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Abstract— The semi-Markov jump linear system is more
general than the classic Markov jump linear system. In the
semi-Markov jump linear systems, the governing stochastic
process is not a Markov process, but a semi-Markov process.
Instead of the exponential distribution for the sojourn-time in
each mode in the jump linear system, the Weibull distribution
is considered in this paper. By deriving the infinitesimal
generator for the Lyapunov function of the semi-Markov jump
linear system, the numerically testable sufficient conditions for
stochastic stability of semi-Markov jump linear systems are
obtained. Numerical examples are provided to validate the
proposed sufficient stochastic stability conditions.

I. INTRODUCTION

The Markov jump linear systems (MJLSs) have received
considerable research attention in recent years. These types
of systems are modeled by a set of linear systems with the
transitions among the linear systems governed by Markov
chain. The MJLS can describe different types of systems
subject to abrupt changes. Hence, it finds many applications
in control systems, such as target tracking systems, fault
tolerant systems, manufactory processes, networked systems;
see, e.g., [1]–[4]. Many important results have been reported
in the literature. For instance, the stability analysis and con-
trol design are investigated in [5]–[7]. The stability analysis
of MJLS with partially known transition rates is studied in
[8]. From the mathematic point of view, the jump linear
systems belong to the stochastic systems.

In jump linear systems, the sojourn-time is the time dura-
tion between the two jumps. The sojourn-time h is a random
variable following continuous probability distribution F in
continuous-time jump linear systems. For example, in the
MJLS, F is an exponential distribution. Closely related to
the probability distribution, the transition rate λij(h) is the
speed/frequency that the system jumps from mode i to mode
j. The transition rate is also referred as failure rate or hazard
rate [9]. λij(h) is determined by F . For example, if F is an
exponential distribution, then λij(h) ≡ λij is a constant.
This time-invariant property of the transition rate can also
be derived from the memoryless property of the exponential
distribution. Because the memoryless property indicates that
the jump speed of the stochastic process is independent of
the past/history. In fact, only the exponential distribution
among the continuous-time probability distributions pertains
the memoryless property [9]. For this reason, using MJLS
to model the stochastic system requires that the transition
rate of the system is independent of past. This requirement,
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however, is too restrictive, because the transition rates for
many practical systems are not constants. For example,
in the fault tolerant control systems, the bathtub curve is
widely used to describe a particular form of the transition
rate function which comprises three parts: a) decreasing,
b) constant (roughly), c) increasing [10]. A typical bathtub
curve is reported in [11] shown in Fig. 1 where the system
jumps to mode i at h = 0. As a result, such a process
cannot be modeled as Markov process, so the MJLS has
some limitations in applications.
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Fig. 1. Transition rates in bathtub shape.

So what if the governing stochastic process of a stochastic
system is not a Markov process? To investigate the more
general stochastic systems with non-Markov jumps, it is nat-
ural to relax the assumptions introduced by Markov process.
Focusing on the continuous-time system in this paper and
considering the time-varying transition rate described above,
we relax the probability distribution of the sojourn-time h
from exponential distribution to a more general probability
distribution. As a result, the transition rate λij is relaxed from
a constant to a time-varying variable λij(h). The continuous
stochastic process whose sojourn-time is non-exponentially
distribution is referred to as continuous semi-Markov pro-
cess. Accordingly, the jump linear system whose parameter
switches according to semi-Markov process is referred as a
semi-Markov jump linear system (S-MJLS) [12].

The necessary and sufficient conditions for optimal control
for S-MJLS were discussed in [13]. Nevertheless, no sys-
tematic algorithms or numerical algorithms were provided
to test if an S-MJLS is stable or not. A stability condition
for the S-MJLS controller design was obtained in [12] where
the MJLS stability condition was adopted to design the con-
troller. Although the condition was verified on a bunch-train
cavity interaction system, the sojourn-time distribution was
“nearly exponential” which indicated the S-MJLS was nearly
MJLS and the time-varying information of the transition
rate was not considered in the controller design. Hou et
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al. [14] addressed the stochastic stability for the linear system
with semi-Markov jump parameters and similar results have
been obtained as in the Markov jump systems. In [14],
due to the density property of phase-type (PH) distributions
of all probability distributions on [0, +∞), the PH semi-
Markov process was firstly defined and the stability of simple
linear systems with PH semi-Markov jump parameters was
addressed. The stabilization of the MJLS with time-varying
transition rates which were described by polytopic sets were
studied in [15], where a conservative result was reported.
It is noticed that, although the stability and control design
problems for S-MJLS have been a research focus for several
years, little attention has been paid to develop numerically
testable stochastic stability conditions.

Due to the practical importance of developing numerically
testable stability conditions for the S-MJLS and based on
the fact that the S-MJLS is a generalization of MJLS, we
generalize the stochastic stability condition for MJLS to S-
MJLS in terms of linear matrix inequalities (LMIs) which
can be solved by the standard software package.

The remainder of this paper is organized as follows. The
formulation of the S-MJLS and the objectives are given
in Section II. In Section III, the sufficient conditions for
stochastic stability of S-MJLS are obtained. To validate the
proposed theorems in Section III, simulation examples are
provided in Section IV. Finally, the concluding remarks are
addressed in Section V.

II. PROBLEM STATEMENT

Considering a dynamical system defined in a probability
space (Ω,F ,P) where its state equation is as follows:

ẋ(t) = A(r(t))x(t),
x(0) = x0, r(0) = r0,

(1)

where {r(t), t ≥ 0} is a continuous-time semi-Markov
process taking values in a finite space S = {1, 2, · · · , N},
x(t) ∈ R

n is the state vector, x0 ∈ R
n is the initial state

at t = 0, r0 is the initial mode in the semi-Markov process
at t = 0, A(r(t)), r(t) = i ∈ S are system matrices with
compatible dimensions which depend on r(t). For simplicity,
A(i) is denoted by Ai.

The evolution of the semi-Markov process {r(t), t ≥ 0}
is governed by the following probability transitions:

Pr{r(t+ h) = j|r(t) = i}

=

{
λij(h)h+ o(h), r(t) jumps from i to j,
1 + λii(h)h+ o(h), otherwise,

(2)

where λij(h) is the transition rate from mode i to mode j

at t when i �= j and λii(h) = −∑N
j=1,j �=i λij(h) and o(h)

is little-o notation defined by limh→0
o(h)
h = 0.

The objective of this paper is: Propose the numerically
testable stochastic stability conditions of the S-MJLS in (1).
For the stochastic stability, we adopt the definition in [16].

Definition 1: System (1) with all modes and all t ≥ 0 is
said to be stochastically stable if there exists a finite positive

constant T (x0, r0) such that the following holds for any
initial condition (x0, r0):

E

[∫ ∞

0

‖x(t)‖2dt|x0, r0

]
≤ T (x0, r0). (3)

To address the stability condition of the S-MJLS, it is
necessary to revisit the stochastic stability of the MJLS.

A. The MJLS Revisit

If the stochastic process r(t) involved in (1) is a standard
Markov process, the system in (1) is referred as MJLS.
Due to the exponential distribution for the sojourn-time, the
transition rate from mode i to mode j is constant, i.e.

λij(t) =
fij(t)

1− Fij(t)
=

λije
−λijt

1− (1− e−λijt)
= λij ,

where λij is independent of t. The Lyapunov function of
system (1) can be chosen as the following quadratic form

V (x(t), r(t)) = xT(t)P (r(t))x(t),

where P (r(t)) is a set of symmetric positive definite ma-
trices. At time t, x(t) = x and r(t) = i, ÃV (x(t), r(t))
emanating from the point (t, i) is given by:

ÃV (x(t), r(t)) = xT(t)Q(i)x(t),

where

Q(i) = AT
i P (i) + P (i)Ai +

∑
j∈N

λijP (j). (4)

According to the Dynkin’s formula [17]

E [V (x(t+Δ), r(t+Δ))|x(t), r(t)]− V (x(t), r(t))

=

∫ t+Δ

t

ÃV (x(s), r(s))ds. (5)

Noting here, the Dynkin’s formula can be regarded as a
stochastic generalization of the Newton-Leibniz formula.
If ÃV (·) < 0, the system is stochastically stable [16].
Therefore, the stability of MJLS can be verified by the
existence of the symmetric and positive-definite matrices
P = (P (1), P (2), · · · , P (N)).

III. MAIN RESULTS

To investigate the stochastic stability of S-MJLSs, analog
to MJLS, we firstly construct a stochastic Lyapunov function
V and then derive the infinitesimal generator of V . The
infinitesimal generator Ã can be considered as the derivative
of the function V (·) [18].

A. From MJLS to S-MJLS Using Weibull Distribution

From MJLS to S-MJLS, we relax the probability dis-
tribution of sojourn-time from exponential distribution to
Weibull distribution so the transition rate in S-MJLS will
be time-varying instead of constant in MJLS. The Weibull
distribution is a continuous probability distribution with
shape parameter β > 0 and scale parameter α > 0. A
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random variable H is said to follow a two-parameter Weibull
distribution if its probability distribution function (PDF) is

f(h) =

⎧⎪⎨
⎪⎩

β

αβ
hβ−1 exp

[
−
(
h

α

)β
]
, h ≥ 0,

0, h < 0.

The cumulative distribution function (CDF) of H is

F (h) =

⎧⎪⎨
⎪⎩

1− exp

[
−
(
h

α

)β
]
, h ≥ 0,

0, h < 0.

The transition rate function λ(h) is

λ(h) =
f(h)

1− F (h)
=

β

αβ
hβ−1.

Remark 1 It is worth mentioning that for the Weibull distri-
bution, if β = 1, it reduces to an exponential distribution. In
such case, the semi-Markov process reduces to a standard
Markov process where the sojourn-time at each mode is
exponentially distributed. In other words, the transition rate
λ(h) ≡ 1/α is a constant value (the straight black line in
Fig 2). Determining the shape of the PDF and transition rate
function λ(h), β is therefore known as the shape parameter.
For example, λ(h) monotonically increases along t if β > 1
and monotonically decreases if β < 1 (see Fig. 2).
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Fig. 2. Transition rates with different shape parameters β (α = 1).

As a result of the relaxation, the memoryless property in
the MJLS does not pertain in the S-MJLS, so the transition
rate is not a constant in the S-MJLS. This poses the main
technical difficulty for the stochastic stability analysis for
the S-MJLS. The following theorem provides the sufficient
condition of the S-MJLS is stochastically stable and it will
play an instrumental role in the testable stochastic stability
analysis.

Theorem 1: For the semi-Markov jump linear system
in (1), where λij(h) depends on sojourn-time h where h
is set to 0 when system jumps. The system is stochastically
stable if there exist P (i) > 0, i ∈ S , such that for all i ∈ S

AT
i P (i) + P (i)Ai +

N∑
j=1

λij(h)P (j) < 0. (6)

Proof: Consider the following Lyapunov function:

V (x(t), r(t)) = xT(t)P (i)x(t),

where P (i) > 0 is a symmetric and positive definite matrix
for every i ∈ S .

ÃV (x(t), r(t))

= lim
Δ→0

E [V (x(t+Δ), r(t+Δ))|x(t), r(t)]− V (x(t), r(t))

Δ

= lim
Δ→0

1

Δ

⎡
⎣ N∑
j=1,j �=i

Pr{r(t+Δ) = j|r(t) = i}

xT(t+Δ)P (j)x(t+Δ)− xT(t)P (i)x(t)

+ Pr{r(t+Δ) = i|r(t) = i}xT(t+Δ)P (i)x(t+Δ)

]
.

Noting that for a general distribution of the sojourn-time
in mode i, without memoryless property, Pr{r(t + Δ) =
j|r(t) = i} �= Pr{r(Δ) = j|r(0) = i}. Using the
conditional probability formula,

ÃV (x(t), r(t)) = lim
Δ→0

1

Δ

⎡
⎣ N∑
j=1,j �=i

qij(Fi(t+Δ)− Fi(t))

1− Fi(t)

xT(t+Δ)P (j)x(t+Δ)− xT(t)P (i)x(t)

+
1− Fi(t+Δ)

1− Fi(t)
xT(t+Δ)P (i)x(t+Δ)

]
,

where Fi(t) is the CDF of the sojourn-time when system
remains in mode i and qij is the probability intensity from
mode i to mode j. Given Δ is small, x(t + Δ) = (AiΔ +
I)x(t) and limΔ→0 Δ

2/Δ = 0. So

ÃV (x(t), r(t))

= lim
Δ→0

1

Δ

⎡
⎣ N∑
j=1,j �=i

qij(Fi(t+Δ)− Fi(t))

1− Fi(t)
xT(t)

[AT
i P (j)Δ + P (j)AiΔ+ P (j)]x(t)− xT(t)P (i)x(t)+

1− Fi(t+Δ)

1− Fi(t)
xT(t)[AT

i P (i)Δ + P (i)AiΔ+ P (i)]x(t)

]
.

Using the condition

lim
Δ→0

Fi(t+Δ)− Fi(t)

1− Fi(t)
= 0,

the time derivative of V (x(t), r(t)) becomes

ÃV (x(t), r(t)) = xT(t)Q(t, i)x(t),

where

Q(t, i) =

N∑
j=1,j �=i

qijP (j) lim
Δ→0

Fi(t+Δ)− Fi(t)

(1− Fi(t))Δ

+
[
AT

i P (i) + P (i)Ai

]
lim
Δ→0

1− Fi(t+Δ)

1− Fi(t)

+ P (i) lim
Δ→0

Fi(t)− Fi(t+Δ)

(1− Fi(t))Δ
.

=
[
AT

i P (i) + P (i)Ai

]
lim
Δ→0

1− Fi(t+Δ)

1− Fi(t)
+⎡

⎣ N∑
j=1,j �=i

qijP (j)− P (i)

⎤
⎦ lim

Δ→0

Fi(t+Δ)− Fi(t)

(1− Fi(t))Δ
.
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To evaluate the limit, take the Taylor series with respect to
Δ at 0 as follows:

Fi(t+Δ) = Fi(t) + Δ
∂Fi(t+Δ)

∂Δ

∣∣∣∣
Δ=0

+ o(Δ).

For finite t, ∃ε > 0 such that 1− Fi(t) > ε, so

lim
Δ→0

1− Fi(t+Δ)

1− Fi(t)
= 1.

Besides,

lim
Δ→0

Fi(t+Δ)− Fi(t)

(1− Fi(t))Δ
=

1

1− Fi(t)
lim
Δ→0

Fi(t+Δ)− Fi(t)

Δ

=λi(t).

Here λi(t) is the transition rate of the system jumping from
mode i. Define λij(t) = λi(t)qij for j �= i and λii(t) =
−∑

j=1,j �=i λij(t), so

Q(t, i) = AT
i P (i) + P (i)Ai +

N∑
j=1

λij(t)P (j).

Thus

ÃV (x(t), r(t)) =xT(t)Q(t, i)x(t)

≤max
i∈S,t

{λmaxQ(t, i)}xT(t)x(t).

Here, we show that maxi∈S,t {λmaxQ(t, i)} exists. Denote

Q(t, i) = Q1(i) +Q2(t, i),

where Q1(i) and Q2(t, i) are given as follows

Q1(i) = AT
i P (i) + P (i)Ai, Q2(t, i) =

∑
j∈S

P (j)λij(t).

Obviously, maxi∈S {λmaxQ1(i)} and λmaxP (j) exist. Since
λij(t) ≤ λ̄ij , hence,

Q(t, i)− Imax
i∈S

{λmaxQ1(i)} − I
∑
j∈S

λmaxP (j)λ̄ij ≤ 0.

Therefore, maxi∈S,t {λmaxQ(t, i)} always exists.
By the generalized Dynkin’s formula [19],

E[V (x(t), i)]− V (x0, r0)

=E

[∫ t

0

ÃV (x(s), r(s))ds

∣∣∣∣(x0, r0)

]

≤max
i∈S,t

{λmaxQ(t, i)}E
[∫ t

0

xT(s)x(s)ds

∣∣∣∣(x0, r0)

]
.

This, in turn, implies

−max
i∈S,t

{λmaxQ(t, i)}E
[∫ t

0

xT(s)x(s)ds

∣∣∣∣(x0, r0)

]
≤E [V (x0, r0)]− E [V (x(t), i)] ≤ E [V (x0, r0)] .

Furthermore, (6) indicates maxi∈S,t {λmaxQ(t, i)} < 0, so

E

[∫ t

0

xT(s)x(s)ds

∣∣∣∣(x0, r0)

]
≤ − E [V (x0, r0)]

maxi∈S,t {λmaxQ(t, i)}

holds for any t > 0. Letting t go to infinity implies that

E

[∫ ∞

0

xT(s)x(s)ds

∣∣∣∣(x0, r0)

]
is bounded by the constant

T (x0, r0) = − E [V (x0, r0)]

maxi∈S,t {λmaxQ(t, i)} > 0.

According to Definition 1, the system in (1) is stochastically
stable. This completes the proof.

Since λij(t) is continuously time-varying, verifying the
condition in (6) involves testing the feasibility of infinity
many matrix inequalities which is numerical impossible [20].
So we seek the similar form in (4) which is numerically
testable by existing solvers.

B. A Conservative Condition

A conservative but intuitive approach is to find one set
of P (i), i ∈ S such that condition (6) holds uniformly for
all possible λij(t), t > 0. The following theorem gives an
sufficient stochastic stability condition.

Theorem 2: For S-MJLS in (1), if there exist P (i) > 0,
i ∈ S , such that for all i ∈ S

AT
i P (i) + P (i)Ai +

N∑
j=1

λijP (j) < 0 (7)

AT
i P (i) + P (i)Ai +

N∑
j=1

λ̄ijP (j) < 0, (8)

where λij < λ̄ij are the lower and upper bounds of the
transition rate, respectively. Then the S-MJLS with transition
rate λij(t) ∈ [λij , λ̄ij ] is stochastically stable.

Proof: According to Theorem 1, the S-MJLS is stochas-
tically stable with transition rate λij(t) if there exist P (i) >
0, i ∈ S such that the condition in (6) holds. λij(t) can
be written as the linear combination λij(t) = ε1λij + ε2λ̄ij

where ε1+ε2 = 1 and ε1, ε2 > 0. For i ∈ S , multiplying (7)
by ε1 and (8) by ε2, the summation yields

AT
i P (i) + P (i)Ai +

N∑
j=1

(ε1λij + ε2λ̄ij)P (j) < 0.

By tuning ε1 and ε2, all possible λij(t) ∈ [λij , λ̄ij ] can be
achieved. Therefore the condition (6) holds uniformly which
means that the system in (1) is stochastically stable.

Observing from Fig. 2, for the sojourn-time with a Weibull
distribution with parameters α = 1, β = 2, the transition
rate increases monotonically along h, accordingly, λij =
λij(0) = 0 and λ̄ij = λij(∞) = ∞. For λij(∞) = ∞ and
P (i) > 0 the condition in (8) does not hold. This imposes
the significant difficulty on the stochastic stability analysis.
Therefore, the following assumption is needed to tackle the
problem. For S-MJLS where the transition rate λ varies from
0 to ∞, we constrain λ to [λ, λ̄]. The choice of λ and λ̄
can guarantee the switching happens between t and t̄ at 99%
confidence level, i.e. Pr{the S-MJLS jumps between t and
t̄} > 0.99.
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Fig. 3. Constrain the lower and upper bounds of the transition rates.

C. Reduce the Conservativeness

The condition in Theorem 2 is, however, conservative. To
reduce the conservativeness of the condition, we partition
the transition rate into M sections. The separating transition
rates are λij,1, λij,2, · · · , λij,M−1, and λij , λ̄ij are further
denoted by λij,0, λij,M , respectively. So the minimum and
maximum transition rate for section m are (λij,m−1 λij,m).
The following theorem shows the partition can reduce the
conservativeness of the sufficient condition in Theorem 2.

Theorem 3: For the S-MJLS in (1), if there exist
P (i,m) > 0, i ∈ S,m = 1, 2, · · · ,M that the following
set of LMIs hold for every i ∈ S and m = 1, 2, · · · ,M

AT
i P (i,m) + P (i,m)Ai +

N∑
j=1

λij,m−1P (j,m) < 0 (9)

AT
i P (i,m) + P (i,m)Ai +

N∑
j=1

λij,mP (j,m) < 0, (10)

where λij,m−1 and λij,m are the lower and upper bounds of
transition rate in section m. Then the S-MJLS is stochasti-
cally stable.

Proof: Substituting λij and λ̄ij in Theorem 2 by
λij,m−1 and λij,m, this theorem can be readily proved and
hence omitted here.
Remark 2 The condition in Theorem 1 is not numerically
testable by existing software package. Imposing constrains
on the transition rates the testable sufficient condition is
obtained in Theorem 2. To reduce the conservativeness, we
partition the transition rates. Since P (i,m1) does not neces-
sarily equal P (i,m2), so Theorem 3 allows more freedom
in choosing feasible solutions which can be seen from the
numerical Example 3.

IV. NUMERICAL EXAMPLES

In this section, we present numerical simulation examples
to illustrate the effectiveness of the developed sufficient
stochastic stability conditions.

A. Example 1

Consider the S-MJLS with 2 modes

A1 =

[ −1.8588 0.4615
0.4969 −0.1221

]
, A2 =

[
0.0048 −0.0094
−0.2932 −0.7738

]
.

The sojourn-time for each mode follows the same Weibull
distribution with scale parameter α = 1 and shape param-
eter β = 2. We constrain the transition rate bounded in

[0.1000 4.6000] which is valid at 99% confidence level.
The eigenvalues of the two subsystems are −1.9821, 0.0012
and 0.0083, − 0.7773, respectively. Both subsystems are
unstable. Apply Theorem 2, solving (7) and (8) yields

P (1) =

[
6.4650 3.7088
3.7088 16.9694

]
, P (2) =

[
12.5502 2.9348
2.9348 11.5181

]
.

Therefore the S-MJLS is stochastically stable. With initial
conditions x0 = [5 − 4]T and r0 = 1, the state trajectories
are shown in Fig. 4.

0 2 4 6 8 10 12

−4

−2

0

2

4

6

Time (s)

S
ta

te
 tr

aj
ec

to
ry

 x
(t)

x1(t)

x2(t)

Fig. 4. State trajectories of Example 1.

B. Example 2

Consider the S-MJLS with 2 modes

A1 =

[ −0.4393 3.1629
−2.4097 0.4621

]
, A2 =

[ −0.8888 −0.4272
−0.0792 −0.3879

]
.

The eigenvalues of the two subsystems are 0.0114 +
2.7237i, 0.0114− 2.7237i and −0.9491, − 0.3276, respec-
tively. A1 is unstable. For the purpose of comparison, the
probability distributions and constraints for sojourn-time in
each mode are the same as in the Example 1. The sufficient
condition in Theorem 2 is infeasible, but the sufficient
condition in Theorem 3 with m = 2 and separating transition
rate λij,1 = 0.8326 is feasible. Solving (9) and (10) yields

P (1, 1) =

[
1266.8 −238.5
−0238.5 1660.6

]
,

P (2, 1) =

[
473.0 −222.9
−222.9 1050.9

]
,

P (1, 2) =

[
1017.1 −208.8
−208.8 1310.4

]
,

P (2, 2) =

[
676.7 −237.0
−237.0 1159.7

]
.

Thus, the S-MJLS is stochastically stable. The state trajec-
tories with the same initial conditions as in Example 1 are
shown in Fig. 5.
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Fig. 5. State trajectories of Example 2.

4672



C. Example 3

Consider the S-MJLS with 2 modes

A1 =

[
0.0222 −2.7965
1.7444 −0.6698

]
, A2 =

[
0.0772 0.3068
−0.1344 −0.4202

]
.

The eigenvalues of the two subsystems are −0.3238 +
2.1814i, − 0.3238 − 2.1814i and −0.0279, − 0.3151,
respectively. Both two subsystems are stable. However, the
conditions in Theorem 2 and m = 2 in Theorem 3 are
not feasible. Nevertheless, with m = 4 and the separating
transition rates λij,1 = 0.5364, λij,2 = 0.8326, and λij,3 =
1.1774, the condition in Theorem 3 is feasible which yields

P (1, 1) =

[
410.9 −73.8
−73.8 523.8

]
,

P (2, 1) =

[
730.5 389.3
389.3 736.5

]
,

P (1, 2) =

[
508.3 −133.7
−133.7 678.8

]
,

P (2, 2) =

[
855.5 105.2
105.2 539.4

]
.

P (1, 3) =

[
515.7 −145.0
−145.0 688.3

]
,

P (2, 3) =

[
786.5 16.6
16.6 537.5

]
,

P (1, 4) =

[
508.0 −150.3
−150.3 679.5

]
,

P (2, 4) =

[
670.7 −64.4
−64.4 565.6

]
.

So the S-MJLS is stochastically stable. The state trajectories
with the same initial conditions as in Example 1 are shown
in Fig. 6.
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Fig. 6. State trajectories of Example 3.

Remark 3 Theorem 2 reduces to the conventional MJLS
theory considering the time-varying transition rates described
by polytopic uncertainties [15]. Shown by Example 2 and 3,
the sufficient conditions of the conventional MJLS theory
will not be satisfied, however, by separating the transition
rates into several sections with Theorem 3, the S-MJLSs in
Example 2 and 3 are stochastically stable. It demonstrates
that the proposed condition is less conservative and more
efficient on the stochastic stability analysis for the S-MJLS.

V. CONCLUSION

For the S-MJLS with the sojourn-time following Weibull
distribution, the sufficient condition for stochastic stability
of the S-MJLS is derived. Further constraining on the lower

and upper bound of the transition rate, the testable sufficient
conditions of the S-MJLS are derived in the form of a set
of LMIs. To reduce the conservativeness of the sufficient
condition, we separate the transition rates into small sections.
The more sections are separated, the less conservative of
the sufficient condition, however, computational complexity
increased which cost higher computational burden. Simula-
tion examples verify the proposed sufficient conditions. The
examples also show that the instability of some or all of the
modes in the S-MJLS does not necessarily mean the overall
system is unstable.
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