
2 T1

[

ξ̇1
ȳ (t)

]

(14)
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with N⊥⊥
2 and T1 defined by (9). Thus, taking into account

(7), (13), and (9), we have that

d

dt
J2

[

ȳ
∫ t

t0
ȳ (τ ) dτ

]

= ξ2 = M2z1 (t) , t > t0 ≥ 0 (15)

where

J2 = N⊥⊥
2 T1

[

J1 0
0 Ip̄

]

, J1 =
(

F̄⊥C̄
)⊥⊥

F̄⊥

In the first identity of (15), we take outside the differential

operator from (14) and use the definition of ξ1. From (7) and

the second identity of (15), we obtain that the derivative of

ξ2 is equal to

ξ̇2 = M2Āz1 (t) +M2D̄v (t)

Now, define ξ3 in the following way,

ξ3 := N⊥⊥
3 T2

[

ξ̇2
ȳ (t)

]

(16)

Thus, by the same reasoning used to obtain (15), we can

obtain the following identities

d2

dt2
J3







ȳ (t)
∫ t

t0
ȳ (τ ) dτ

∫ t

t0

∫ τ2

t0
ȳ (τ1) dτ1dτ2






= ξ3 = M3z1, t0 ≥ 0

where

J3 = N⊥⊥
3 T2

[

J2 0
0 Ip̄

]

Thus we can follow the same procedure in an iterative

manner, to arrive to the following set of equations, for k ≥ 1,

dk

dtk
Jk+1







ȳ (t)
...

∫ t

t0
· · ·

∫ τ2

t0
ȳ (τ1) dτ1 · · · dτk






= Mk+1z1

(17)

where Mk+1 defined by (9), and Jk+1 defined by the

following recursive algorithm, for k ≥ 1,

J1 =
(

F̄⊥C̄
)⊥⊥

F̄⊥, Jk+1 = N⊥⊥
k+1Tk

[

Jk 0
0 Ip̄

]

Thus Mkz1 is expressed by a high order derivative of a

function of y (t). As we will see below, it is also possible to

express x as a high order derivative of a function depending

on y. In such a way a real-time differentiator could be

used, two of them frequently used due to their finite time

convergence can be found in [19], [20].

V. STATE RECONSTRUCTION OF Σ

In order to match system Σ with system Φ, from now

on, we define ȳ =

[

0n−ρ
E

y

]

∈ Rp̄ (p̄ := n − ρE + p),

and v (t) =

[

z2 (t)
µ (t)

]

∈ Rq (q = n − ρE + m), then in

view of (6), equations (5) and (7) are identical. Therefore,

the reconstruction of x (t) and µ (t) of Σ is equivalent to the

reconstruction of z1 (t) and z2 (t) of Φ. Below, we consider

two cases: when Σ is SO and when it is SD, but not SO. Of

course, since Φ is a standard linear system, there might be

other methods, besides the one proposed below, that might

be used to carry out the algebraic reconstruction of the state.

A. Finite time reconstruction

Let us consider that system Σ is SO. Then, the reconstruc-

tion of entire state vector x (t) in a finite time: by means of

an algebraic formula. Let us proceed in the following way.

Since Φ is SO, rankMl = ρE (section IV). In that case,

from (17), we have that

dl−1

dtl−1
M−1

l Jl







ȳ (t)
...

∫ t

t0
· · ·

∫ τ2

t0
ȳ (τ1) dτ1 · · · dτ l−1






= z1

(18)

where Ml ∈ Rρ
E
×ρ

E and Jl ∈ Rρ
E
×p̄l. Let m̄ be equal

to rank

[

D

F

]

. Let U ∈ Rq×m̄ be a matrix so that

rank

[

D

F

]

U = m̄. Since (8) must be satisfied according

to Theorem 1, we have that

z2 (t) =
[

In−ρ
E

0q̄
]

([

D̄

F̄

]

I 0
0 U

)+

×

×

([

ż1 (t)
ȳ

]

−

[

Ā

C̄

]

z1 (t)

)

(19)

where q̄ := n − ρE + m̄. Now, we are ready to give an

algebraic formula to reconstruct x in finite time.

Theorem 2: If system Σ is SO, state x can be expressed

algebraically by the following formula:

x (t) =
dl

dtl

[

S 0n×m̄

]

[

H1

H2

]

×

×







ȳ (t)
...

∫ t

t0
· · ·

∫ τ1

t0
ȳ (τ1) dτ1 · · · dτ l






(20)

where H1 ∈ Rρ
E
×p̄(l+1) and H2 ∈ Rq̄×p̄(l+1) are matrices

defined as follows:

H1 :=
[

0ρ
E
×p̄ M−1

l Jl
]

, H2 :=

[

D̄U

F̄U

]+

(G1 −G2)

G1 :=

[

M−1
l Jl 0ρ

E
×p̄

0p̄×p̄l Ip̄×p̄

]

, G2 :=

[

0ρ
E
×p̄ ĀM−1

l Jl
0p̄×p̄ C̄M−1

l Jl

]

G1, G2 ∈ R
ρ
E
+p̄×p̄(l+1)

Proof: Let us define the extended vector Yk ∈ Rp̄(k+1)

as follows

Yk =













ȳ (t)
∫ t

t0
ȳ (τ1) dτ1

...
∫ t

t0
· · ·

∫ τ1

t0
ȳ (τ1) dτ1 · · · dτk













, k = 1, 2, . . .

(21)

Then for a matrix X of suitable dimension the following

identity holds:

dk

dtk
XYk =

dk+1

dtk+1

[

0 X
]

Yk+1
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Thus, since x = Sz, by manipulating (19) and tanking into

account (18), (20) is obtained.

B. Asymptotic Reconstruction

Now, let us assume that Σ is SD, but not SO. Once that

we now how to reconstruct the state x for the case when Σ
is SO, the reconstruction of x for the case considered in this

section can be done following a quite simple procedure.

In this case, as Σ is not SO, by differentiation, we are able

to reconstruct w1 = Mlz1 only, where rankMl < ρE . Since
[

MlD̄

F̄

]

U has full column rank (see section IV), then,

from (17) and from (12a) and (12c), we have the following

expression for w1 and w2,

w1 (t) =
dl−1

dtl−1
JlYl−1 (t) (22)

z2 (t) =
dl

dtl

[

In−ρ
E

0n−ρ
E
×m̄

]

H̄2Yl (t) +
+
[

In−ρ
E

0n−ρ
E
×m

]

K∗w2

(23)

where

H̄2 :=

[

D̄1U

F̄U

]+
(

Ḡ1 − Ḡ2

)

, H̄2 ∈ R
q̄+p̄×p̄(l+1)

Ḡ1 :=

[

Jl 0ρ
M

×p̄

0p̄×p̄l Ip̄

]

, G2 :=

[

0ρ
M

×p̄ Ā1Jl
0p̄×p̄ C̄1Jl

]

Ḡ1, Ḡ2 ∈ R
ρ
M

+p̄×p̄(l+1), ρM = rankMl

Thus, in view that z1 = M+
l w1+V w2, we obtain the identity

x (t) =
dl

dtl

(

[

S 0n×m̄

]

[

H̄1

H̄2

]

Yl (t)

)

+

+
[

S 0n×m

]

[

V

K∗

]

w2 (24)

where

H̄1 =
[

0ρ
E
×p̄ M+

l Jl
]

∈ R
ρ
E
×p̄(l+1)

Let us define ŵ2 as follows

˙̂w2 = Ā3ŵ2 + Ā2
dl

dtl

([

0ρ
E
−ρ

M
×p̄ Jl

]

+ D̄2UH̄2

)

Yl

(25)

Eq. (25) follows from (23). Then, taking into account (12b),

(22), and (23), we have that

ẇ2 − ˙̂w2 = Ā3 (w2 − ŵ2)

Therefore, by the SD assumption, Ā3 is Hurwitz; hence

ŵ2 converges exponentially to w2. Therefore, we have that

x is equal to

x (t) = x̂ (t) +
[

S 0n×m̄

]

[

V

K∗

]

(w (t)− ŵ2 (t))

(26)

where

x̂ (t) =
dl

dtl

(

[

S 0n×m̄

]

[

H̄1

H̄2

]

Yl (t)

)

+

+
[

S 0n×m

]

[

V

K∗

]

ŵ2 (27)

and ‖x− x̂‖ converges to zero.

For the case when the output is sufficiently smooth, the

differential operator in (25) and (27) might be moved to the

right side of the constant matrices, and in such a case, by

(26), x can be expressed as an algebraic function of y, ẏ, so

till yl, and a variable (w (t)− ŵ2 (t)) that converges to zero.

VI. EXAMPLE

Example 1. Let us consider that Σ has the following

matrices values

E =









0 1 0 1
0 0 0 0
1 0 1 1
0 0 0 0









, A =









−1 −1 1 1
2 1 2 0
1 1 1 −1
0 0 0 0









C =

[

0 1 0 1
0 −1 0 2

]

, F =

[

0
1

]

DT =
[

1 −1 0 0
]

Choosing the matrices S and T as follows,

S =









0 0 −1 −1
0 0 0 −1
0 1 1 0
1 0 0 1









, T =









1 0 0 0
−1 0 1 0
0 1 0 0
0 0 0 1









We obtain the new matrices Ā, C̄, D̄, and F̄ , which take

the following values:

Ā =

[

1 1
−2 0

]

, D̄ =

[

2 3 1
−2 −6 −1

]

C̄ =









0 2
0 0
1 0
2 0









, F̄ =









0 −3 −1
0 0 0
0 0 0
0 3 1









For simulation purposes, we have chosen µ =
2 sin (x1 − x2 + x3) + cos (t) and x1 = x2 − 2 − cos (3t)
Thus, by defining ȳT =

[

0 0 yT
]

and following (20),

we have that x can be reconstructed using the following

formulas,

x1 = −
1

3
y1 +

7

12
y2 −

1

2
ẏ1 +

1

6
ẏ2

x2 =
2

3
y1 −

1

6
y2 +

1

6
ẏ2

x3 = −
1

4
y2 +

1

2
ẏ1

x4 =
1

3
y1 −

1

6
y2 +

1

6
ẏ2

To obtain estimate the state x, we use two different

differentiators, an algebraic numerical differentiator (ALND)

[20] and a high order sliding mode differentiator (HOSMD)

[19]. The original and estimated states are depicted in figures

1, using the ALND, and 2, using the HOSMD.
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Fig. 1. States (solid line) and their (dashed line) estimation with an ALND.
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Fig. 2. States (solid line) and their (dashed line) estimation with a HOSMD.

CONCLUSIONS

We have given, under suitable assumptions, necessary and

sufficient conditions to estimate the slow (non-impulsive) tra-

jectories of the state vector. We have given explicit formulas

to reconstruct in finite time and asymptotically the states.

When an estimation of x is needed in practice, it might

be better not to use an ”excessive” number of derivatives.

That is, if an asymptotic estimation is enough, we need

to differentiate only the needed times allowing after to

design a Luenberger-like observer. In that case, a simple but

cumbersome modified procedure might be followed in order

to reduce the number of derivatives required to estimate the

state. (see, e.g., [2] and [21]).
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