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Abstract— In this paper, an integrated attitude estimation
and control algorithm is addressed and implemented to a
spacecraft dynamical model subject to observation (sensor)
losses. Rigid body equations of motion for modeling and
control of spacecraft model is obtained from both kinematic
and dynamic equations. An earlier version of the so-called
closed-loop estimation scheme presented in [9] is extended and
implemented to the spacecraft model subject to observation
losses. Compensated observation signals are reconstructed
based on linear prediction subsystem and utilized at measure-
ment update steps. Simulation results verify that the proposed
robust estimation algorithm applied to the rigid body spacecraft
model significantly outperforms existing open-loop filtering
algorithms and could attack many other practical applications
with intermittent output measurement losses.

I. INTRODUCTION

Many spacecraft systems rely on the ground-based data

processing and communication which may be affected by

many factors such as inherent time-delay and measured data

loss [13]. A well-established communication is an integral

part of the successful completion of a spacecraft mission.

However, there might be frequently encountered scenarios

where the observation data packets are lost due to a number

of reasons, such as limited bandwidth of communication

channels, confined memory capability of buffer registers and

congestion of networks channels to name but a few. Despite

of rapid advancements in the spacecraft technology, their

intense reliability on the ground-based data may be suffered

due to any of the above disturbing factors results of which

could lead towards a communication delay and even failure

in the spacecraft mission.

On the other hand, delay-free and uncorrupted communi-

cation plays a key role when a failure occurs. To over-

come such failures, hardware redundancy approaches such

as duplicated, triplicated and voting schemes are used to

handle some classes of Fault Detection and Isolation (FDI)

problems to name a few [8]. However, several facts con-

sisting of complexity, cost and weight of added (hardware)

components have turned the attention towards Model-based

FDI approaches which can overcome the above drawbacks

by using mathematical models of the plant [17].

In the event of loss of observation (LOOB), there is a vital

need for a robust estimation algorithm to provide reliable and

superior estimation performance with bounded estimation
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errors if an output data loss is occurred. Towards this end,

theoretical concepts of the robust estimation technique pro-

posed in [9], [10] is discussed in this paper and implemented

for the attitude estimation and control problem of a rigid

body spacecraft dynamical model subject to intermittent

observation losses where a Kalman filter is utilised to carry

out real-time estimation of the roll, pitch and yaw attitudes.

Typically, spacecraft attitude state vector is obtained by

employing the kinematic equations - see e.g. [11], [4] and

other references therein. In this paper, both kinematic and

dynamics models are considered in order to compute the

full state-vector of the spacecraft model. In addition, uncer-

tainties arising from the external torques and distribution of

momentum (e.g. due to rotating instruments) are assumed

negligible for the sake of this study which is focused on

attitude measurement losses.

The rest of the paper is organized as follows: In Section

II, dynamics of the spacecraft are presented based on non-

linear Euler equations in modified Rodriguez parameteriza-

tions. Section III outlines the control system design used

to stabilize the closed-loop system. A brief overview of

the open-loop Kalman filtering and compensated closed-

loop estimation techniques is presented in Section IV. The

effectiveness of the proposed estimation scheme, based on

various performance indexes of the spacecraft model, subject

to LOOB, is illustrated through a numerical example in

Section V followed by our conclusions in Section VI.

II. SPACECRAFT RIGID BODY

To overcome the limitations of the quaternion and Euler

angles parameterizations, Modified Rodriguez Parameters

(MRPs) are recently found an elegant enhancement com-

pared to the family of attitude parameters [14]. For this

reason, MRP representation is also employed in this paper

for studying the nonlinear spacecraft model as discussed

subsequently.

A. Nonlinear Plant Dynamics

The dynamics of the spacecraft can be described based on its

Kinematic equations, see e.g. [5], [11]. However, it has been

shown to achieve superior performance if the spacecraft is

modeled as a rigid body where its states are described by two

set of equations, “Euler equations of rotational dynamics"

and “Kinematic equations" using MRP representation [11].

The MRP structure is used in this paper to explore a

complete insight of the spacecraft dynamics as follows:

1) Kinematic Equations: The Kinematic equations in

terms of MRP are

σ̇ = T (σ)ω (1)
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where T (σ) is a Jacobian matrix defined as

T (σ) =
1

2

[(

1− σTσ

2

)

I3×3 + S(σ) + σσT
]

(2)

and S(σ) is the skew symmetric matrix which represents the

cross product operation of vector, σ. The MRP vector, σ, and

noisy angular velocity vector, ω, are both of dimension 3×1
where ω is defined as follows:

ω =





ω1

ω2

ω3



 =





ω1 + n1

ω2 + n2

ω3 + n3



 (3)

where ni (i = 1, 2, 3) represent gyroscope noises which may

include scale factor error and drift. The plant disturbances

are assumed to be Gaussian zero-mean white noises, i.e.

ni ∼ N (0,Λ) ; i = 1, 2, 3. (4)

where Λ is the variance of bias.

2) Dynamic Equations: Euler’s equations of rotational

dynamics are described as

Jω̇ = −S(ω)Jω + τ (5)

where J3×3 is the spacecraft inertia matrix, τ3×1 is the

control input torque and S(ω) = ω × ω′ is the skew

symmetric matrix representing the cross product operation

as

S(ω) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (6)

The kinematic and dynamic equations from Eqs. (1) and (5),

produce the augmented state vector as

ẋ(t) = f(x(t), τ(t)) + ξ(t) (7)

where x = [σ ω]T and ξ are the state vector and process

noise vector. After obtaining the spacecraft plant model, an

stable closed-loop system is required for the implementation

of the estimation algorithm, wherein the effects of intermit-

tent measurement losses could be analyzed. Towards this

end, an overview of a straightforward method to design the

stable closed-loop system using an output feedback control

law is presented in the subsequent section.

III. CONTROL SYSTEM DESIGN

In the conventional design methods for the spacecraft control

applications, the controllers may require two components

of angular velocity and attitude – see e.g. [19], [20]. Ref.

[1] addresses an output feedback control law to stabilize

the closed-loop. We shall employ this method in this paper

assuming that we do not have any access to σ̇ and ω
measurements. The control scheme consists of two loops; an

inner loop with a transfer function and an outer loop with

an unity (negative) feedback. The control system design is

summarized as follows[1]:

τ = T T (Spσ̃ − σ
∗) (8)

where

Sp = diag(sp1, sp2, sp3),

σ̃ = σd − σ̂,

σ∗ = Nσ,

N = diag
(

sd1
α1s

s+ α1
, sd2

α2s

s+ α2
, sd1

α3s

s+ α3

)

(9)

where Sp and N are controller design parameters and are

positive definite matrices. The candidate Lyapunov function

is chosen to be [1]

V (σ∗, σ̇, σ̃) =
1

2
(σ̇TH∗σ̇ + σ̃TSpσ̃ + σ∗T {αSd}

−1σ∗) (10)

where H∗ and Sd are defined as

H∗ = (T (σ)−1)TJT (σ)−1

Sd = diag(sd1, sd2, sd3) (11)

The time derivative of the above Lyapunov function is

computed as

V̇ = −σ̇Tσ∗ + σ∗T {αSd}
−1(Sdασ̇ − ασ

∗)

= −σ∗TS−1
d σ∗ (12)

To stabilize the nonlinear plant, the design elements (spi, sdi
and αi) must be selected so that V̇ ≤ 0 to yield guaranteed

stable closed-loop. It is also worthwhile to emphasize that we

do not intend to discuss proof of the control system stability

since our main intention is to attain the state estimation

of the spacecraft system in the event of measurement loss.

However, to be able to obtain appropriate estimation results,

one is in need of a stabilizing controller design - for a

detailed discussion on the asymptotic stability associated

with the output feedback control law the interested readers

are referred to [1].

IV. PROPOSED ROBUST KALMAN FILTERING

In practice, factors such as intermittent sensor faults, limited

bandwidth of communication channels, confined memory

space, congestion of network, etc may produce adverse sce-

narios for any estimation and filtering algorithms including

Kalman filtering (linear or non-linear) due to there being

heavily dependant on the measured data [6], [2]. Any of such

unfavorable conditions may lead Kalman filter to diverge

rapidly. To overcome those shortcomings, one approach for

the problem of state estimation is to utilize the so-called

Open-Loop Estimation (OLE) algorithm – see e.g. [15], [12],

[18], [16]. In OLE, LOOB cases are considered via running

the Kalman filter in an Open-Loop fashion, that is whenever

PlantSp T T
σd(t)

σ̃(t)
σ∗(t)

τ σ(t)
+ - + -

N

Fig. 1. Attitude stabilization using output feedback control [1].
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an observation loss is detected, the predicted quantities are

processed for the next iteration with no update. It might be

useful to outline a brief summary of OLE and its relevant

drawbacks as discussed below.

A. Open-Loop Estimation

The Open-Loop Kalman Filtering (OLKF) or simply Open-

Loop Estimation (OLE) is effectively a straightforward ap-

proach to accommodate short-period data losses. In this

approach, if, say at time step k, a measurement loss is

occurred, Kalman filter gain Kk is set to zero, and hence

no update step is performed. Therefore, the filter is to be

run with the measurement sensitivity matrix of C = 0 [7].

Consider, a discrete time nonlinear model of the form

xk+1 = f(xk, uk) + ξk & zk = g(xk) + vk (13)

Using the concept of extended Kalman filter (EKF), the

OLE algorithm is summarized with appropriate comments

as discussed below.

1) Prediction step: The predicted state and covariance are

as follows1:

oxk+1|k = f(x̂k|k, uk) (14)

oPk+1|k =
∂f

∂x

∣

∣

∣

x̂k|k

Pk|k
∂f

∂x

∣

∣

∣

T

x̂|k
k

+Qk (15)

2) Accommodating measurement vector: The unique

adopted observation vector in OLE scheme is

ozk+1 =
∂g

∂x

∣

∣

∣

x̂k|k

oxk+1|k ≡ ẑk+1 (16)

This will cause the residual vector to be zero (2-norm) and

consequently,

oKk+1 = 0 (17)

3) Measurement update step: Since no correction is per-

formed at the predicted step of OLE, the a posteriori step

quantities will be

oxk+1|k+1 ← oxk+1|k (18)

oPk+1|k+1 ← oPk+1|k (19)

Therefore, in the OLKF method the a posteriori state and

error covariance matrix strictly follow the a priori state and

error covariance matrix respectively.

B. Drawbacks of the Open-Loop Kalman Filtering (OLKF)

In practice, the OLKF approach may diverge in the presence

of large data loss duration which may end up with an

unstable estimation configuration. Besides, there are other

shortcomings associated with the OLKF approach as fol-

lows:

1) High divergence-rate of state estimation and error

covariance due to the fact that no update is performed

at the measurement update step,

2) Undesired transient (sharp spikes) and oscillatory es-

timation results,

1The leading subscript ‘o’ denotes Open-Loop KF approach.

3) After resuming output observation, the state estimation

and error covariance may not fully attain failure-

free (nominal) steady-state values since the process is

simply running based on only the prediction.

Under loss of observations for a sufficiently large period of

time, there seems a vital need for an optimal estimation tech-

nique which could provide robust estimation with minimised

error covariance.

C. CCLKF Estimation Scheme

Due to the shortcomings associated with the OLKF ap-

proach, a robust estimation technique based on the linear

prediction concept is employed here. This technique referred

to as the "Compensated Closed-Loop Kalman Filtering

(CCLKF)" [10], [9] could reconstruct missing observation

data through a linear prediction dynamics. In CCLKF, loss of

data could be detected through residual based FDI methods

[17], [22] from which missing data signals are reconstructed

as follows:

z̄k =

p
∑

i=1

αkzk−i (20)

where αi’s are the Modified Linear Prediction Coefficients

(MLPC) representing the weights assigned to past obser-

vations in relation to their correlation to the missing data

and p is the linear prediction filter order (LPFO). Both αi’s
and LPFO in Eq. (20) are dominant factors for the design of

robust filtering algorithm [10]. Recall that a larger number of

LPFO does not necessarily guarantee optimal compensated

signals [3]. Hence, an attentive consideration is required in

order to obtain the optimal parameters. Algorithm 1 is our

straightforward algorithm used to provide the optimal values

of MLPC and LPFO which is discussed in detail as follow.

Algorithm 1 : Selection of the LP filter order

1: Select Rth set threshold autocorrelation value

2: Recursion j = 1, 2, . . .M
3: Compute R[j] using Equation (26)

4: Check: Is R[j] ≤ Rth,

Yes Stop further computation of R[j] & Select

order of LP filter (p← j)
Else update j ←− j + 1

5: Repeat Step 3

Once CCLKF is designed and developed, the switch-

ing mechanism between normal filtering operation and the

CCLKF is carried out for the estimation purposes subject

to loss of measurements;if data loss is detected, output will

be switched so as to compute the compensated observation

signal, z̄k using CCLKF, and resume normal operation if

failure (due to loss) is cleared.

Although EKF is considered in this paper, in order to grasp

a clear idea, we shall consider a discrete LTI plant dynamics,

for the sake of simplicity, as described by the following state-
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space equations:

xk+1 = Axk +Buk + ξk

yk = γk
(

Cxk
)

+ vk (21)

where γk is characterized as follows:

γk =

{

0; if LOOB is detected

1; otherwise
(22)

Assuming LOOB has been detected at time step ‘k’, the

CCLKF approach is summarized below:

• Prediction cycle at time step (k − 1), we have

cxk|k−1 = Acxk−1|k−1 +Buk−1

cPk|k−1 = AcPk−1|k−1A
T +Qk (23)

where E[ξkξ
T
k ] = Qk is the process noise covariance

matrix2.

• Check for data-loss detection:

if γk = 1 → no LOOB is occurred.

⇒ Run conventional Kalman filter [6].

if γk = 0 → an abnormal condition is detected (LOOB

case)

⇒ The actual observation is not available to which the

prediction step is updated. Run Robust Kalman filter

summarized below.

• Select a suitable window size of the previous available

observations (n) which is modeled through the linear

prediction filter order (p) with a constraint of n ≥ 2p,

as Nyquist Shannon sampling condition [21].
• Compute autocorrelation matrix Rγ as

Rγ =















R[0] R[1] R[2] · · · R[n − 1]
R[1] R[0] R[1] · · · R[n − 2]
R[2] R[1] R[0] · · · R[n − 3]

.

.

.

.

.

.

.

.

.
. . .

.

.

.

R[n− 1] R[n− 2] R[n− 3] · · · R[0]















(24)

and the modified autocorrelation array rγ is

rγ =
[

r[1] r[2] r[3] · · · r[n]
]T

(25)

where

E
[

zTk−izk−j
]

=

{

R[0], if i = j

R
[

|i− j|
]

, if i 6= j

E
[

zTk zk−j
]

= r[j]. (26)

• Compute MLPC as Aα = [αj ]
T = R−1

γ · rγ
• Calculate compensated measurement vector as

z̄k =

p
∑

j=1

αjzk−j ≡ Cx̄k + v̄k (27)

• Obtain compensated residual vector, z̄k − ẑk.

• Calculate the CCLKF gain

cKk = 2cPkC
T (C3cPkC

T +Rk)
−1.

2It should be clarified that if LOOB has been detected at time instant
k, there is no need to insert the initial subscript ‘c’ to the prediction step
entities (state and covariance), as they are not affected by LOOB. However,
a leading subscript ‘c’ is used for consistency of our notations.

REKFSp T T

N

Sensor LOOBτ z

ẑ

x̂τr

+ - Plant Model Detection+ -

Fig. 2. Robust attitude estimation in spacecraft control using the
proposed REKF.

• Measurement update step will be proceeded as:

cxk|k = cxk|k−1 + cKk(z̄k − Ccxk|k−1)

cPk|k = 1cPk − 2cPkC
T (C 3cPkC

T +Rk)
−1C2cP k

(28)

• Increase time step, k=k+1.

• Return to prediction cycle.

The error covariance matrices are computed as follows3:

1cPk = 1cPk|k−1
∆
= E[ek|k−1(ek|k−1)

T ]

2cPk = 2cPk|k−1
∆
= E[ek|k−1(ēk|k−1)

T ]

3cPk = 3cPk|k−1
∆
= E[(ēk|k−1)(ēk|k−1)

T ] (29)

with ek|k−1 = xk − cxk|k−1 and ēk|k−1 = x̄k − cxk|k−1.

The schematic diagram of the designed robust algorithm

for a general nonlinear plant, referred to as as Robust

Extended Kalman Filter (REKF) is shown in Fig. 2.

D. Features of CCLKF Approach

The CCLKF approach has been found to provide satis-

factory state estimation results which are superior than

those of open-loop approaches. However, using such an

advanced estimation technique would increase the algorithm

complexity, and hence there should be a trade-off of the

system performance between the additional computational

burdensome and required efficiency level. The added cost of

memory needed for storing previous measurement data and

extra computational efforts can be compromised for an added

complexity to spacecraft model so as to achieve a successful

completion of mission in the event of loss of measurements.

V. NUMERICAL SIMULATION RESULTS

In this section, the extended version of the aforementioned

estimation approaches in the form of extended Kalman

filter are applied to the spacecraft model subject to loss of

measurements. Also, the drawbacks of the OLKF approach

along with the added advantages of the CCLKF scheme are

illustrated through our typical simulation results.

A. Spacecraft model

An extended Kalman filter is employed to estimate the

attitude of the nonlinear spacecraft model. As the system

is derived in MRP representation, an output model could be

derived in Euler angles computed through sensors such as

rate-integrated gyro or accelerometers. Having Euler angles

at input model and MRP elements at output model, a precise

3
cP1k = Pk|k−1 is the normal predicted error covariance matrix.
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relationship is required to be established between the two

distinct representations. The output model in terms of MRP

is deduced by comparing two Direction Cosine Matrices

(DCM) associated with Euler angels and MRP of the same

sequences. Therefore, at measurement update step in Kalman

filtering we have

ẑ = Cx̂(t) =







∂φ
∂σ1

∂φ
∂σ2

∂φ
∂σ3

∂θ
∂σ1

∂θ
∂σ2

∂θ
∂σ3

03×3
∂ψ
∂σ1

∂ψ
∂σ2

∂ψ
∂σ3






x̂(t) (30)

where x̂(t) = [σ1 σ2 σ3 ω1 ω2 ω3]
T .

As mentioned above, by comparing the two associated DCM

of Euler angles and MRP (of sequence 3-2-1) and carrying

out some algebra, we have

∂φ/∂σ1 = H1σ1
[

1− π
]

∂φ/∂σ2 = H1

[

σ2{1− π}
]

∂φ/∂σ3 = H1

[

− σ3{σ
2 + π}

]

∂θ/∂σ1 = H2

[

2σ3
[

(3 − σ2)σ1 + (1− 4σ2
1)]

]

∂θ/∂σ2 = H2

[

2{σ2σ3(3− σ
2) + 2σ1(1 + σ2 − 4σ2

3)}
]

∂θ/∂σ3 = H2

[

σ4 + 6σ2 − 2σ2σ2
2 − 8σ1σ2σ3 − 1

]

∂ψ/∂σ1 = H3

[

2σ1
{

(σ4 + 1) + 2(σ2 − 2σ2
1)
}

]

∂ψ/∂σ2 = H3

(

− 2σ2
[

1 + 2(2σ2
1 − σ

2)
]

)

∂ψ/∂σ3 = H3

(

− 2σ3
[

1 + 2(2σ2
1 − σ

2)
]

)

(31)

where π = −σ2
1 − σ

2
2 + σ2

3 and

H1 =
4

[

8σ2σ3 + 4σ1(1 − σ2)
]

(1 + σ2)

H2 =
4

(1 + σ2)
√

[

8σ2σ3 + 4σ1(1− σ2)
]

2
+

[

− 4π + (1− σ2)2
]

2

H3 =
4

(1 + σ2)[8σ1σ2 + 4σ3(1 − σ2)

Through the above differentiation elements of φ, θ and ψ,

the output Jacobian matrix C can be constructed. In the

subsequent section, the estimation algorithms are applied to

the spacecraft model and the results are discussed.

B. Simulation Results

In this section, a representative set of simulation results

consisting of EKF with data loss (Blind EKF or BEKF),

CCLEKF and OLEKF, is shown for our spacecraft case-

study model results of which are compared with those of

fault-free (normal operation) EKF (NEKF). It is assumed

that LOOB has occurred due to the measurement transmis-

sion channel failure at time t = 30secs and is remained for

15secs - this is a tractable assumption as such intermittent

losses occur in many real-time applications. The sampling

time used is 0.01secs. In our simulations, the initial state vec-

tor is selected as x0 =
[

0.2 0.2 0.2 −0.3 −0.4 0.2
]T

.

The plant and output noise covariance matrices are also

assumed to be as Q = 0.01I6×6 and R = 0.05I3×3 where

I is identity matrix.

1) Modified Rodriguez Parameters: Figs. 3 and 4 show

the performance in terms of attitude signals estimation (σ1,

σ2 and σ3). In Fig. 3, the complete simulation period is

shown while in Fig. 4 the LOOB period is remarkably

highlighted. As clarified in Fig. 4, the BEKF and OLE

diverge rapidly from the nominal steady-state values during

the 15secs of LOOB. However, the results of the proposed

CCLEKF approach illustrated are very promising which

show that this algorithm is comparatively robust to LOOB

while it is not deviated from the normal-operation results.
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−0.5

0

0.5

1

σ
1

 

 

(a)

NEKF

BEKF

CCLEKF

OLEKF
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0.5

1

σ
2

 

 

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
σ

3

 

 

(c) Time (sec)

Data Loss Period

Fig. 3. Estimated attitude parameter σ.
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40 45 50 55
0.95

1

1.05

σ
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(b)

40 45 50 55
0.95

1

1.05

σ
3

 

 

(c) Time (sec)

Fig. 4. Highlighted estimated attitude parameter σ. Recall that
BEKF and OLEKF are exceeded from the divergence limits if
provided.

2) Angular Velocity: In addition to the attitude signals,

three states of angular velocities associated with the rigid

body spacecraft model are also analysed. Fig. 5 shows

the distinctions of the different approaches in the event of
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LOOB as an index of angular velocities. It can be seen

that LOOB makes OLE a poor estimation solution during

the loss period and even after the observation is resumed

– it is also important to stress that there are abrupt spikes

and undesired oscillations at the angular velocity estimation

results associated with the OLE method. On the other hand,

the measurement update in CCLEKF approach provides less

chattering in the state estimation which makes the CCLEKF

(and CCLKF for linear cases in general) very effective and

robust estimation algorithm to observation losses.

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

(a)

ω
1
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0

1
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ω
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0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

ω
3

 

 

(c) Time (sec)

NEKF

BEKF

CCLEKF

OLEKF

Data Loss Period

Fig. 5. Estimated angular velocity ω using different algorithms.
Recall that the proposed CCLEKF outperforms other estimation
methods in the presence of loss of observation.

VI. CONCLUSIONS

In this paper, a robust estimation algorithm was addressed

and applied to a rigid body spacecraft model subject to

measurement losses. Only typical simulation results were

shown in this paper. But, our conclusions are based on many

other simulation results (such as control effort, error analysis

and computational capabilities, etc) which were not shown in

the paper due to space limitation. Simulation results using a

numerical case study illustrated a comprehensive analysis of

the proposed CCLEKF approach vs other methods including

the OLE. Whilst the conventional Kalman filter approach

could potentially fail in providing satisfactory attitude es-

timation in the event of loss of observation, the proposed

Robust Kalman Filtering approach is found to be a successful

approach for the rigid body spacecraft application.

We plan to consider a more sophisticated dynamical model

of the spacecraft dynamics for our future studies by devi-

ating from the nominal operation and assumption of plant

stationarity. More quantitative stability analysis together with

employing fast and low-memory-demand approaches, such

as Levinson-Durbin or Leroux-Gueguen algorithms [7] to

reduce computational burdensome of the proposed estima-

tion algorithm, are also intended to be covered in our future

studies.
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