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Abstract— This paper is concerned with the joint design
of encoder/control strategies which minimize a control pay-
off subject to a rate constraint on the feedback information
provided by the system. The control system is described by
a conditional distribution, while the rate is described by the
directed information of a noisy communication channel. By
generalizing the Posterior Matching Scheme (PMS), a scheme
that achieves operational capacity, to channels with memory
and feedback, the joint optimality of encoder/control strategies
is analyzed. A principle of optimality is derived and a dynamic
programming equation is obtained, which together describe
how the optimal encoder/control strategies should be selected. It
is shown that joint optimality separates into an optimal encoder
strategy based on the PMS, and a control strategy obtained via
the dynamic programming equation.

I. INTRODUCTION

The problems in information transmission as put forward by
Shannon can be classified into 1) analysis, and 2) design
or synthesis. Analysis deals with questions of coding the-
orems (direct and converse part) providing a mathematical
formulae for the information capacity to be operational.
Design deals with questions of encoder and decoder syn-
thesis which achieve the operational capacity. Although,
sufficient progress have been made over the last 50 years
in analyzing and synthesizing for the Discrete Memoryless
Channel (DMC), for channels with memory and feedback
little progress has been reported [1].
Coding theorems for DMC and for channels with memory
and feedback are derived in many places; Shannon’s ini-
tial work under ergodicity, Dubrushins information density,
Verdu-Han information spectrum, and their generalization to
feedback channels in [2], [3].
For channels with memory and feedback the measure of
information often employed is the directed information,
which accounts for causality and the direction of information
flow introduced in [4] and subsequently applied in [5]. A
capacity achieving encoder design for DMC is introduced
recently in [6], [7], [8], via the so-called Posterior Matching
Scheme (PMS), a recursive encoding scheme which achieves
the capacity of DMC with feedback.
This paper is concerned with analysis and synthesis ques-
tions, related to stochastic optimal control over finite rate
noisy channels, under general conditions on the channel and
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control system conditional distributions. The main problem
investigated is to find optimal encoders and controllers which
minimize a control pay-off, subject to a rate constraint. The
rate constraint is the directed information between the control
system output and the channel output.
The main results include 1) properties of optimal en-
coders/controllers, 2) generalization of PMS to channels
with memory and feedback, and 3) joint optimality of
encoders/controllers, which under certain conditions sepa-
rate into PMS encoder and controller design via dynamic
programming.

II. PROBLEM FORMULATION

Define Zn
+
4
= {0,1, . . . ,n}, n ∈ Z+

4
= {0,1, . . .}, and assume

all processes (introduced below) are defined on a complete
probability space (Ω,F(Ω),P) with filtration {Ft : t ∈ Zn

+}.
The basic model is shown in Fig.II.1. The alphabets of
the source output, channel input, channel output, decoder
output, and controller output are sequences of Polish spaces,
{Wt : t ∈ Zn

+}, {Xt : t ∈ Zn
+}, {Yt : t ∈ Zn

+}, {Ŵt : t ∈ Zn
+},

and {Ut : t ∈ Zn
+}, respectively. The abstract alphabets

are associated with their corresponding measurable spaces
(Wt ,B(Wt)), (Xt ,B(Xt)), (Yt ,B(Yt)), (Ŵt ,B(Ŵt)), and
(Ut ,B(Ut)). Thus, sequences are identified with the product
measurable spaces, (W0,n,B(W0,n)

4
= ×n

k=0(Wk,B(Wk)),
and similarly for the rest. The source output, channel input,
channel output, decoder output, and controller output are
processes denoted by W n 4= {Wt : t ∈ Zn

+},Wt : Ω 7→ Wt ,
and similarly for the rest. Probability measures on any
measurable space (Z ,B(Z )) are denoted by M1(Z ).
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A. Definition of Sub-Systems
Information Source: is a sequence of stochastic Kernels
(conditional distributions)

{Pj(dw j|w j−1,u j−1,y j−1,x j−1) : j = 0,1, ...n}
Depending on the measurability properties of Un and Xn

the source may be simplified.

Channel Encoder: is a sequence of stochastic Kernels

{Pj(dx j|x j−1,w j,u j,y j−1) : j = 0,1, ...,n}
Definition 2.1: (Encoder Strategies)

a) The set of deterministic encoder strategies
denoted by E nm

ad [0,n] is a sequence of functions
{e j : X0, j−1 × W0, j × U0, j × Y0, j−1 → X j : x j =
e j(x j−1,w j,u j,y j−1),e j(·) is measurable j ∈ Zn

+}.
b) Markov with respect to the source strategies denoted by
Ead [0,n]⊆ E nm

ad [0,n] are functions {e j(w j,u j,y j−1) : j ∈Zn
+}.

Definition 2.2: (Control Strategies)
The set of admissible deterministic control strategies de-

noted by Cad [0,n] is a sequence of functions {c j : Y0, j−1×
U0, j−1 → U j : u j = c j(y j−1,u j−1),c j(·) is measurable j ∈
Zn
+}.

Communication Channel: is a sequence of stochastic Kernels

{Pj(dy j|y j−1,x j,w j,u j) : j = 0,1, ...n}
If Pj(dy j|y j−1,x j,w j,u j) = P(dy j|x j), a.s., j = 0,1, ...,n,
the channel is called a Discrete Memoryless Channel (DMC).

Channel Decoder: is a sequence of stochastic Kernels

{Pj(dŵ j|ŵ j−1,y j,u j) : j = 0,1, ...,n}
A deterministic decoder is a sequence of delta measures
identified by a sequence of functions {d j : Ŵ0, j−1×Y0, j×
U0, j → Ŵ j : ŵ j = d j(ŵ j−1,y j,u j), d j(.) is measurable
j ∈ Zn

+}

The ε−achievable rate for a channel is defined below.

Definition 2.3: a) An (n,Mn,εn) code for the channel
consists of the following:

1) A set of messages Mn
4
= {1,2, . . . ,Mn} and a class of

encoders (deterministic or random) measurable map-
pings {ϕi : Mn×Yi−1→Xi : i ∈ Zn

+} that transforms
each message W ∈Mn into a channel input Xn−1 ∈
X0,n−1.

2) A class of decoder measurable mappings dn : Y0,n−1→
Mn, such that the average probability of decoding error
satisfies

P(n)
e
4
=

1
Mn

∑
w∈Mn

Prob(Ŵ 6= w|W = w) = εn, Ŵ = dn(Y n−1)

b) R is an ε-achievable rate if there exists an (n,Mn,εn)
code satisfying limsupn→∞ εn ≤ ε and liminfn→∞

1
n logMn ≥

R. The supremum of all ε achievable rates R for all 0≤ ε < 1
is the channel capacity.

B. Controlled Pay-Off and Directed Information

In this section we recall some basic results found in [10]
and establish generalizations. The joint probability measure
induced on the overall control/communication system is

P0,n(dwn,dxn,dyn,dŵn,dun) =⊗n
i=0Pi(dŵi|ŵi−1,yi,ui)

⊗Pi(dyi|yi−1,xi,wi,ui)⊗Pi(dxi|yi−1,xi−1,wi,ui)

⊗Pi(dwi|wi−1,ui,yi−1,xi−1)⊗Pi(dui|ui−1,yi−1)

Depending on the measurability properties of the sub-
systems, the joint probability is simplified. Given encoder
and control strategies, the average information flow from any
source sequence W n to a corresponding output sequence Y n

is defined via directed information [4]:

I(W n→ Y n)
4
=

n

∑
i=0

I(W i;Yi|Y i−1)

=
n

∑
i=0

∫
log

Pi(dyi|yi−1,wi)

Pi(dyi|yi−1)
P0,i(dyi,dwi) (II.1)

The pay-off for controlling the system is defined by

J0,n({c j}n
j=0,{e j}n

j=0)

4
= E

{n−1

∑
i=0

`(Wi,ei(X i−1,W i,U i,Y i−1),ci(Y i−1))+κ(Wn)
}

where `(.),κ(.) are assumed bounded and continues.

C. Optimization Problems

The list of problems of interest arising is capacity
computation, encoder design which achieves the capacity,
and joint encoder/control strategies which minimize the
control pay-off subject to rate constraint.

Problem 2.4: (Information Capacity)
Given an admissible set of source and channel inputs

Aad [0,n], the information capacity is defined by

C0,n
4
= sup

(W n,Xn)∈Aad [0,n]

1
n+1

I(W n→ Y n) (II.2)

The operational meaning of (II.2) assumes conditions for
existence of C0,∞

4
= liminfn→∞ C0,n and direct and converse

coding theorems [1], [2], [3]. Given C0,∞ exists, one can
maximize 1

n+1 I(W n → Y n) over admissible encoders for a
fixed control strategy, hence the next problem.

Problem 2.5: (Maximizing Directed Information) Given
an admissible control class Cad [0,n] find an admissible
encoder, {e∗j(x j−1,w j,u j,y j−1) : j ∈ Zn

+} ∈ E nm
ad [0,n] which

maximizes

J1
0,n({c j}n

j=0,{e∗j}n
j=0)

4
= max
{e j}nj=0∈E

nm
ad [0,n]

1
n+1

I(W n→ Y n)

The joint encoder/control problem of interest is to fix
the rate and minimize a control pay-off, over admissible
encoders and control strategies.
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Problem 2.6: (Minimizing Control Pay-Off Subject to
Rate Constraint)

Given Rn ∈ (0,C0,n], find {e∗j : j ∈ Zn
+} ∈ E nm

ad [0,n] and
{c∗j :∈ Zn

+} ∈ Cad [0,n] which minimize

J2
0,n({c∗j}n

j=0,{e∗j}n
j=0)

4
= inf
{c j}nj=0∈Cad [0,n]

inf
{e j}nj=0∈E

nm
ad [0,n]: 1

n+1 I(W n→Y n)≤Rn

1
n+1

J0,n({c j}n
j=0,{e j}n

j=0)

Remark 2.7: 1) Problem 2.4 with C0,∞
4
=

liminfn→∞ C0,n, together with coding theorems,
has operational meaning, hence it corresponds to
channel capacity.

2) Problem 2.5 with J1
0,∞

4
= liminfn→∞ J1

0,n is an infinite
horizon encoder design.

3) Problem 2.6 with J2
0,∞

4
= liminfn→∞ J2

0,n is an infinite
horizon joint encoder/control design.

4) Problem 2.6 is very general since it accounts for
rate constraints, for any channel and control system.
The authors believe that a full analysis of the finite
horizon case will provide insight how to address the
infinite horizon version of Problems 2.5, 2.6, which
is a subject of future research. For the DMC and
source which satisfies Pj(dwi|wi−1,ui−1,yi−1,xi−1) =
Pj(dwi|wi−1,ui−1) several results currently in the liter-
ature can be used to address the infinite horizon case.

III. MARKOVIAN ENCODERS AND SEPARATED CONTROL
STRATEGIES

The first goal is to identify general conditions so that
maximizing I(W n → Y n) over an encoder with information
structure {(x j−1,w j,u j,y j−1) : j ∈ Z+

n } is equivalent to
maximizing I(W n → Y n) over an encoder with information
structure {(w j,u j,y j−1) : j ∈ Z+

n }. Similarly for the joint
encoder/controller minimization Problem 2.6.
The following conditions are sufficient to establish encoder
laws which are Markov with respect to the source.

Assumptions 3.1: The information source satisfies

Pj(dw j|w j−1,u j−1,y j−1,x j−1)

= Pj(dw j|w j−1,u j−1,y j−1,x j−1),a.s., j ∈ Zn
+

Assumptions 3.2: The communication channel satisfies

Pj(dy j|y j−1,x j,w j,u j) = Pj(dy j|y j−1,x j,w j,u j),

a.s., j ∈ Zn
+

These assumptions are general and include many interesting
control models, including non-linear models.

Theorem 3.3: Under Assumptions 3.1 and 3.2 and a fixed
control class Cad [0,n] the sequence of optimal encoder
strategies for Problems 2.5 and 2.6 over E nm

ad [0,n] have the
form

e∗j(x
j−1,w j,u j,y j−1) = g j(w j,u j,y j−1), j ∈ Zn

+

and

J1
0,n({c j}n

j=0,{e∗j}n
j=0)

4
=

= sup
{g j}nj=0∈Ead [0,n]

1
n+1

I(W n→ Y n)

J2
0,n({c∗j}n

j=0,{e∗j}n
j=0)

4
= inf
{c j}nj=0∈Cad [0,n]

inf
{e j}nj=0∈Ead [0,n]:

1
n+1 I(W n→Y n)≤Rn

1
n+1

J0,n({c j}n
j=0,{e j}n

j=0)

The previous theorem generalizes [10].
The point to be made in Theorem 3.3 is that, under
Assumptions 3.1 and 3.2, encoder strategies optimizing
Problems 2.5 and 2.6 are equivalent to Markov (with respect
to the source) strategies, hence only current source symbols
are encoded and transmitted over each time the channel is
used. The next definition of separated encoder strategies is
often employed in stochastic control systems with partial
information.

Definition 3.4: (Separated Encoder and Control Strate-
gies) Given specific encoder and control strategies, define
the conditional distribution Πx,u(dw j|y j−1)

4
= Prob(Wj ∈

dw j|Y j−1 = y j−1), j ∈ Zn
+.

A deterministic encoder {g j}n
j=0 ∈ Ead [0,n] is called sepa-

rated if x j = g j(w j,y j−1,u j) depends on Y j−1 = y j−1 only
through the conditional distribution Πx,u(dw j|y j−1), j ∈ Zn

+.
The set of separated deterministic encoder strategies is
denoted by E sep

ad [0,n]. Separated control strategies are defined
similarly and they are denoted by C sep

ad [0,n].

IV. GENERALIZED PMS FOR CHANNELS WITH MEMORY
AND FEEDBACK

Solutions to Problems 2.5 and 2.6 are obtained by first
analyzing the optimality of the encoder. The results of this
section are valid under the following assumptions.

Assumptions 4.1: Assumptions 3.1, 3.2 hold and in addi-
tion

Pj(dy j|y j−1,x j,w j) = Pj(dy j|y j−1,x j),a.s., j ∈ Nn
+

Assumptions 4.1 are sufficient to define capacity via the
channel input and output.

The next statement is easily shown.

Assumptions 4.1⇒ I(W n→ Y n) =
n

∑
i=0

I(Xi;Yi|Y i−1)

Hence, the following definition of information capacity.

Definition 4.2: Suppose Assumptions 4.1 hold. Let Qpc
ad

denote the set of channel input distributions which satisfy
power constraints. The finite time capacity is defined by

C1
0,n
4
= sup
{Pi(dxi;yi−1)}ni=0∈Q

pc
ad [0,n]

1
n+1

n

∑
i=0

I(Xi;Yi|Y i−1)
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The infinite horizon information capacity is defined by

C1
0,∞ = liminf

n→∞
sup

{Pi(dxi;yi−1)}ni=0∈Q
pc
ad [0,n]

1
n+1

n

∑
i=0

I(Xi;Yi|Y i−1)

Theorem 4.3: Suppose Assumptions 4.1 hold and {Xi,Yi :
i ∈ Z+} are stationary ergodic.
a) Any achievable rate R satisfies

R≤ liminf
n→∞

1
n

logMn

≤ liminf
n→∞

sup
{Pi(dxi;yi−1)}n−1

i=0 ∈Q
pc
ad [0,n−1]

1
n

n−1

∑
i=0

I(Xi;Yi|Y i−1)

b) The channel capacity is C1
0,∞

Proof. Follows from stationarity and ergodicity.

The operational meaning of C1
0,∞ can be generalized to

information stable processes (Dubrushin’s definition).
Here it is shown how to design an encoder so that the
directed information including the encoder, I(W n → Y n) is
precisely equal to the supremum in C1

0,n.

Let {P∗i (dxi|yi−1) : i ∈ Zn
+} ∈ Qpc

0,n be the sequence of
stochastic kernels which achieves the supremum of C1

0,n. Let
F∗Xi|Y i−1(xi) be its corresponding conditional distribution.
Consider an encoder of the form{

x∗i = g∗i (wi,yi−1)

= g∗,si (wi,Pi(dwi|yi−1)) : i = 0,1, . . . ,n
}
∈ E sep

ad [0,n]

where Pi(dwi|yi−1) is a stochastic kernel, and denote by
FWi|Y i−1(wi) its corresponding conditional distribution func-
tion.
Define the Posterior Matching Scheme{

X∗i = g∗,si (Wi,FWi|Y i−1(Wi))

= F∗,−1
Xi|Y i−1 ◦FWi|Y i−1(Wi) : i = 0,1, . . . ,n

}
(IV.3)

This scheme corresponds to an encoder transmitting at each
i ∈N+ the symbol X∗i via the mapping g∗,si (·, ·). The follow-
ing hold at each i ∈ N+.

1) For a fixed Y i−1 = yi−1, FWi|Y i−1(wi) is a random
variable uniformly distributed on the interval [0,1).
Hence, it is independent of yi−1.

2) For a fixed Y i−1 = yi−1, F∗,−1
Xi|Y i−1(.) is the inverse

of a distribution function, applied to a uniformly
distributed random variable. Hence, it transforms the
uniform random variable Ui = FWi|Y i−1(wi) into a R.V.
X∗i having the finite capacity achieving distribution
F∗Xi|Y i−1(xi). That is, F∗,−1

Xi|Y i−1 ◦FWi|Y i−1(wi) for a fixed
Y i−1 = yi−1 transforms X∗i into a RV distributed
according to F∗Xi|Y i−1 .

The above PMS yields the following [10].

I(W n→ Y n) =
n

∑
i=0

∫
log

Pi(dyi|yi−1,x∗i )
Pi(dyi|yi−1)

Pi(dyi|yi−1,x∗i )×Pi(dx∗i |yi−1)P0,i−1(dyi−1) =C1
0,n

With respect to Problem 2.5, the PMS maximizes
I(W n → Y n) over the encoders for a fixed control law.
With respect to Problem 2.6, for any Rn ∈ (0,C1

0,n], one
can design an encoder which satisfies the rate constraint
inequality with equality. Hence, one can fix the encoder and
minimize the pay-off in Problem 2.6 subject to an equality
constraint.

V. DYNAMIC PROGRAMMING

Armed with the PMS, the joint design of encoder/controller
for Problem 2.6 is analyzed. Let (Ω,F(Ω),Px,u) be a com-
plete probability space. Define the following complete σ

algebras:

G0,n
4
= σ{W0,W1, . . . ,Wn,Y0,Y1, . . . ,Yn}

F0,n
4
= σ{W0,W1, . . . ,Wn,Y0,Y1, . . . ,Yn−1}

J0,n
4
= {Y0,Y1, . . . ,Yn}

A deterministic encoder e j is F0, j− measurable and a
deterministic control c j is J0, j−1− measurable.

A. Generalized Dynamic Programming
Consider Problem 2.6. Define the conditional control pay-off
on the interval [k,n] by

J̄k,n(cn
k ,e

n
k ,J0,k)

4
= E

{n−1

∑
i=k

`(Wi,ei(W i,U i,Y i−1),

ci(U i−1,Y i−1))+κ(Wn))|J0,k−1

}
By the smoothing property of conditional expectation

Jk,n(cn
k ,e

n
k)
4
= E

{
J̄k,n(cn

k ,e
n
k ,J0,k−1)

}
Similarly, define the conditional rate over encoder class
E nm

ad [0,n], on the interval [k,n] by

Īk,n(cn
k ,e

n
k ,J0,k−1)

4
= E

{ n

∑
i=k

log

(Pi(dyi|yi−1,ei(wi,ui,yi−1),wi,ci(ui−1,yi−1))

Pi(dyi|yi−1)

)
|J0,k−1

}
By the smoothing property of conditional expectation,

Ik,n(cn
k ,e

n
k) = E

{
Īk,n(cn

k ,e
n
k ,J0,k−1)

}
=

n

∑
i=k

I(W i;Yi|Y i−1)

The unconstrained cost-to-go is

inf
cn

k∈Cad [k,n]
inf

en
k∈E

nm
ad [k,n]

{
Jk,n(cn

k ,e
n
k)+ s

(
Ik,n(cn

k ,e
n
k)−Rn

)}
= E

{
inf

cn
k∈Cad [k,n]

inf
en

k∈E
nm
ad [k,n]{

J̄k,n(cn
k ,e

n
k ,J0,k−1)+ s

(
Īk,n(cn

k ,e
n
k ,J0,k−1)−Rn

)}}
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where s ∈ R is a Langrange multiplier.

Theorem 5.1: Suppose there exist strategies {c∗j : j ∈
Zn
+} ∈ Cad [0,n], {e∗j : j ∈ Zn

+} ∈ E nm
ad [0,n] and a function

Vk(J0,k−1) which satisfies the dynamic programming recur-
sion:

Vk(J0,k−1) = infck∈Cad [k,k] infek∈E nm
ad [k,k]

E
{
`(Wk,ek(W k,Uk,Y k−1),ck(Uk−1,Y k−1))

+s
(

log Pk(dYk|Y k−1,ei(W k,Uk,Y k−1),W k,ck(Uk−1,Y k−1))

Pk(dYk|Y k−1)
−Rn

)
+Vk+1(J0,k)|J0,k−1

}
(V.4)

Then {e∗j : j ∈ Zn
+} ∈ E nm

ad [0,n], {c∗j : j ∈ Zn
+} ∈ Cad [0,n]

obtained from (V.4) are optimal strategies.

J2
0,n({c∗j}n

j=0,{e∗j}n
j=0) = E

{
V0(J0,0)

}
(V.5)

Theorem 5.1 is very general, although not easy to apply.

B. Dynamic Programming via Information State

This section invokes change of measure techniques to derive
dynamic programming using a sufficient statistic.

Reference Probability Measure. Suppose Assumptions 3.1
and 3.2 hold, and in addition that

Pj(dy j|y j−1,x j,w j,u j) = ρ j(y j|y j−1,x j,w j,u j)dy j,a.s.

for j = 0,1, . . . ,n, where the density is strictly positive.
Suppose ρ j(y j) is the unconditional probability density of Yj
and ρ j(y) > 0,∀y, j = 0,1, . . . ,n. Assume encoder strategies
Ead [0,n]. Define the following ratio of densities:

Λ
x,u
0,k
4
=

k

∏
l=0

ρl(yl)

ρl(yl |yl−1,wl ,xl ,ul)
(V.6)

Using (V.6) define a reference measure via dP̄x,u 4=
Λ

x,u
0,k|G0,k dPx,u. Then by the Radon-Nikodym Derivative

theorem, dP̄x,u(Ω) =
∫

Ω
Λ

x,u
0,k|G0,k dPx,u(ω) = 1, hence it is a

probability measure. The following holds.

Lemma 5.2: Under measure P̄x,u the random process {Yk :
k ∈ Zn

+} are independent with density {ρk(yk) : k ∈ Zn
+} and

{Pk(dwk|wk−1,yk−1,xk−1,uk−1) : k ∈ Zn
+} remains the same

as that under measure Px,u.

Unnormalized Conditional Distributions. Start with
(Ω,F(Ω),Px,u) such that under P̄x,u, {Wk : k ∈ Zn

+} is a
process with kernel {Pk(dwk|wk−1,yk−1,xk−1,uk−1) : k∈Zn

+}
and {Yk : k ∈ Zn

+} are independent with density
{ρk(yk) : k ∈ Zn

+}. Define

Λ̄
x,u
0,k
4
= Λ

x,u,−1
0,k =

k

∏
l=0

ρl(yl |yl−1,wl ,xl ,ul)

ρl(yl)

Define the real measure by dPx,u = Λ̄
x,u
0,kdP̄x,u. Consider any

Borel function f : Wk→ℜ with compact support.
Then the following holds in view of Bayes rule.

Π
x,u
k|k( f (W ))

4
= E

{
f (Wk)|J0,k

}
=
∫

Wk

f (w)Πx,u
k|k(dw|yk)

=
Ē
{

f (Wk)Λ̄
x,u
0,k|J0,k

}
Ē
{

Λ̄
x,u
0,k|J0,k

} =

∫
Wk

f (w)πx,u
k|k (dw|yk)∫

Wk
π

x,u
k|k (dw|yk)

Π
x,u
k|k(dw|yk) is the normalized stochastic kernel correspond-

ing to the conditional distribution of Wk given J0,k and
π

x,u
k|k (dw|yk) is its unnormalized version. Therefore,

Π
x,u
k|k(dw|yk) =

π
x,u
k|k (dw|yk)∫

Wk
π

x,u
k|k (dw|yk)

(V.7)

Similarly, the one step prediction is

Π
x,u
k|k−1( f (W ))

4
= E

{
f (Wk)|J0,k−1

}
=
∫

Wk

f (w)Πx,u
k|k−1(dw|yk−1) =

Ē
{

f (Wk)Λ̄
x,u
0,k|J0,k−1

}
Ē
{

Λ̄
x,u
0,k|J0,k−1

}
=

∫
Wk

f (w)πx,u
k|k−1(dw|yk−1)∫

Wk
π

x,u
k|k−1(dw|yk−1)

(V.8)

Π
x,u
k|k−1(dw|yk−1) =

π
x,u
k|k−1(dw|yk−1)∫

Wk
π

x,u
k|k−1(dw|yk−1)

(V.9)

Theorem 5.3 (Recursive Updates): Consider admissible
encoders and controllers Ead [0,n] and Cad [0,n].

The stochastic kernel {πx,u
k|k−1(dw;yk−1) : k = 0,1, . . . ,n}

satisfies the following recursive equation.

π
x,u
k+1|k(dw|yk) =

∫
Wk

ρk(yk|yk−1,wk,xk,uk)

×Pk+1(dw|wk,yk,xk,uk)πx,u
k|k−1(dwk|yk−1)

and

π
x,u
k|k (dw|yk) = ρk(yk|yk−1,w,xk,uk)πx,u

k|k−1(dw|yk−1)

π
x,u
k+1|k(dw,dy|yk) = ρk+1(yk+1)π

x,u
k+1|k+1(dw|yk+1)

Note that the update recursions of the previous theorem are
not Markovian.

Dynamic Programming Recursion. Suppose Assumptions 3.1
and 3.2 hold. Consider the total rate pay-off I(W n→ Y n):

I0,n(c,g) = E
{ n

∑
i=0

log
ρi(yi|yi−1,wi,gi(wi,yi−1),ci(ui−1,yi−1))

ρi(yi|yi−1)

}
= Ē

{ n

∑
i=0

∫
log
(

ρi(yi|yi−1,wi,gi(wi,yi−1),ci(ui−1,yi−1))

ρi(yi|yi−1)

)
×π

g,c
i|i−1(dwi,dyi|yi−1)

}
(V.10)

Similarly consider the controlled pay-off J0,n(c,g):
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J0,n(c,g) = Ē
{n−1

∑
i=0

∫
`(wi,gi(wi,yi−1),ci(ui−1,yi−1))

π
g,c
i|i−1(dwi|yi−1)+

∫
κ(wn)π

g,c
n|n−1(dwn|yn−1)

}
Note that standard dynamic programming does not apply
when the distribution process {πk|k−1(.|yi−1) : k ∈Zn

+} is not
Markov. For the rest of this section suppose the total cost
I0,n(c,g) in (V.10) (based on the assumptions on the channel
and source) is such that

I0,n(c,g) = Ē
{ n

∑
i=0

∫
log
(

ρi(yi|,wi,gi,ci)

ρi(yi|yi−1)

)
×π

g,c
i|i−1(dwi,dyi|yi−1)

}
(V.11)

and {πk|k−1(.|yi−1) : k ∈ Zn
+} is Markov (e.g., the channel is

a DMC).
Consider Problem 2.6. Suppose π is an information state
at time k, then the remaining expected pay-off during the
interval g ∈ Ead [k,n] is defined by

Vk(c,g,π)
4
= Ē

{n−1

∑
i=k

∫
Wi

`(wi,gi(wi,yi−1),ci(yi−1))

π
g,c
i|i−1(dwi|yi−1)+

∫
Wn

κ(wn)π
g,c
n|n−1(dwn|yn−1)+

s
( n

∑
i=k

∫
Wi×Yi

log
ρi(yi|wi,gi(wi,yi−1),ci(yi−1))

ρi(yi|yi−1)

π
g,c
i|i−1(dwi,dyi|yi−1)−Rn

)
|πg,c

k|k−1 = π

}
For any 0≤ k ≤ n the minimum pay-off during the interval
g ∈ Ead [k,n] and c ∈ Cad [k,n] is defined by

Vk(π)
4
= inf

c∈Cad [k,n],g∈∈Ead [k,n]
Vk(c,g,π) (V.12)

Thus, the following dynamic programming equation.

Vk(π) = inf
c∈Cad [k,n],gk(·,yk−1):wk→Xk

Ē
{

∫
Wk

`(wk,gk(wk,yk−1),ck(yk−1))πg,c
k|k−1(dwk|yk−1)+ s

(∫
Wk×Yk

log
(

ρk(yk|wk,gk(wk,yk−1),ck(yk−1))

ρk(yk|yk−1)

)
×π

g,c(dwk,dyk|yk−1)−Rn

)
+Vk+1(π

g,c
k+1|k)|π

g,c
k|k−1 = π

}
(V.13)

Vn(π) = inf
gn(·,yn−1):wn→Xn

{∫
Wn

κ(wn)π
g,c
n|n−1(dwn|yn−1)+

+ s
(∫

Wn×Yn

log
ρn(yn|wn,gn(wn,yn−1),cn(yn−1))

ρn(yn|yn−1)

×π
g,c
n|n−1(dwn,dyn|yn−1)−Rn

)}
(V.14)

It is noted that the backward dynamic programming recursion
(V.13) with terminal condition (V.14) should be solved to
determine the control and encoder laws {u∗k = c∗k(y

k−1) : k ∈
Zn
+} and {x∗k = g∗k(wk,yk−1) : k ∈ Zn

+}.
Moreover, by Section V and by considering strategies c ∈

C sep
ad [k,n] and {gi(wi,yi−1) = gs

i (wi,Pi(dwi|yi−1)) : i ∈ Zn
+} ∈

E sep
ad , the PMS achieves the inequality constraint with equal-

ity. Thus, the dynamic programming is minimized over c ∈
C sep

ad [k,n]. The point to be made is that the posterior matching
scheme achieves the inequality constraint with equality,
hence it is optimal. Hence, the dynamic programming is
solved recursively for a fixed posterior matching encoder,
over control laws. Thus, the joint encoder/control optimality
separates into a PMS encoder strategy and an optimal control
strategy obtained from (V.13) and (V.14).

VI. CONCLUSIONS AND FUTURE WORK

This paper discusses joint optimality of encoder/control
strategies which minimize a control pay-off subject to an
information rate constraint. Properties of the encoder are
derived, and the joint optimality of encoder/control strategies
is shown to separate into the optimality of the encoder
strategy with respect to a PMS, and the control strategy with
respect to a dynamic programming recursion. Future work
should examine the following items:

1) Analyze the infinite horizon case.
2) Compute examples of optimal encoder/controller

strategies.
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