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Abstract— This work employs adaptive reduced order models
(ROMs) in the design of model predictive controllers for
stabilization of processes that are mathematically expressed as
parabolic partial differential equation (PDE) systems. Initially,
we construct a locally valid ROM of the PDE system em-
ploying the basis functions computed by applying an adaptive
model reduction methodology called APOD on a small data
ensemble. This ROM is then utilized in the design of model
predictive controllers (MPC) under constraints on the control
action. As periodic closed-loop process data becomes available
(during closed-loop operation under the constructed MPC), we
recursively update the ROM by employing our computationally
efficient adaptive model reduction methodology thus extending
the validity of ROM over the current operating region. The
effects of employing the adaptive methodology on performance
of MPC is studied. The design of such MPC controllers
is illustrated by employing the methodology on numerical
simulations.

I. INTRODUCTION

A significant research effort in recent years has focused
on designing efficient tools for both the analysis and control
of spatially varying processes that can be mathematically
expressed as nonlinear distributed parameter systems (DPS).
The research activity in this area has been motivated by a
wealth of industrially important processes (e.g., chemical va-
por deposition & etching, catalytic reaction & polymerization
processes) [4] which exhibit significant spatial variations due
to the presence of strong diffusive and convective mecha-
nisms. Such distributed chemical processes with significant
diffusive phenomena can be described by systems of lin-
ear/nonlinear parabolic partial differential equations (PDEs).
The long-term dynamic behavior of such parabolic PDEs
is characterized by a finite-number of degrees of freedom
[15]. An important issue in the design of controllers for PDE
system is the presence of constraints in the process operation.

Model predictive control (MPC), also known as receding
horizon control, is one of the powerful tools for handling
these process constraints with an optimal control setting.
Even though most of the research in MPC seems to be
focused on systems modeled by ODEs, the question of
MPC designs for PDEs [6] is also gaining interest in the
research community. Motivated by this, Galerkin’s method
was successfully used to derive ROMs, leading to MPC
designs that were computationally less expensive [5], [11],
[10]. However, the above formulation of ROMs cannot be
directly applied to systems which have nonlinear spatial
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differential operators or complicated spatial domains as one
cannot obtain the required eigenfunctions analytically.

To overcome this limitation researchers have focused on
data-driven methods such as proper orthogonal decomposi-
tion (POD) also known as the method of snapshots [14],
[8]. This method has been widely used in model reduction
[7], [9], optimization [16] and geometric control [1], [13]
of distributed processes without considering process con-
straints.above data-driven methods though assume an apriori
availability of a large ensemble of snapshots to correctly
capture the incidence of new trends during the process evo-
lution using the basis functions computed off-line from that
snapshot ensemble. However, generating such an ensemble
is not straightforward (and experimentally infeasible) as it
necessitates using suitably designed inputs to excite all the
modes [7]. Furthermore, currently no methodology exists to
synthesize such an ensemble.

Recently, we presented a methodology in [12], [18] to
recursively compute empirical eigenfunctions of a given PDE
system in a computationally inexpensive and robust way
and derive reduced order models for control purposes. This
approach is based on the computation of an approximation of
the eigenspace of the covariance matrix corresponding to its
significant eigenvalues. This dominant eigenspace is updated
recursively as new snapshots from the process are added
to the ensemble, simultaneously increasing or decreasing
its dimensionality if required. In this work, we extend the
previous method by designing MPC controllers, that respect
the process constraints, to stabilize the processes than can be
modeled by nonlinear parabolic partial differential equation
systems. We utilize the adaptive model reduction methodol-
ogy for the design and update of ROM. This updated ROM
is then utilized in the design and implementation of MPC
controllers. Note that we do not require the availability of
spectral eigenfunctions or well constructed data ensemble
(see [13], [17]) as required in the literature. Rather we re-
cursively update the initially computed ROM of the process,
using the closed-loop measurements of the process.

II. MATHEMATICAL PRELIMINARIES

We focus on designing model predictive controllers for
nonlinear parabolic PDEs of the following form:

∂x̄
∂t

= L(x̄)+b(z)u+ f (x̄). (1)

subject to the following boundary and initial conditions:

q
(

x̄,
dx̄
dη

, . . . ,
dno−1x̄
dηno−1

)
= 0 on Γ

x̄(z,0) = x̄0(z)

(2)
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and the following input constraints

umin ≤ u≤ umax (3)

where x̄(z, t) ∈ Rn denotes the vector of state variables,z =
[z1,z2,z3]∈Ω⊂R3 is the vector of spatial coordinates, u∈Rl

denotes the vector of manipulated inputs; umin and umax

denotes the lower and upper bounds on the manipulated
input, Ω is the domain of definition of the process and Γ is
its boundary. L(x̄) is a dissipative, possibly nonlinear, spatial
differential operator, f (x̄) is a nonlinear vector function,
q(x̄, dx̄

dη
, . . . , dno−1 x̄

dηno−1 ) is a nonlinear vector function which

is assumed to be sufficiently smooth, dx̄
dη

∣∣∣
Γ

denotes the
derivative in the direction perpendicular to the boundary and
x̄0(z) is the initial condition. b(z) ∈Rl is a known vector of
z of the form [b1(z) b2(z) · · · bl(z)], where bi(z) describes
how the ith control action ui(t) is distributed in the spatial
domain Ω.

The parabolic PDE system of Eq. 1 can be recast as
an infinite dimensional system in an appropriate Hilbert
space H (Ω,Rn), H being the space of n-dimensional vector
functions defined on Ω that satisfy the boundary conditions
in Eq. 2.

H =

{
x ∈ L2[Ω,Rn]; q

(
x,

dx
dη

, . . . ,
dno−1x
dηno−1

)
= 0 on Γ

}
(4)

We define the inner product and norm in H as follows:

(φ1,φ2) =
∫

Ω

φ
∗
1(z)φ2(z)dz, ||φ1||2 = (φ1,φ1)

1/2 (5)

where φ1,φ2 ∈ H [Ω,Rn]. Defining the state function x on
H as x(t) = x̄(z, t), t > 0,z ∈Ω, the operator A in H [Ω,Rn]
as A(x) = L(x̄), the input, controlled output and measured
output operators as Bu = bu, the system of Eqs. 1-2 acquires
the following form in the Hilbert space, H :

ẋ = A(x)+Bu+ f (x), x(0) = x0
umin ≤ u≤ umax.

(6)

where f (x) = f (x̄(z, t)) and x0 = x̄0(z).
Assumption 1: The long-term dynamics of the above PDE
system is finite dimensional.

III. FORMULATION AND UPDATE OF ROM

In this section, we formulate and update the ROM for
the system in Eqs.1-2 using an adaptive model reduction
methodology which we name APOD. We initially compute
the empirical basis functions, by employing APOD off-line
on the available off-line process data of Eq.1-2. We utilize
these basis functions in a Galerkin method framework to
derive the ROM for the above system. The validity of these
models is confined to a small region of the entire state
space, H (Ω), spanned by the available initial process data.
During the closed loop process evolution APOD updates
these models (using the closed loop process data) extending
the region of validity of these models. These updated ROMs
will be utilized in the section IV for the design of model
predictive controllers to stabilize the processes in Eqs.1-2.

A. Computation of initial basis functions

We use the initially available collection of off-line data
snapshots of the system in Eqs. 1-2 to construct the initial
basis functions using proper orthogonal decomposition. We
first construct the covariance matrix CN [12] then solve the
following eigenvalue-eigenvector problem

CNψ = λψ

to compute N eigenvalues. We partition the eigenspace of
the covariance matrix, CN , into two subspaces; the dominant
one containing the modes which capture at least ε percent
of energy in the ensemble (denoted as P) and the orthogonal
complement to P containing the rest of the modes (denoted as
Q). Such a partition is possible due to the fact that the domi-
nant dynamics of dissipative PDEs are finite (typically small)
dimensional [15]. Note that we define ε as the percentage
energy of the ensemble captured by dominant eigenfunctions.
We assume that out of N possible eigenvectors of CN , m have

the corresponding eigenvalues such that
m

∑
i=1

λi/
N

∑
i=1

λi ≤
ε

100
;

m eigenmodes of CN capture ε percent of energy in the
ensemble. These eigenvectors are then used in the following
equation

φi(z) = ∑
k

ψ
k
i vk(z), i = 1, · · · ,m.

to compute N eigenfunctions; here φi represents the ith

eigenfunction and ψk
i is the kth eigenvector of CN . An

orthonormal basis for the subspace P can be obtained as:

Z = [ψ1,ψ2, . . . ,ψm], Z ∈ RN×m (7)

where ψ1,ψ2, . . . ,ψm denote the eigenvectors of CN that
correspond to the eigenvalues λ1,λ2, . . . ,λm. Note that the
eigenfunctions computed by these eigenvectors capture the
dominant dynamics of the PDE system of Eq.1-2. The
orthogonal projection operators P and Q onto subspaces P
and Q can be computed as

P = ZZT , Q = I−ZZT (8)

where I denotes the identity matrix of dimension N.

B. Derivation of ROM

In this section, we derive a locally valid ROM of the
system of Eq. 6 using the above local basis functions.
Using assumption 1, the Hilbert space H is partitioned into
two subspaces Hs & H f respectively. Hs includes the slow
evolving modes whereas H f includes fast evolving stable
process modes. Clearly H = Hs⊕H f and H f is an infinite-
dimensional subspace, while Hs is a finite-dimensional one.
Using the orthogonal projection operator Q the state x ∈
H (Ω) can be decomposed as xs = P x ∈ Hs and x f = Q x ∈
H f . The state x of the system of Eq. 6 now can be expressed
as:

x = xs + x f = P x+Q x (9)
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Applying projection operators P and Q to the system of
Eq. 6 and using the above decomposition of x the system of
Eq. 6 can be equivalently expressed as:

dxs

dt
= As(xs,x f )+Bsu+ fs(xs,x f )

∂x f

∂t
= A f (xs,x f )+B f u+ f f (xs,x f )

yc = Cxs +Cx f ,ym = Smxs +Smx f
xs(0) = P x(0) = P x0, x f (0) = Q x(0) = Q x0

(10)

where As = PA(xs+x f ), Bs = P B , fs = P f , A f = Q A(xs+
x f ), B f = Q B and f f = Q f and the notation ∂x f /∂t is used
to denote that the state x f belongs in an infinite dimensional
subspace (H f ).

Using singular perturbation arguments for infinite di-
mensional systems [4], we neglect the infinite dimensional
fast and stable x f subsystem in Eq. 10. The following m-
dimensional xs subsystem is obtained:

dxs

dt
= As(xs,0)+Bsu+ fs(xs,0)

x f ≡ 0
(11)

Under the assumptions already stated, the above finite dimen-
sional system is an accurate approximation of the dominant
dynamics of the infinite dimensional system of Eq. 6.

Note that we use the basis functions, φ, computed
in step A to define the subspaces Hs & H f , i.e.,
Hs =span{φ1,φ2, . . . ,φm} and H f = H \Hs. As these basis
functions have a small range of validity the ROM (Eq. 11)
computed using these basis functions may not remain valid
during the course of closed-loop process evolution. To avoid
this situation, we periodically update the basis functions, φ,
using APOD thus extending it’s validity over the current
operational space.

C. Online refinement of ROM

To ensure the validity of the ROM in Eq. 11 during the
closed-loop process evolution, we update [12] the ROM us-
ing “periodically” available closed-loop snapshots. Initially,
the closed-loop snapshots are used to update the orthonormal
basis for the subspace P possibly by increasing or decreasing
the size of the basis if required and by maintaining the accu-
racy of the basis by performing orthogonal power iteration.
We then use these updated basis functions to update the ROM
in Eq. 11. We maintain that the extra work required for the
above process is small as long as the dimension of P is small
(a fact that is expected for parabolic PDEs).

The algorithm outlined below computes an approxima-
tion to Z without requiring the solution of the eigenvalue-
eigenvector problem of the covariance matrix, CN . To sim-
plify the algorithm, we also assume that the dimensionality of
the covariance matrix CN remains constant. This is achieved
by discarding the oldest snapshot from the ensemble as a new
one is obtained. As a new snapshot from the process becomes
available, the subspace P may change in the following three
ways:
• The dimension of the dominant subspace P may in-

crease i.e., one mode corresponding from Q becomes

necessary to capture the desired percentage of energy
in the ensemble. This is ascertained by monitoring the
contribution of the dominant eigenvalue of cq = QCNQ,
which is the eigenvalue λm+1 of CN towards the total
energy of the ensemble, i.e.,

ξ =
λm+1

∑
m+1
i=1 λi

If ξ increases to more than (100−ε) percent we append
Z, the basis of subspace P, with the corresponding
eigenvector associated with λm+1.

• Some of the eigenmodes of the subspace P may no
longer be necessary to capture the required ε percent of
the energy. In this case, the basis Z should be updated
and its dimension should be simultaneously decreased.
To test this the following m×m matrix H = ZTCNZ is
introduced. If only m̂, with m̂ < m, eigenvalues of H are
dominant then the basis Z is updated and its dimension
is decreased.

• The dimensionality of P remains unchanged. However
the basis Z is updated, whenever the current basis is
not accurate, to maintain the accuracy of the basis. The
following one step power iteration Z = orth(CNZ) is
executed (if necessary after analyzing the accuracy of
the current basis) to maintain the accuracy of the basis
after each addition of a snapshot.

Based on the new values of Z, we now compute the revised
basis functions φ1,φ2, . . . ,φm as a linear combination of the
snapshots given by the following equation

φi(z) =
N

∑
k=1

ψ
k
i vk(z), i = 1, · · · ,m (12)

where ψk
i denotes the kth element of vector ψi and {vk}N

k=1 is
the collection of N snapshots. These updated basis functions
are then utilized to update the ROM of Eq.11. In between
the periodic updates of ROM, we assume that the updated
ROM computed in Eq. 11 remains as a valid representation
of the original system in Eq. 6.

IV. DESIGN OF MODEL PREDICTIVE CONTROLLERS

In this section, we utilize the recursively updated ROMs in
the synthesis of model predictive controllers to stabilize the
system given by Eqs. 1-2. We assume that the full state mea-
surements from the process becomes available periodically.
The control law is obtained by formulating and solving the
following open-loop optimal control problem with a receding
control horizon.

uo = argmin
u

J(xs,u)

s.t.

dxs

dt
= As(xs,0)+Bsu+ fs(xs,0), xs(t0) = P x0,

u ∈U,

(13)
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We employed a standard performance index J

J(xs,u) =
∫ t+Tp

t
(qs||xs||22 +uT Ru)dτ+gs(xs(t +Tp))

2 (14)

where Tp denotes the prediction horizon, qs & gs are strict
positive numbers. U denotes the set of admissible input
values which is assumed to be compact. Thus U = {u(t) ∈
Rl : umin

i ≤ u(t)≤ umax
i , i = 1, · · · , l}, where umin

i & umax
i are

the maximum & minimum bounds on ui.
We discretize the temporal domain into mt intervals with

a step length of δti = ti− ti−1, ∀i = 1, · · · ,mt . The control
action u(t) is then expressed as a series of the form

u(t) =
mt−1

∑
i=0

ui+1[H(t− ti)−H(ti+1− t)] (15)

where H(·) is the standard Heaviside function. Using control
vector parametrization (CVP) methodology and the above
discretized form of the control vector, we reformulate the
dynamic optimization problem in Eq.13 as an algebraic
nonlinear one. CVP involves the temporal discretization of
the control vector only, and the solution of the dynamic
equality constraints through direct integration, keeping track
of constraint violations during the process evolution [19].
Solution of the optimization problem yields an optimal
input sequence uo at each sampling instance and only the
first input vector in the sequence is actually implemented.
Subsequently, the prediction horizon is moved forward by
one time-step, and the above problem is re-solved using new
process measurements.

V. APPLICATIONS

A. Application 1 - Diffusion-reaction processes

In this section, we apply the proposed adaptive model
reduction and control methodology to a typical diffusion-
reaction process that exhibits nonlinear dynamic behavior.
Specifically, we consider an elementary exothermic reaction
A→ B taking place on a thin catalytic rod. The temperature
of the rod is adjusted by means of an actuator located along
the length of the rod. Assuming that the reactant A is present
in excess, the spatial profile of the dimensionless temperature
of the rod is described by the following parabolic PDE:

∂x
∂t
=

∂

∂z
(k(x)

∂x
∂z

)+βT (z)(e−γ/(1+x)− e−γ)

+βU (b(z)u(t)− x)
(16)

subject to the following boundary conditions:

x(0, t) = 0, x(π, t) = 0 (17)

and the initial condition x(z,0) = x0(z).
Here x denotes the dimensionless rod temperature, z is the

spatial coordinate along the axis of the rod, βT (z) denotes
the dimensionless heat of reaction and is an explicit function
of the spatial coordinate z, γ denotes the dimensionless
activation energy, βU denotes the dimensionless heat transfer
coefficient, u(t) denotes the magnitude of actuation, and b(z)
accounts for the spatial profile of the actuator. A spatially
distributed actuator with b(z) = H(z− 0.3π)−H(z− 0.6π),

where H(·) again denotes the standard Heaviside function,
was considered. The nominal values and expressions of the
process parameters used in the presented simulations are:
k = 0.5+ 0.7/(x+ 1), x0(z) = 0.5, βT (z) = 13[cos(z) + 1],
γ = 2, and βU = 2. Figure 1(a) presents the evolution of the
PDE for u(t) = 0 from an initial condition of x(z,0) = 0.5.
It is observed that the system evolves away from the above
steady-state to another steady-state characterized by a non-
uniform distribution of temperature across the rod. Hence,
we conclude that the steady-state x(z, t) = 0 is an unstable
one. As a result we formulate the control problem as the
one that stabilizes the rod temperature around the spatially
open-loop unstable steady-state. We initially collected an
ensemble of 100 open-loop snapshots of the system of Eq.16
with u(t) = 0, without performing an exhaustive sampling of
the state-space of the PDE. This ensemble of snapshots is
presented in Figure 1(a). Applying the APOD step resulted in
a single dominant basis function which captured more then
99% of the energy embedded in the ensemble.

We utilized the MPC formulation presented in section IV
to stabilize the unsteady steady-state x(z, t) = 0. A prediction
horizon of Tp = 6, with time step δt = 0.25 and penalty
parameters qs = 100, R = 20, gs = 300 were used. U =
{u(t) ∈ R1 : −0.6 ≤ u(t) ≤ 0.6}. The control vector was
discretized using mt = 4 intervals over a control horizon
of Tc = 4 and the resulting discretized control vector was
utilized for the solution of the above optimization problem
using CVP methodology. The optimization problem was
solved using the MATLAB subroutine fmincon. The first
input vector from the obtained optimal control sequence uo
was actually implemented in the plant Eq.16. Subsequently,
the prediction horizon was moved forward by one time-
step, the ROM was updated by using the obtained closed-
loop measurement & APOD methodology and the above
optimization problem was re-solved using the new ROM
& process measurements. Figure 1(b) presents the closed-
loop profile of the state x(z, t); it is clear that the controller
successfully drives the process to the spatially uniform steady
state of x(z, t) = 0. Figure 2(a) presents the corresponding
control action that drives the process to the steady state.
We note that the computed control action stays within the
constraint set U. We also observe that the objective function
J (computed at discrete time-steps of t = 0.25) converges to
zero upon the achievement of the desired control objective.

As more process measurements from the closed-loop op-
eration were included in the ensemble while simultaneously
old snapshots were removed, a new basis function became
dominant and joined the dominant eigenspace P at t = 0.75.
Consequently, the dimensionality of the ROM of Eq.16
increased from m= 1 to m= 2. Following the update of ROM
the constraints of the MPC were revised and the optimization
problem in section IV was re-solved using the new ROM &
new process measurements.

To test the robustness of the methodology, we varied the
process parameters, initial conditions and actuator distri-
bution functions. In all the cases the process successfully
converged to desired steady state. Figure 2(b) presents the
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a)

b)

Fig. 1. a)Open-loop profile of the state of the diffusion-reaction process
(Eq.16). b) Closed-loop profile of the state of the diffusion-reaction process
(Eq.16).

computed control action for a −12.5% variation in βT and
−20% variation in initial condition. We observe that in the
both cases the system is driven to the spatially uniform steady
state x(z, t) = 0 faster and with less control action, since in
these two cases the effect of destabilizing nonlinearity is
smaller in the first case of variation in βT and in the second
case the system starts closer to the spatially uniform steady
state.

B. Application 2 - Wave suppression

In this section, we illustrate the proposed methodology
to Kuramoto-Sivashinsky equation (KSE) with distributed
actuation.

∂x
∂t

=−ν
∂4x
∂z4 −

∂2x
∂z2 − x

∂x
∂z

+
l

∑
i=1

biui(t) (18)

subject to the periodic boundary conditions:

∂ jx
∂z j (−π, t) =

∂ jx
∂z j (π, t), j = 0, . . . ,3 (19)

and the initial condition

x(z,0) = x0(z) (20)

where the x is the state of the system x ∈H ([−π,π],R) and
is considered to be sufficiently smooth (i.e., differentiable 4
times), z is the spatial coordinate, t is the time and ui(t) is
the ith manipulated input. The spatial differential operator of
system of Eq. 1, for this problem is of the form:

A(x) =−ν
∂4x
∂z4 −

∂2x
∂z2 − x

∂x
∂z{

x ∈H ([−π,π];R);
∂ jx
∂z j (−π) =

∂ jx
∂z j (π), j = 0, . . . ,3

}
(21)

a)

b)

Fig. 2. a) Temporal profile of the control action. b)Temporal profile of the
manipulated control action for nominal parameters and for −20% variation
of the initial condition and for a −12.5% variation of βT .

where the length of the spatial domain is 2π and the diffusion
parameter in Eq. 18 was set as ν = 0.25. Three control
actuators were assumed to be available at the following
locations L = [0.4π,0.6π,−0.3π]; the corresponding spatial
distribution functions at these locations are bi(z) = δ(z−
Li); i = 1, . . . ,3. In these simulation runs, the following
spatially non-uniform initial condition was considered:

x0 =
4

∑
i=1

sin(iz)

Figure 3(a), presents the wave pattern observed in the open-
loop evolution of KSE wherein we observe the formation
of persistent waves. Thus the control objective was set to
stabilize the process in a optimal way in the neighborhood
of the spatially uniform steady state x(z, t) = 0.

For the design of controller, an initial ensemble of 100
open-loop snapshots (N = 100) was collected by simulating
the process with u(t)≡ 0 till t = 2. Note that no exhaustive
sampling of state space as performed in [2] was not required.
Application of POD to this ensemble resulted in m = 3
basis functions that captured 99.99% of the energy of the
ensemble. These basis functions were then employed in the
computation of the local ROM (Eq. 11) for the above process.

We then utilized the MPC formulation presented in sec-
tion IV to stabilize the unsteady steady-state x(z, t) = 0. A
prediction horizon of Tp = 7, with the time step δt = 0.2 and
qs = 100, R = 20I3×3, gs = 300 were used. U = {u(t) ∈R3 :
−3≤ ui(t)≤ 3, i = 1 · · ·3}.

Figure 3(b) presents the closed-loop profile of the state
x(z, t); the controller successfully drives the process to a
neighborhood around the spatially uniform steady state of
x(z, t) = 0 in a finite time. Figure 4(a) presents the corre-
sponding control action that drives the process to the steady
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state. We note that the computed control action stays within
the constraint set U. Also the value of the objective function

a)

b)

Fig. 3. a) Open-loop profile of the state of the diffusion-reaction process
(Eq.18). b)Closed-loop profile of the state of the diffusion-reaction process
(Eq.18).

J converges to zero upon achieving the control objective
(Figure 4(b)).

APOD increases the dimensionality of ROM from 3 to 4
at t = 0.6 as more basis functions were needed to capture the
emerging new trends of the closed-loop process. To maintain
the accuracy of the basis functions and the ROM we updated
the ROM using the step 3 of the APOD methodology (section
III C).

We also stabilized the above KSE process using a lower
energy criterion of 99%. For this case APOD was found to
have a superior performance compared to just utilizing POD
methodology. For the reasons of brevity we do not present
these results in this manuscript. Further reduction of ε lead to
deterioration of performance. However the MPC controller
designed based on APOD still stabilized the process while a
POD designed one failed.
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Birkhäuser, New York, 2001.

[5] S. DUBLJEVIC, P. MHASKAR, N. H. EL-FARRA, AND P. D.
CHRISTOFIDES, Predictive control of parabolic pdes with state and
control constraints, Int. J. Rob. & Nonl. Contr., 16 (2006), pp. 749–
772.

a)

b)

Fig. 4. a) Temporal profile of the manipulated control action with 3 control
actuators. b) Temporal profile of the MPC objective function. b)Temporal
profile of the dimensionality of the ROM

[6] P. DUFOUR, Y. TOURE, D. BLANC, AND P. LAURENT, On nonlin-
ear distributed parameter model predictive control strategy: on-line
calculation time reduction and application to an experimental drying
process, Comp. & Chem. Eng., 27 (2003), pp. 1533–1542.

[7] M. D. GRAHAM AND I. G. KEVREKIDIS, Alternative approaches
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