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Abstract— We study a tractable opinion dynamics model
that generates long-run disagreements and persistent opinion
fluctuations. Our model involves an inhomogeneous stochastic
gossip process of continuous opinion dynamics in a society
consisting of two types of agents: regular agents, who update
their beliefs according to information that they receive from
their social neighbors; and stubborn agents, who never update
their opinions and might represent leaders, political parties or
media sources attempting to influence the beliefs in the rest
of the society. When the society contains stubborn agents with
different opinions, the belief dynamics never lead to a consensus
(among the regular agents). Instead, beliefs in the society almost
surely fail to converge, the belief profile keeps on oscillating in
an ergodic fashion, and it converges in law to a non-degenerate
random vector.

The structure of the graph describing the social network and
the location of the stubborn agents within it shape the opinion
dynamics. The expected stationary beliefs vector is proved to be
harmonic on the graph, with every regular agent’s value being
the weighted average of its neighbors’ values, and boundary
conditions corresponding to the stubborn agents’ beliefs.

We prove that, in large-scale societies which are highly fluid,
meaning that the product of the mixing time of the random walk
on the graph describing the social network and the relative size
of the linkages to stubborn agents vanishes as the population
size grows large, a condition of homogeneous influence emerges,
whereby the stationary beliefs’ marginal distributions of most
of the regular agents have approximately equal first and second
moment. Homogeneous influence in a highly fluid societies need
not imply approximate consensus among the agents, whose
beliefs may well oscillate in an essentially uncorrelated way.

I. INTRODUCTION

Disagreement among individuals in a society, even on

central questions that have been debated for centuries, is

the norm; agreement is the rare exception. How can dis-

agreement of this sort persist for so long? Notably, such

disagreement is not a consequence of lack of communication

or some other factors leading to fixed opinions. Disagreement

remains even as individuals communicate and sometimes

change their opinions.

Existing models of communication and learning, based on

Bayesian or non-Bayesian updating mechanisms, typically

lead to consensus provided that communication takes place

over a strongly connected network (e.g., Smith and Sorensen

[32], Banerjee and Fudenberg [7], Acemoglu, Dahleh, Lobel
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and Ozdaglar [2], Bala and Goyal [6], Gale and Kariv [18],

DeMarzo, Vayanos and Zwiebel [14], Golub and Jackson

[19], Acemoglu, Ozdaglar and ParandehGheibi [3]), and are

thus unable to explain persistent disagreements. One notable

exception is provided by models that incorporate a form of

homophily mechanism in communication, whereby individu-

als are more likely to exchange opinions or communicate

with others that have similar beliefs, and fail to interact

with agents whose beliefs differ from theirs by more than

some given confidence threshold. This mechanism was first

proposed by Axelrod [5] in the discrete opinion dynamics

setting, and then by Krause [21], and Deffuant and Weis-

buch [13], in the continuous opinion dynamics framework.

Such beliefs dynamics typically lead to the emergence of

different asymptotic opinion clusters (see, e.g., [23], [9],

[11]); however, they are unable to explain persistent opinion

fluctuations in the society.

In this paper, we investigate a tractable opinion dynamics

model that generates both long-run disagreement and opin-

ion fluctuations. We consider an inhomogeneous stochastic

gossip model of communication wherein there is a fraction

of stubborn agents in the society who never change their

opinions. We show that the presence of stubborn agents with

competing opinions leads to persistent opinion fluctuations

and disagreement among the rest of the society.

More specifically, we consider a society envisaged as a

social network of n interacting agents (or individuals), com-

municating and exchanging information. Each agent a starts

with an opinion (or belief) Xa(0) ∈ R and is then activated

according to a Poisson process in continuous time. Following

this event, she meets one of the individuals in her social

neighborhood according to a pre-specified stochastic process.

This process represents an underlying social network. We

distinguish between two types of individuals, stubborn and

regular. Stubborn agents, which are typically few in number,

never change their opinions: they might thus correspond to

media sources, opinion leaders, or political parties wishing to

influence the rest of the society, and, in a first approximation,

not getting any feedback from it. In contrast, regular agents,

which make up the great majority of the agents in the social

network, update their beliefs to some weighted average of

their pre-meeting belief and the belief of the agent they met.

The opinions generated through this information exchange

process form a Markov process whose long-run behavior is

the focus of our analysis.

First, we show that, under general conditions, these opin-

ion dynamics never lead to a consensus (among the regular

agents). In fact, regular agents’ beliefs almost surely fail

to converge, and keep on oscillating in an ergodic fashion.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2347



Instead, the belief of each regular agent converges in law to

a non-degenerate stationary random variable, and, similarly,

the vector of beliefs of all agents jointly converge to a non-

degenerate stationary random vector. This model therefore

provides a new approach to understanding persistent dis-

agreements and opinion fluctuations.

Second, we investigate how the structure of the graph

describing the social network and the location of stubborn

agents within it shape the behavior of the opinion dynamics.

The expected belief vector is proved to evolve according to

an ordinary differential equation coinciding with the Kol-

mogorov backward equation of a continuous-time Markov

chain on the graph with absorbing states corresponding to

the stubborn agents, and hence to converge to a harmonic

vector, with every regular agent’s value being the weighted

average of its neighbors’ values, and boundary conditions

corresponding to the stubborn agents’ beliefs. Expected

cross-products of the agents’ beliefs allow for a similar

characterization in terms of coupled random walks on the

graph describing the social network. The characterization

of the expected stationary beliefs as harmonic functions is

then used in order to find explicit solutions for some social

networks with particular structure or symmetries.

Third, in what we consider the most novel contribution

of our analysis, we study the behavior of the stationary

beliefs in large-scale highly fluid social networks, defined as

networks where the product between the fraction of edges

incoming in the stubborn agent set times the mixing time of

the associated random walk is small. We show that in highly

fluid social networks, the expected value and variance of the

stationary beliefs of most of the agents concentrate around

certain values as the population size grows large. We refer

to this result as homogeneous influence of stubborn agents

on the rest of the society—meaning that their influence on

most of the agents in the society are approximately the same.

The applicability of this result is then proved by providing

several examples of large-scale random networks, including

the Erdös–Rényi graph in the connected regime, power

law networks, and small-world networks. Finally, we argue

that homogeneous influence in a highly fluid societies need

not imply approximate consensus among the agents, whose

beliefs may well oscillate in an essentially uncorrelated way,

leaving a deeper understanding of this topic as a matter for

future work.

Our main contribution partly stems from novel applica-

tions of several techniques of applied probability in the

study of opinion dynamics. In particular, convergence in

law and ergodicity of the agents’ beliefs is established by

first rewriting the dynamics in the form of an iterated affine

function system and then using techniques developed in this

field [15]. On the other hand, our estimates of the behavior

of the expected values and variances of the stationary beliefs

in large-scale highly fluid networks are based on techniques

from the theory of reversible Markov chains, including ap-

proximate exponentiality of the hitting times and fast mixing

[4], [22], as well as on results in modern random graph

theory [16].

In addition to the aforementioned works on learning and

opinion dynamics, this paper is related to some of the

literature in the statistical physics of social dynamics: see

[10] and references therein for an overview of such research

line. More specifically, our model is closely related to some

work by Mobilia and co-authors [25], [26], [27], who study

a variation of the discrete opinion dynamics model, also

called the voter model, with inhomogeneities, there referred

to as zealots: such zealots are agents which tend to favor one

opinion in [25], [26], or are in fact equivalent to our stubborn

agents in [27]. These works generally present analytical

results for some regular graphical structures (such as regular

lattices [25], [26], or complete graphs [27]), and are then

complemented by numerical simulations. In contrast, we

prove convergence in distribution and characterize the prop-

erties of the limiting distribution for general finite graphs.

Even though our model involves continuous belief dynamics,

the voter model with zealots of [27] can be recovered as a

special case of our general framework.

Our work is also related to work on consensus and

gossip algorithms, which is motivated by different problems,

but typically leads to a similar mathematical formulation

(Tsitsiklis [33], Tsitsiklis, Bertsekas and Athans [34], Jad-

babaie, Lin and Morse [20], Olfati-Saber and Murray [30],

Olshevsky and Tsitsiklis [31], Fagnani and Zampieri [17],

Nedić and Ozdaglar [28]). In consensus problems, the focus

is on whether the beliefs or the values held by different

units (which might correspond to individuals, sensors, or

distributed processors) converge to a common value. Our

analysis here does not focus on limiting consensus of values,

but in contrast, characterizes the stationary fluctuations in

values.

The rest of this paper is organized as follows: In Section

II, we introduce our model of interaction between the agents,

describing the resulting evolution of individual beliefs, and

we discuss two special cases, in which the arguments sim-

plify particularly, and some fundamental features of the

general case are highlighted. Section III presents convergence

results on the evolution of agent beliefs over time, for a

given social network: the beliefs are shown to converge in

distribution, and to be an stationary process, while in general

almost surely they do not converge sample-path-wise. In

Section IV, we first provide a characterization of the expected

stationary beliefs in terms of the hitting probabilities of a

random walks on the graph describing the social network.

Then, we exploit this characterization in order to provide

bounds on the level of dispersion of the expected stationary

beliefs’ vector: it is shown that, in highly fluid networks,

most of the agents have almost the same stationary belief

and variance. Section V presents some concluding remarks.

All the statements will be presented without proof, which

can be found in the journal version of this work [1], along

with a more general formulation, and more detailed results

and examples.

Before proceeding, we establish some notational conven-

tions and terminology to be followed throughout the paper.

We shall typically label the entries of vectors by elements
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Fig. 1. A social network with seven regular agents (colored in grey), and
five stubborn agents (colored in white, and black, respectively). Links are
only incoming to the stubborn agents, while links between pairs of regular
agents may be uni- or bi-directional.

of finite alphabets, rather than non-negative integers, hence

R
I will stand for the set of vectors with entries labeled

by elements of the finite alphabet I. An index denoted by

a lower-case letter will implicitly be assumed to run over

the finite alphabet denoted by the corresponding calligraphic

upper-case letter (e.g.
∑

i will stand for
∑

i∈I). For two non-

negative sequences {an}, {bn}, we will write an = O(bn) if

for some positive constant K , an ≤ Kbn for all sufficiently

large n.

II. BELIEF EVOLUTION MODEL

We consider a finite population V of interacting agents,

of possibly very large size n := |V|. The connectivity

among the agents is described by a simple undirected graph

G = (V , E), whose node set is identified with the agent

population, and where E stands for the set of links among

the agents.

At time t ≥ 0, each agent v ∈ V holds a belief (or

opinion) about an underlying state of the world, denoted

by Xv(t) ∈ R. The full vector of beliefs at time t will

be denoted by X(t) := {Xv(t) : v ∈ V}. We distinguish

between two types of agents: regular and stubborn. Regular

agents repeatedly update their own beliefs, based on the

observation of the beliefs of their neighbors in G. Stubborn

agents never change their opinions. Agents which are not

stubborn are called regular. We shall denote the set of regular

agents by A, the set of stubborn agents by S, so that the set

of all agents is V = A ∪ S (see Figure 1).

More specifically, the agents’ beliefs evolve according to

the following stochastic update process. At time t = 0, each

agent v ∈ V starts with an initial belief Xv(0). The beliefs

of the stubborn agents stay constant in time:

Xs(t) = Xs(0) =: xs , s ∈ S .

In contrast, the beliefs of the regular agents are updated as

follows. To every ordered pair of agents of the form (a, v),
where necessarily a ∈ A, v ∈ V , and {a, v} ∈ E , a clock

is associated, ticking at the times of an independent Poisson

process of rate 1/da, where da is the degree of a in G. If

the (a, v)-th clock ticks at time t, agent a meets agent v

and updates her belief to a convex combination of her own

current belief and the current belief of agent v:

Xa(t) = (1 − θ)Xa(t−) + θXv(t
−) , (1)

where Xv(t
−) stands for the left limit limu↑t Xv(u). Here,

the scalar θ ∈ (0, 1] is a trust parameter that represents

the confidence that each regular agent a ∈ A puts on her

neighbors’ beliefs.1 For every regular agent a ∈ A, let Sa ⊆
S be the subset of stubborn agents which are reachable from

a by a path in G with no intermediate steps in S. We refer

to Sa as the set of stubborn agents influencing a.

The pair N = (G, θ) contains the entire information about

patterns of interaction among the agents, and will be referred

to as the social network. Together with an assignment of

a probability law for the initial belief vector, the social

network designates a society. Throughout the paper, we make

the following assumptions regarding the underlying social

network.

Assumption 1: Every regular agent is influenced by some

stubborn agent, i.e., Sa is non-empty for every a in A.

For a given social network, we associate the stochastic

matrix P ∈ R
V×V , and a probability vector π whose entries

are defined by

Pvw =

{

1/dv if {v, w} ∈ E
0 if {v, w} /∈ E

πv := dv/
∑

w

dw .

(2)

Observe that P is a reversible matrix, and π is its unique

stationary probability vector.

III. CONVERGENCE IN DISTRIBUTION AND ERGODICITY

OF THE BELIEFS

This section is devoted to studying the convergence prop-

erties of the random belief vectorX(t) for the general update

model described in Sect. II. Figure 2 reports the typical

sample-path behavior of the agents’ beliefs for a simple

social network with population size n = 4, and line graph

topology, in which the two stubborn agents are positioned

in the extremes and hold beliefs x0 < x3. As shown in

Fig. 2(b), the beliefs of the two regular agents, X1(t), and

X2(t), oscillate in the interval [x0, x3], in an apparently

chaotic way. On the other hand, the time averages of the

two regular agents’ beliefs rapidly approach a limit value, of

2x0/3 + x3/3 for agent 1, and x0/3 + 2x3/3 for agent 2.

As we shall see below, such behavior is rather general. In

our model of social network with at least two stubborn agents

having non-coincident constant beliefs, the regular agent

beliefs almost surely fail to converge. On the other hand,

we shall prove that, regardless of the initial regular agents’

beliefs, the belief vector X(t) is convergent in distribution

1Note that the one described above can be interpreted as inhomogeneous
gossip model of opinion dynamics, where all the regular agents use the trust
parameter θ in their beliefs’ updates, whereas the stubborn agents use trust
parameter equal to 0. The case in which the stubborn agents have positive,
though very small trust parameter, so that they get some feedback from their
neighbors, is studied in [3], where it is shown that the society does converge
to an asymptotic consensus around a random common Z , whose expected
value is a convex combination of the initial beliefs of all the agents with
higher relative weight to the stubborn (there called ‘forceful’) agents.
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Fig. 2. Typical sample-path behavior of the beliefs, and their ergodic
averages for a social network with population size n = 4. The topology is
a line graph. The stubborn agents corresponds to the two extremes of the
line, S = {0, 3}, while their constant opinions are x0 = 0, and x3 = 1.
The regular agent set is A = {1, 2}. The confidence parameters, and the
interaction rates are chosen to be θav = 1/2, and rav = 1/3, for all
a = 1, 2, and v = a ± 1. In picture (b), the trajectories of the actual
beliefs Xv(t), for v = 0, 1, 2, 3, are reported, whereas picture (c) reports

the trajectories of their ergodic averages {Zv(t) := t−1
R

t

0
Xv(u)du}.

to a random asymptotic belief vector X , and in fact it is an

ergodic process.

Theorem 1: Let Assumption 1 hold. Then, for every value

of the stubborn agents’ beliefs {xs : s ∈ S}, there exists a

stationary random belief vector X , whose probability law

is invariant for the system and such that, for every initial

distribution satisfying P(Xs(0) = xs , ∀s ∈ S) = 1,

lim
t→∞

E[ϕ(X(t))] = E[ϕ(X)] ,

and, with probability one,

lim
t→∞

1

t

∫ t

0

ϕ(X(u))du = E[ϕ(X)] ,

where ϕ : R
V → R is any continuous test function such that

E[ϕ(X)] exists and is finite.

Theorem 1 states that the beliefs of all the agents converge

in distribution, and that their empirical averages converge

almost surely, to a random asymptotic belief vector X . In

contrast, the following theorem shows that the asymptotic

belief of a regular agent which is connected to at least two

stubborn agents with different beliefs is a non-degenerate

random variable. As a consequence, the belief of every

such regular agent keeps on oscillating with probability one.

Moreover, the theorem shows that, with probability one, the

difference between any pair of distinct regular agents which

are influenced by more than one stubborn agent does not

converge to zero, so that disagreement between them persists

in time. For a ∈ A, let Xa = {xs : s ∈ S} denote the set of

stubborn agents’ belief values influencing agent a.

Theorem 2: Let Assumption 1 hold, and let a ∈ A be

such that |Xa| ≥ 2. Then, the asymptotic belief Xa is a non-

degenerate random variable. Furthermore, if a, a′ ∈ A, with

a′ 6= a are such that |Xa∩Xa′ | ≥ 2, then P(Xa 6= Xa′) > 0.

Theorem 1 and Theorem 2 are two of the central results of

our paper. Even though beliefs converge in distribution, the

presence of stubborn agents with different beliefs ensures

that almost surely they fail to converge sample-path-wise.

Moreover there will not be a consensus of beliefs in this

society. Both of these are a consequence of the fact that

each regular agent is continuously being influenced –directly

or indirectly– by stubborn agents with different beliefs.

IV. HOMOGENEOUS INFLUENCE IN HIGHLY FLUID

SOCIAL NETWORKS

In this section, we study the behavior of the expected

stationary belief vector {E[Xv : v ∈ V} as a function of the

geometry of the underlying social network. Our estimates

will prove to be particularly relevant for large-scale social

networks satisfying the following condition.

As a first step, we derive a characterization of the expected

stationary belief vector in terms of hitting probabilities of a

random walk V (t) on G with transition probability matrix

P defined as in (2). We use the notation TS := inf{t ≥ 0 :
V (t) ∈ S} for the hitting time of V (t) on S, and define the

hitting probability distributions γv over S, by

γv
s := P(V (TS) = s|V (0) = v) , s ∈ S .

Then, one has the following result:

Theorem 3: Let Assumption 1 hold. Then, for every value

of the stubborn agents’ beliefs {xs}, {E[Xv]} coincides with

the unique vector y ∈ R
V satisfying

ya =
∑

v

Pavyv , ys = xs , a ∈ A , s ∈ S . (3)

Moreover,

E[Xv] =
∑

s

γv
sxs , v ∈ V . (4)

Equation (3) states that the expected stationary belief of

each regular agent coincides with the arithmetic average

of those all her neighbors’. In other words, the vector of

the agents’ expected stationary beliefs is harmonic on the

graph with boundary conditions corresponding to the stub-

born agents’ beliefs. Equation (4) shows that the expected

stationary belief of an agent can be written as a convex

combination of the stubborn agents’ beliefs, with weights

given by the hitting probabilities on the set S of the random

walk on the graph started at v. Such a characterization turns

out to be fundamental in deriving the results presented below.

First, we introduce the notion of fluidity of a social

network.

Definition 1: Given a social network, let P and π be as

in (2). Let d∗ := minv dv be the minimum degree, and let

τ denote the (variational distance) mixing time [4], [22] of

the standard random walk on V . The fluidity of the social

network is the ratio

Φ :=
nd∗

τ
∑

s ds

. (5)

A sequence of social networks (or, more briefly, a social

network) of increasing population size n is highly fluid if Φ
diverges as n grows large.

Our estimates will show that for large-scale highly fluid

social networks, the expected stationary beliefs of most of

2350



the regular agents in the population are very close to the

value

x :=
∑

s

γsxs , γs :=
∑

v

πvγ
v
s , s ∈ S . (6)

Observe that γs coincides with probability that the random

walk V (t), started from the stationary distribution π, hits

the stubborn agent s before any other stubborn agent s′ ∈ S.

In fact, one may interpret γs as a relative measure of the

influence of the stubborn agent s on the society compared

to the rest of the stubborn agents s′ ∈ S.

Theorem 4: Let Assumption 1 hold, and assume that

4
∑

s ds ≤
∑

v dv. Then, for all ε > 0,

1

n

∣

∣

∣

{

v :
∣

∣

∣
E[Xv] − z

∣

∣

∣
≥ ∆∗ε

}∣

∣

∣
≤
ψ(ε)

Φ
, (7)

where Φ is the fluidity, ψ(ε) := 16ε−1 log(2e2/ε), and

∆∗ := max
s,s′

{xs − xs′}.

This theorem implies that in large-scale highly fluid social

networks, as the population size n grows large, the expected

stationary beliefs of regular agents concentrate around the

value z. We refer to this as an homogeneous influence of

the stubborn agents on the rest of the society—meaning that

their influence on most of the agents in the society is approx-

imately the same. Indeed, it amounts to homogeneous (at

least in their first moment) marginals of the agents’ ergodic

beliefs. This shows that in highly fluid social networks, most

of the regular agents feel the presence of the stubborn agents

in approximately the same way.

It is worth stressing how the condition of homogeneous

influence may significantly differ from an approximate con-

sensus. In fact, the former only involves the (the first and

second moments of) the marginal distributions of the agents’

stationary beliefs, and does not have any implication for their

joint probability law. A chaotic distribution in which the

agents’ ergodic beliefs are all mutually independent would

be compatible with the condition of approximately equal

influence, as well as an approximate consensus condition,

which would require the ergodic beliefs of most of the agents

to be close to each other with high probability. We will

address the investigation of this topic in another work.

Intuitively, if the set S and the mixing time τ are both

small, then the influence of the stubborn agents will be felt

by most of the regular agents much later then the time it takes

them to influence each other. Hence, their expected beliefs

will converge to values very close to each other. The proof of

Theorem 4 relies on the characterization (4) of the stationary

expected beliefs in terms of the hitting probabilities of the

random walk. The definition of highly fluid network implies

that the (expected) time it takes V (t) to hit S, when started

from most of the nodes of G, is much larger than the mixing

time τ . Hence, before hitting S, V (t) looses memory of

where it started from, and approaches S almost as if started

from the stationary distribution π.

We now present some examples of family of social net-

works that are highly fluid in the limit of large population

size n. Following a common terminology, we say that some

property of such graphs holds with high probability, if the

probability that it holds approaches one in the limit of large

population size n.

Example 1: (Connected Erdös-Renyi) Consider the

Erdös-Renyi random graph G = ER(n, p), i.e., the random

undirected graph with n vertices, in which each pair of

distinct vertices is an edge with probability p, independently

from the others. We focus on the regime p = cn−1 logn,

with c > 1, where the Erdös-Renyi graph is known to be

connected with high probability [16, Thm. 2.8.2]. In this

regime, results by Cooper and Frieze [12] ensure that, with

high probability, τ = O(log n), and that there exists a

positive constant δ such that δc logn ≤ dv ≤ 4c logn for

each node v [16, Lemma 6.5.2]. In particular, it follows

that, with high probability, 4nd∗ ≥ δ
∑

v dv . Therefore,

the resulting social network is highly fluid, provided that

|S| = o(n/ logn), as n grows large.

Example 2: (Fixed degree distribution) Consider a ran-

dom graph G = FD(n, λ), with n vertices, whose degree dv

are independent and identically distributed random variables

with P(dv = k) = λk, for k ∈ N. We assume that

λ1 = λ2 = 0, that λ2k > 0 for some k ≥ 2, and that the first

two moments
∑

k λkk, and
∑

k λkk
2 are finite. Then, the

probability of the event En := {
∑

v dv is even} converges

to 1/2 as n grows large, and we may assume that G =
FD(n, λ) is generated by randomly matching the vertices.

Results in [16, Ch. 6.3] show that τ = O(log n). Therefore,

one finds that the resulting social network is highly fluid with

high probability provided that
∑

s ds = o(n/ logn).
Example 3: (Preferential attachment) The preferential

attachment model was introduced by Barabasi and Albert [8]

to model real-world networks which typically exhibit a power

law degree distribution. We follow [16, Ch. 4] and consider

the random graph G = PA(n,m) with n vertices, generated

by starting with two vertices connected by m parallel edges,

and then subsequently adding a new vertex and connecting

it to m of the existing nodes with probability proportional

to their current degree. As shown in [16, Th. 4.1.4], the

degree distribution converges in probability to the power law

P(dv = k) = λk = 2m(m + 1)/k(k + 1)(k + 2), and the

graph is connected with high probability [16, Th. 4.6.1]. In

particular, it follows that, with high probability, the average

degree remains bounded, while the second moment of the

degree distribution diverges an n grows large. On the other

hand, results by Mihail et al. [24] (see also [16, Th. 6.4.2])

imply that the mixing time τ = O(log n). Therefore, the

resulting social network is highly fluid with high probability

if
∑

s ds = o(n/logn).
Example 4: (Watts & Strogatz’s small world) Watts and

Strogatz [35], and then Newman and Watts [29] proposed

simple models of random graphs to explain the empir-

ical evidence that most social networks contain a large

number of triangles and have a small diameter (the latter

has become known as the small-world phenomenon). We

consider Newman and Watts’ model, which is a random

graph G = NW(n, k, p), with n vertices, obtained start-

ing from a Cayley graph on the ring Zn with generator
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{−k,−k + 1, . . . ,−1, 1, . . . , k − 1, k}, and adding to it a

Poisson number of shortcuts with mean pkn, and attaching

them to randomly chosen vertices. In this case, the average

degree remains bounded with high probability as n grows

large, while results by Durrett [16, Th. 6.6.1] show that the

mixing time τ = O(log3 n). Therefor, the network is highly

fluid provided that
∑

s ds = o(n/ log3 n).

V. CONCLUSION

In this paper, we have studied a possible mechanism

explaining persistent disagreement and opinion fluctuations

in social networks. We have considered a stochastic gossip

model of continuous opinion dynamics, combined with the

assumption that there are some stubborn agents in the

network who never change their opinions. We have shown

that the presence of these stubborn agents leads to persistent

oscillations and disagreements among the rest of the society:

the beliefs of regular agents almost surely do not converge

sample-path-wise, and keep on oscillating in an ergodic

fashion. First and second moments of the stationary beliefs

distribution can be characterized in terms of the hitting

probabilities of a random walk on the graph describing the

social network. We have shown that in highly fluid social

networks, whose associated random walks have mixing times

which are sufficiently smaller than the inverse of the stubborn

agents’ set size, the vectors of the stationary expected beliefs

and variances are almost constant, so that the stubborn agents

have homogeneous influence on the society.
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